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The feasibility of developing a neural network to perform nonlinear 
Bayesian estimation from sparse data is explored using an example 
from clinical pharmacology. The problem involves estimating parame- 
ters of a dynamic model describing the pharmacokinetics of the bron- 
chodilator theophylline from limited plasma concentration measure- 
ments of the drug obtained in a patient. The estimation performance 
of a backpropagation trained network is compared to that of the max- 
imum likelihood estimator as well as the maximum a posteriori prob- 
ability estimator. In the example considered, the estimator prediction 
errors (model parameters and outputs) obtained from the trained neural 
network were similar to those obtained using the nonlinear Bayesian 
estimator. 

1 Introduction 

The performance of the backpropagation learning algorithm in pattern 
classification problems has been compared to that of the nearest-neighbor 
classifier by a number of investigators (Gorman and Sejnowski 1988; Burr 
1988; Weideman et al. 1989). The general finding has been that the al- 
gorithm results in a neural network whose performance is comparable 
(Burr 1988; Weideman et al. 1989) or better (Gorman and Sejnowski 1988) 
than the nearest-neighbor technique. Since the probability of correct clas- 
sification for the nearest-neighbor technique can be used to obtain upper 
and lower bounds on the Bayes probability of correct classification, the 
performance of the network trained by Gorman and Sejnowski (1988) is 
said to have approached that of a Bayes decision rule. 

Benchmarking the backpropagation algorithm's performance is nec- 
essary in pattern classification problems where class distributions inter- 
sect. Yet few investigators (Kohonen et al. 1988) have compared the 
performance of a backpropagation trained network in a statistical 
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pattern recognition or estimation task, to the performance of a Bayesian 
or other statistical estimators. Since Bayesian estimators require a priori 
knowledge regarding the underlying statistical nature of the classifica- 
tion problem, and simplifying assumptions must be made to apply such 
estimators in a sparse data environment, a comparison of the neural net- 
work and Bayesian techniques would be valuable since neural networks 
have the advantage of requiring fewer assumptions in representing an 
unknown system. 

In this paper we compare the performance of a backpropagation 
trained neural network developed to solve a nonlinear estimation prob- 
lem to the performance of two traditional statistical estimation 
approaches: maximum likelihood estimation and Bayesian estimation. 
The particular problem considered arises in the field of clinical phar- 
macology where it is often necessary to individualize a critically ill pa- 
tient’s drug regimen to produce the desired therapeutic response. One 
approach to this dosage control problem involves using measurements 
of the drug’s response in the patient to estimate parameters of a dynamic 
model describing the pharmacokinetics of the drug (i.e., its absorbtion, 
distribution, and elimination from the body). From this patient-specific 
model, an individualized therapeutic drug regimen can be calculated. 
A variety of techniques have been proposed for such feedback control 
of drug therapy, some of which are applied on a routine basis in many 
hospitals [see Vozeh and Steimer (1985) for a general discussion of this 
problem]. In the clinical patient care setting, unfortunately, only a very 
limited number of noisy measurements are available from which to esti- 
mate model parameters. To solve this sparse data, nonlinear estimation 
problem, both maximum likelihood and Bayesian estimation methods 
have been employed (e.g., Sheiner et al. 1975, Sawchuk et al. 1977). The 
a priori information required to implement the latter is generally avail- 
able from clinical trials involving the drug in target patient populations. 

2 The Pharmacotherapeutic Example 

The example considered involves the drug theophylline, which is a po- 
tent bronchodilator that is often administered as a continuous intra- 
venous infusion in acutely ill patients for treatment of airway obstruc- 
tion. Since both the therapeutic and toxic effects of theophylline parallel 
its concentration in the blood, the administration of the drug is gener- 
ally controlled so as to achieve a specified target plasma drug concen- 
tration. In a population study involving critically ill hospitalized pa- 
tients receiving intravenous theophylline for relief of asthma or chronic 
bronchitis, Powell et al. (1978) found that the plasma concentration of 
theophylline, y(t), could be related to its infusion rate, r(t) ,  by a sim- 
ple one-compartment, two-parameter dynamic model [i.e., dy( t ) /d t  = 
-(CL/V)y(t)+r(t)/V]. In the patients studied (nonsmokers with no other 
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organ disfunction), significant variability was observed in the two ki- 
netic model parameters: distribution volume V (liters/kg body weight) 
= 0.50 & 0.16 (mean f SD); elimination clearance CL (liters/kg/hr) = 
0.0386 f 0.0187. In what follows, it will be assumed that the population 
distribution of V and CL can be described by a bivariate log-normal 
density with the above moments and a correlation between parame- 
ters of 0.5. For notational convenience, a will be used to denote the 
vector of model parameters (a = [V CLIT) and p and R used to rep- 
resent the prior mean parameter vector and covariance matrix, respec- 
tively. 

