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Abstract. Feldman (1966) has proposed that a muscle 
endowed with its spinal reflex system behaves as a 
non-linear spring with an adjustable resting length. In 
contrast, because of the length-tension properties of  
muscles, many researchers have modeled them as non-lin- 
ear springs with adjustable stiffness. Here we test the 
merits of each approach: Initially, it is proven that the 
adjustable stiffness model predicts that isometric muscle 
force and stiffness are linearly related. We show that this 
prediction is not supported by data on the static stiffness- 
force characteristics of reflexive muscles, where stiffness 
grows non-linearly with force. Therefore, an intact mus- 
cle-reflex system does not behave as a non-linear spring 
with an adjustable stiffness. However, when the same 
muscle is devoid of  its reflexes, the data shows that 
stiffness grows linearly with force. We aim to understand 
the functional advantage of  the non-linear stiffness-force 
relationship present in the reflexive muscle. Control of  an 
inverted pendulum with a pair of  antagonist muscles is 
considered. Using an active-state muscle model we de- 
scribe force development in an areflexive muscle. From 
the data on the relationship of stiffness and force in the 
intact muscle we derive the length-tension properties of  
a reflexive muscle. It is shown that a muscle under the 
control of  its spinal reflexes resembles a non-linear spring 
with an adjustable resting length. This provides indepen- 
dent evidence in support of the Feldman hypothesis of 
an adjustable resting length as the control parameter of  
a reflexive muscle, but it disagrees with his particular 
formulation. In order to maintain stability of  the single 
joint system, we prove that a necessary condition is that 
muscle stiffness must grow at least linearly with force at 
isometric conditions. This shows that co-contraction of 
antagonist muscles may actually destabilize the limb if the 
slope of  this stiffness-force relationship is less than an 
amount  specified by the change in the moment arm of 
the muscle as a function of  joint configuration. In a 
reflexive muscle where stiffness grows faster than lin- 
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early with force, co-contraction will always lead to an 
increase in stiffness. Furthermore, with the reflexive 
muscles, the same level of  joint stiffness can be produced 
by much smaller muscle forces because of  the non-linear 
stiffness-force relationship. This allows the joint to re- 
main stable at a fraction of  the metabolic energy cost 
associated with maintaining stability with areflexive 
muscles. 

1 Introduction 

In the mid sixties, Asatryan and Feldman (1965) and 
Feldman (1966) proposed a unique approach for de- 
velopment of a theory for human motor  control. Their 
theory was based on a series of  experiments which 
examined the mechanics of  movement in the elbow 
joint. In a typical test, the forearm was placed in an 
apparatus that allowed for radial movements about 
the elbow joint in the horizontal plane. In each trial, 
the elbow flexors (or  extensors) would be loaded 
and the subject was asked to maintain a predeter- 
mined elbow angle. Based on their observations, when 
the flexors were loaded, judging from the EMG, the 
extensors were not active, and vice versa. After a 
sudden decrease of  the load, the forearm would 
transfer to a new position. The subject was told not to 
intervene voluntarily to correct this deflection of  the 
a r n l .  

A series of such experiments was repeated for the 
same initial elbow position and load, but each time the 
decrease in the load was changed. The set of points that 
resulted consisted of  two variables: elbow angle and 
muscle torque. These points were connected and 
formed an exponential-like curve (Fig. 1) that was 
characteristic of  that initial elbow angle (Feldman 1980, 
experimental data comes from Asatryan and Feldman 
1965). This curve was called an invariant characteristic 
(IC) because it preserved its shape despite rather wide 
time-space variations in the load change procedure 
(results of Feldman 1986 have shown that an IC main- 
tains its shape regardless of  whether it is obtained 
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through a sudden increase or a decrease in the load that 
the muscle is maintaining). 