Given this a priori population information, a typical initial infusion 
regimen would consist of a constant loading infusion, T I ,  equal to 10.0 
mg/kg/hr for 0.5 hr, followed by a maintenance infusion, rz, of 0.39 
mg/kg/hr. This dosage regimen is designed to produce plasma con- 
centrations of approximately 10 pg/ml for the patient representing the 
population mean (such a blood level is generally effective yet nontoxic). 
Because of the significant intersubject variability in the pharmacokinetics 
of theophylline, however, it is often necessary to adjust the maintenance 
infusion based on plasma concentration measurements obtained from 
the patient to achieve the selected target concentration. Toward this end, 
plasma concentration measurements are obtained at several times dur- 
ing the initial dosage regimen to estimate the patient's drug clearance 
and volume. We assume that the plasma measurements, z(t) ,  can be re- 
lated to the dynamic model's prediction of plasma concentration, y( t ,  a), 
as follows: z ( t )  = y(t, a)  + e(t). The measurement error, eW, is assumed 
to be an independent, Gaussian random variable with mean zero and 
standard deviation of ~ ( a )  = 0.15 x y(t,a). A typical clinical scenario 
might involve only two measurements, z ( t l )  and where tl = 1.5 
hr and t 2  = 10.0 hr. The problem then involves estimating V and CL 
using the measurements made in the patient, the kinetic model, knowl- 
edge of the measurement error, as well as the prior distribution of model 
parameters. 

3 Estimation Procedures 

Two traditional statistical approaches have been used to solve this sparse 
data system estimation problem: maximum likelihood ( M L )  estimation 
and a Bayesian procedure that calculates the maximum a posteriori prob- 
ability ( M A P ) .  Given the estimation problem defined above, the M L  
estimate, aML, of the model parameters, a, is defined as follows: 

(3.1) 
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where z = [z(t1)z(t2)IT,y(cy) = [y( t l ,a )y( t2 ,a) lT ,  and C(a) = diag 
{ut1 (a)  ot,(a)}. The MAP estimator is defined as follows: 

wherev = {vi},i = 1,2,@ = {&},i = j = 1,2, with vi = 1npi-4%i/2,2 = 1,2, 
and &j = l n ( ~ i ~ / p i j p i j + l ) ,  i, j = 1,2. The mean and covariance of the prior 
parameter distribution, p and 0 (see above), define the quantities pi and 
wij .  Also, A(a)  = diag(Ina1 Inaz}. The corresponding estimates of the 
drug's concentration in the plasma can also be obtained using the above 
parameter estimates together with the kinetic model. To obtain the M L  
and M A P  estimates a general purpose pharmacokinetic modeling and 
data analysis software package was employed, which uses the Nelder- 
Mead simplex algorithm to perform the required minimizations and a 
robust stiff /norutiff differential equation solver to obtain the output of 
the kinetic model (DArgenio and Schumitzky 1988). 

As an alternate approach, a feedforward, three-layer neural network 
was designed and trained to function as a nonlinear estimator. The ar- 
chitecture of this network consisted of two input units, seven hidden 
units, and four output units. The number of hidden units was arrived at 
empirically. The inputs to this network were the patient's noisy plasma 
samples z(t1) and z(tZ), and the outputs were the network's estimates 
for the patient's distribution volume and elimination clearance (a") as 
well as for the theophylline plasma concentration at the two observation 
times Iy(td, y(t2)I. 

To determine the weights of the network, a training set was simu- 
lated using the kinetic model defined above. Model parameters (1000 
pairs) were randomly selected according to the log-normal prior distribu- 
tion defining the population (ai, i = 1,. . . , lOOO), and the resulting model 
outputs determined at the two observation times [y(tl, ai), y(t2, ah, i = 
I , .  . . ,10001. Noisy plasma concentration measurements were then sim- 
ulated [ ~ ( t l ) ~ ,  z(t2)i, i = 1, . . . ,10001 according to the output error model 
defined previously. From this set of inputs and outputs, the backpropa- 
gation algorithm (Rumelhart et al. 1986) was used to train the network as 
follows. A set of 50 vectors was selected from the full training set, which 
included the vectors containing the five smallest and five largest values 
of V and CL. After the vectors had been learned, the performance of 
the network was evaluated on the full training set. Next, 20 more vectors 
were added to the original 50 vectors and the network was retrained. 
This procedure was repeated until addition of 20 new training vectors 
did not produce appreciable improvement in the ability of the network 
to estimate parameters in the full training set. The final network was the 
result of training on a set of 170 vectors, each vector being presented 
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to the network approximately 32,000 times. As trained, the network ap- 
proximates the minimum expected (over the space of parameters and 
observations) mean squared error estimate for a , y ( t l )  and y(t2). [See 
Asoh and Otsu (1989) for discussion of the relation between nonlinear 
data analysis problems and neural networks.] 

4 Results 

The performance of the three estimators (ML,  MAP,  N N )  was evaluated 
using a test set (1000 elements) simulated in the same manner as the 
training set. Figures 1 and 2 show plots of the estimates of V and CL, 
respectively, versus their true values from the test set data, using each of 
the three estimators. Also shown in each graph are the lines of regression 
(solid line) and identity (dashed line). 

To better quantify the performance of each estimator, the mean and 
root mean squared prediction error (Mpe and RMSpe,  respectively) were 
determined for each of the two parameters and each of the two plasma 
concentrations. For example, the prediction error (percent) for the N N  
volume estimate was calculated as pe, = (y" - V,)lOO/V,, where V ,  is 
the true value of volume for the ith sample from the test set and y" is 
the corresponding N N  estimate. 

Table 1 summarizes the resulting values of the Mpe for each of the 
three estimators. From inspection of Table 1 we conclude that the biases 
associated with each estimator, as measured by the Mpe for each quantity, 
are relatively small, and comparable. As a single measure of both the 
bias and variability of the estimators, the RMSpe  given in Table 2 indicate 
that, with respect to the parameters V and CL, the precision of the N N  
and MAP estimators is similar and significantly better than that of the 
M L  estimator in the example considered here. 

For both the nonlinear maximum likelihood and Bayesian estimators, 
an asymptotic error analysis could be employed to provide approximate 
errors for given parameter estimates. In an effort to supply some type of 

Estimator 
M L  2.5 3.4 -1.1 -3.0 

MAP 1.0 6.1 0.8 1.5 
" 4.7 3.8 0.6 7.3 

Table 1: Mean Prediction Errors (Mpe)  for the Parameters (V and CL) and 
Plasma Concentrations [y(tl) and y(tz)] as Calculated, for Each of the Three 
Estimators, from the Simulated Test Set. 
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Figure 1: Estimates of V for the M L ,  M A P ,  and N N  procedures (top to bottom), 
plotted versus the true value of V for each of the 1000 elements of the test set. 
The corresponding regression lines are as follows: V M L  = l.OV+0.004, r2 = 0.74; 
V M A P  = 0.80V + 0.094, r2 = 0.81; V” = 0.95V + 0.044, r2 = 0.80. 
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Figure 2 Estimates of CL for the ML, MAP, and N N  procedures (top to 
bottom), versus their true values as obtained from the test set data. The cor- 
responding regression lines are as follows: CLML = 0.96CL + 0.002, r2 = 0.61; 
CLMAP = 0.73CL + 0.010, r2 = 0.72; CL" = 0.69CL + 0.010, r2 = 0.69. 
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RMSpe (%I 
Estimator V CL y(t1) Ye21 

M L  21. 44. 16. 16. 
MAP 14. 30. 12. 13. 
N N  16. 31. 13. 14. 

Table 2: Root Mean Square Prediction Errors (RMSpe)  for Each Estimator. 

error analysis for the N N  estimator, Figure 3 was constructed from the 
test set data and estimation results. The upper panel shows the mean 
and standard deviation of the prediction error associated with the N N  
estimates of V in each of the indicated intervals. The corresponding re- 
sults for CL are shown in the lower panel of Figure 3. These results could 
then be used to provide approximate error information corresponding to 
a particular point estimate (V" and CL") from the neural network. 

5 Discussion 

These results demonstrate the feasibility of using a backpropagation 
trained neural network to perform nonlinear estimation from sparse data. 
In the example presented herein, the estimation performance of the net- 
work was shown to be similar to a Bayesian estimator (maximum a pos- 
teriori probability estimator). The performance of the trained network 
in this example is especially noteworthy in light of the considerable dif- 
ficulty in resolving parameters due to the uncertainty in the mapping 
model inherent in this estimation problem, which is analogous to inter- 
section of class distributions in classification problems. 

While the particular example examined in this paper represents a re- 
alistic scenario involving the drug theophylline, to have practical utility 
the resulting network would need to be generalized to accommodate dif- 
ferent dose infusion rates, dose times, observation times, and number of 
observations. Using an appropriately constructed training set, simulated 
to reflect the above, it may be possible to produce such a sufficiently 
generalized neural network estimator that could be applied to drug ther- 
apy problems in the clinical environment. It is of further interest to note 
that the network can be trained on simulations from a more complete 
model for the underlying process (e.g., physiologically based model as 
opposed to the compartment type model used herein), while still produc- 
ing estimates of parameters that will be of primary clinical interest (e.g., 
systemic drug clearance, volume of distribution). Such an approach has 
the important advantage over traditional statistical estimators of building 
into the estimation procedure robustness to model simplification errors. 
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Figure 3: Distribution of prediction errors of volume (upper) and clearance 
(lower) for the N N  estimator as obtained from the test set data. Prediction 
errors are displayed as mean (e) plus one standard deviation above the mean. 
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