In Fig. 1, each IC originates from a line which 
represents the torque that is produced at the elbow joint 
(for a given joint angle) by completely relaxed muscles. 
Feldman (1966) hypothesized that when a subject is 
asked to, for example, maintain a flexion load, he does 
this by down-loading a set of  control parameters to the 
spinal cord which set up the reflex system as well as 
directly activating the motoneurons.  However, when 
the load changes, since there is presumably no volun- 
tary change in these parameters,  what is observed is the 
response of the muscle-reflex system for that particular 
set of  control parameters.  The instruction given to the 
subject, "do  not intervene," is interpreted as meaning 
that the central input to the spinal servo loop is con- 
stant (Crago et al. 1976). I f  the change in load causes a 
change in the firing frequency of the a-motoneurons,  it 
must be the result of  afferent feedback. 

Because of  the shape of  these torque-angle curves, 
Feldman (1966) hypothesized that to the supra-spinal 
centers, the static force-length behavior of  a muscle and 
its reflex system appears as a non-linear spring with an 
adjustable resting length. In fact, it was proposed that 
the only controllable parameter  of  the muscle-reflex sys- 
tem (available for voluntary manipulation) is the thres- 
hold length of  this non-linear spring (Feldman 1986). 

Many elements of  the Feldman model are in sharp 
contrast to other muscle models proposed for descrip- 
tion of  movement  (Stern 1974; H o f  and Van den Berg 
1981; Zheng et al. 1984; Hogan  1984; Winters and 
Stark 1985, 1987; Ramos  and Stark 1987; Mussa-Ivaldi 
and Giszter 1991). We will show that all of  these 
"o ther"  models belong to a single class where the static 
force-length relationship of  a muscle is a non-linear 
elastic element with an adjustable stiffness. How do 
these models relate to the work of  Feldman? Evidence 
is provided which indicates that when a muscle is 
without its reflexive control system, it behaves as a 
non-linear spring with an adjustable stiffness. On the 
other hand, using stiffness-force data from an intact 
muscle-reflex preparat ion (Hoffer and Andreassen 
1981), we will show that the static characteristics of  a 
reflexive muscle does indeed appear  to the supra-spinal 
centers as a non-linear spring with an adjustable 
threshold parameter,  providing independent evidence in 
support  of  Feldman's  hypothesis. The key point is that 
when the controllable parameter  in a muscle is its 
stiffness, then stiffness is always a linear function of  
force at isometric conditions (which is what was ob- 
served by Hoffer and Andreassen 1981 in the areflexive 
muscle). But the stiffness-force relationship becomes 
non-linear when reflexes are present, f rom which we can 
derive a force-length relationship that agrees with the 
principle of  Feldman's  hypothesis, albeit not his partic- 
ular formulation. 

Is there a functional advantage when a muscle has a 
non-linear stiffness-force relationship? This question 
has especial relevance because we will show that in a 
single joint system (an inverted pendulum supported by 
a pair of  muscles), for the limb to remain stable, a 

muscle cannot obey Hooke ' s  law and act like a linear 
spring with constant stiffness. In fact, the limb will be 
stable if and only if the stiffness of  each muscle in- 
creases with force at isometric conditions. When a 
muscle's stiffness grows faster than linearly with force 
(as in the reflexive muscles), posture can be maintained 
at a fraction of the energy cost as compared to the case 
where stiffness grows linearly with force (as in the 
areflexive muscles). 

2 The Feldman model 

Feldman's  thesis is that the family of  curves in Fig. 1 
represent the static torque-angle relationship that is 
imposed by the CNS on the spinal motor  control 
apparatus,  and movement  arises as a consequence of (1) 
external load change, or (2) a decision by the CNS to 
change the torque-angle relationship of the synergists 
that are being controlled from a given curve to another. 
Feldman (1966) recognized that the force developed by 
a muscle at steady state for a particular length is a 
function of many variables: 

q~ = 12(2, cl, c2 . . . . .  c.) (1) 

where ~b is the force developed by a muscle at length 2 
with a composite control signal consisting of 
ci(i = 1 . . . . .  n) representing the neural command that 
acts on the spinal motor  control circuitry. Voluntary 
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Fig. 1. A family of "invariant characteristics" (ICs) of elbow flexors 
(upper curves) and extensors (lower curves), measured through unload- 
ing the arm. The joint coordinate system refers to the angle of the 
elbow joint, and is 180 ~ when the elbow is maximally extended. The 
instruction was "not to invervene voluntarily to forearm deflections 
when the load is removed." Solid circles: initial combination of 
muscle torque and elbow angle. Open circles: combinations of the 
same variables when they have settled after the unloading trials. Each 
IC merges with the characteristic of passive elbow joint (heavy line). 
(redrawn from Feldman 1980, Fig. 3A. The data from the figure 
recorded in Asatryan and Feldman 1965) 
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control of a muscle means changing the values of  some 
of the independent variables ci. These variables could 
represent gains or biases of  the spindle feedback or 
Golgi tendon pathways, or the amount  of  "descending" 
activation received by the motoneuron pool. 

It is generally believed that the essential compo- 
nents of  the muscle-reflex system are as shown in the 
schematic of  Fig. 2 (Houk and Rymer 1981). Here, a 
muscle produces a force which interacts with a load and 
leads to length changes. Muscle force depends on the 
level of activity of  the skeleto-motoneurons as well as 
the operating length of  the muscle. In this model, 
activity of  the skeleto-motoneurons depends on three 
sources: (i) direct supraspinal activation, (ii) excitation 
from the spindle receptors mediated through interneu- 
rons in the segmental pathways, and (iii) inhibition 
from the Golgi tendon organs mediated through in- 
terneurons in the segmental pathways�9 The key assump- 
tion of Feldman (1966) is that an IC curve is produced 
when the CNS sets ci = constant for all i = 1 . . . . .  n, 
and that this corresponds to a constant control signal 
in Fig. 2. 

From Fig. 1, it appears that the effect of  the opera- 
tor t2 is to produce an exponential-like torque-angle 
relationship for a constant control vector e. Note that 
IC in Fig. 1 is the result of  addition of  three torque 
producing mechanisms: (i) a torque that is produced by 
the completely relaxed muscle (as judged by the absence 
of  EMG) due to its passive mechanical property, (ii) a 
torque that is generated by the passive property of the 
antagonist muscle, accounting for the negative (or pos- 
itive) torque region for the IC of  the flexors (extensors), 
and (iii) a torque that is produced because of  active 
contraction of the muscle. For  example, in the case 
where the elbow joint is flexed to about 55 ~ , the nega- 
tive torque in the IC's of  the elbow flexors is due to the 
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Fig. 2. Organizational plan of the autogcnic reflex system acting on a 
muscle. Activation of  a muscle produces a force which acts on a load 
to produce a length change. Muscle force is regulated by motor 
output from skeleto-motoneuron and also varies as a function of 
muscle length. Muscle length (and velocity) is monitored by spindle 
receptors and force by Golgi tendon organs. These signals provide 
excitation and inhibition, respectively, so skeleto-motoneurons by 
way of segmental (and possibly supra-segmental) pathways. Neural 
control signals are sent to skeleto-motor and fusi-motor neurons and 
to interneurons in the reflex pathway (from Houk and Rymer 1981) 

passive properties of  the stretched elbow extensors. 
Therefore the IC lines in Fig. 1 for the flexors include 
the passive properties of  the extensors. In order to 
represent the torque-angle relationship for just the flex- 
ors, one need to account for this passive property of  the 
antagonist muscles�9 In Fig. 3A we have done this by 
subtracting from the torque-angle relation of  the flexors 
that region of  the "passive" line in Fig. 1 where the 
torque was negative. 

Each line in Fig. 3A is the static torque-angle 
relationship which results for a given control vector e in 
(1) for the elbow flexors. A new line is generated when 
the control vector changes. However, note that a 
change in e leads to more than just a shift in the 
torque-angle relationship; there is also a change in the 
shape of  each line. Therefore, at least for the torque-an- 
gle relationship of  this group of  muscles, we cannot say 
that the control vector e is merely a threshold parame- 
ter beyond which torque develops. We can, however, 
consider the hypothesis that the change in the "shape" 
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Fig. 3A-C. The static characteristics of elbow flexors during unload- 
ing tasks where the subjects were told not to intervene voluntarily to 
correct the deflection of the arm. Here we derive the force developed 
in the muscles from joint torques as a function of arm configuration. 
A The torque developed in elbow flexors. These are the curves in Fig. 
1, but here we compensate for the effect of the passive torque as 
developed by the elbow extensors. B The moment arm for the biceps 
as a function of elbow joint angle. Data points from Feldman (1966), 
Fig. 3C. The fitted function is a fifth order polynomial. C Computed 
force as a function of muscle stretch 
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of  the torque function is mainly due to the change in 
the moment arm of  the muscles as the joint rotates. 
This is the argument that Feldman (1966) used to 
suggest that muscle force as a function of joint angle 
can indeed be approximated as a non-linear spring with 
an adjustable threshold length. In order to show this, 
we have used Feldman'S (1966) model regarding the 
change in the moment arm of  biceps brachii (an elbow 
flexor), as shown in Fig. 3B, to transform the torque- 
angle relation in Fig. 3A to a force-length relationship 
in Fig. 3C. The procedure is as follows: Initially, we 
need to derive the mathematical relationship between 
the force developed by the muscle, denoted by variable 
~b, and the resulting joint torque z. This depends on the 
kinematics of  the joint and how muscle length changes 
as a function of  joint angle. If  we assume that skeletal 
segments are rigid links and the muscles have a single 
point of  origin and insertion (e.g., Hogan 1985), then 
the kinematics can easily be defined and the principle of  
virtual work (Craig 1986) can be used to relate joint 
torque to muscle force. We summarize the principle 
as follows: 

The principle  o f  v ir tual  w o r k  

When forces act on a mechanism, work is done if the 
mechanism moves through a displacement. Work is 
defined as force acting through a distance, is a scalar 
with units of  energy, and is the same regardless of  the 
coordinate system in which it is measured. The princi- 
ple of  virtual work allows us to make certain statements 
regarding the transformation between forces in different 
coordinate systems by allowing the displacement to go 
infinitesimal. In our case, we have forces produced by 
muscles which act on a multi-joint skeletal system, and 
we want to understand how these forces can be repre- 
sented in terms of  joint torques. Initially, we represent 
work in each coordinate system, where work is the dot 
product of  vector force or torque and a vector displace- 
ment. Assuming the "right hand rule," where a positive 
torque indicates an increase in the joint angle, work in 
each coordinate system is represented by the following 
equality: 

- ~ b .  d2 = z .  d0 (2) 

where q~ is an n x 1 vector of  muscle forces, d2 is an 
n x 1 vector of  infinitesimal stretch of  the muscles, z is 
an m x 1 vector of  torques at the joint, and dO is an 
m x 1 vector of  joint displacements. Assume that mus- 
cles can only pull, and this force is defined to be 
positive. The reason for the negative sign on the left 
part of  this equality is as follows: Consider the case 
when a muscle is stretched. This requires positive work 
by the mechanism which stretches the muscle, thereby 
transferring energy to the muscle, which in turn stores 
this energy and releases it when the muscle shortens. 
Since muscle force has a direction that is always oppos- 
ing the direction of  length change for which positive 
work is done, the left side of  (2) must have a negative 
sign in order for a stretch (positive length change) to 
result in positive work. On the right side of  this equal- 

ity, torque acting on a joint and the resulting displace- 
ment have the same direction, resulting in positive 
work. We can rewrite (2) as: -~b r d2 = z r dO, where x r 
is the transpose of  x. It is useful to represent the 
differential transformation from joint angles to muscle 
lengths by the Jacobian JM, which satisfies the follow- 
ing: d2 = J M  d0, so that we may rewrite (2) as: 
- qb r J  u d0 = z r d0, which must hold for all dO, and so 
we have: -q~ r j ~  = z r. Transposing both sides: 

T = - j rq~ (3) 

For  a muscle acting on a single joint, this reduces to: 

d2 
z = - ~ ~b (4) 

Equation (4) gives us a way to transform joint 
torques in Fig. 3A to muscle forces, if we knew the 
moment arm of elbow flexors (i.e., d2/d0). For  the 
biceps (an elbow flexor), Feldman (1966) has approxi- 
mated d2/d0. We fitted a fifth order polynomial to his 
data (Feldman 1966, Fig. 3C), and have plotted the 
results in Fig. 3B. The curve fit equation is as follows: 

d2 
- -  = 2.8 - 0.020 + 7.4 x 1 0 - 4 0 2  - 2.3 x 10-703 
d0 

- 6.4 x 1 0 - 8 0 4  + 2.5 x 1 0 - 1 ~  (5 )  

Figure 3c is the computed muscle force for the 
elbow flexors as a function of  muscle length. Muscle 
length was derived by solving the differential equation 
in (5) I. From Fig. 3C it appears that the static force- 
length relationship of a muscle depends strongly on a 
threshold parameter beyond which muscle force is de- 
veloped. Feldman (1966) has argued that since there is 
little change in the shape of  this force function as the 
threshold parameter changes, the force-length relation 
of  a muscle may be represented by the following model: 

~b = 0(2 - r )  (6) 

where the control parameter fl has the units of  length 
and the operator t2 specifies the "invariant" relation- 
ship between muscle force and length. Based on the 
measured and derived data, Feldman (1966) proposed 
that muscle force as a function of  the control parameter 
fl is an exponential function: 

~b = k(exp(~(2 - fl)) - 1) (7) 

which basically says that the equivalent circuit model of 
the muscle-reflex system, from the point of  view of  the 
supra-spinal control centers, is a non-linear spring with 
an adjustable resting length. 

In order to arrive at this model, Feldman (1966) has 
made two important assumptions; (i) that the central 
control signals descending on the servo loop (as in Fig. 
2) are not varied during sudden changes in load, and 
(ii) in Fig. 3B, we have a reasonable model of  how the 

1 Since the initial condition for the differential equation in (6) is not 
known, the length axis of Fig. 3C is muscle stretch beyond an 
arbitrary constant, rather than absolute muscle length 



467 

moment arm of the elbow flexors, taken as a whole, 
changes as a function of joint angle. Unfortunately, 
both assumptions are difficult to verify in humans. 
However, one could test the validity of the model in (7) 
in a decerebrate animal by simulating the effect of the 
first assumption through systematic alteration of the 
control signals to the motor servo, while bypassing 
the second assumption through direct measurement of 
the developed muscle force as a function of muscle 
extension. 

Feldman and Orlovsky (1972) have taken this ap- 
proach in measuring the static force-length behavior of 
the reflexive gastrocnemius in a decerebrated cat. Their 
results suggest: (i) an exponential-like force-length rela- 
tionship for a constant central input, arid (~/) a simple 
shift in the threshold of the force-length relation as the 
central input is varied. Figure 4A shows a family of 
force-length curves obtained by Feldman and Orlovsky 
(1972) at different stimulation levels of Deiters' nu- 
cleus (a cerebellar nucleus). Force was measured from 
the gastrocnemius muscle while it was stretched slowly 
to its maximal physiological length. Deiters' nucleus 
stimulation at fixed rate was delivered before and 
throughout the period of stretching to mimic a con- 
stant level of central motor command. The salient 
effect of a change in stimulation was a shift in the 
force-length relation along the abscissa, i.e., a change 
in the "threshold" with little change in the shape of 
the curve. Excitatory input lowered this threshold, 
while inhibitory input moved it to a longer muscle 
length. The same qualitative results were obtained 
when stimulation was delivered to the pyramidal tract 
and the reticular formation. 

From the data in Fig. 4A we can ask whether the 
model in (7) is an accurate description of the static 
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Fig. 4. A Family of  force-length curves obtained at different intensi- 
ties o f  Deiters' nucleus stimulation. Reflex force was registered while 
the muscle (gastrocnemius in decerebrate cat) was stretched slowly to 
its maximal  physiological length. To arrive at each curve, a constant  
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stretching to mimic a constant  level of  central motor  command.  The 
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(redrawn from Feldman and Orlovsky 1972). B Test o f  whether the 
curves in A are of  exponential shape. In(1 + t#) is plotted as a 
function of  muscle extension, where ~b is muscle force. If  the curves in 
A fit the model ~b = k e x p ( a 0 . -  f l ) ) -  l, then all the points in B 
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force-length behavior of the gastrocnemius muscle and 
its associated spinal reflex pathways in the cat: logarith- 
mic transformation of the points belonging to a single 
curve in Fig. 4A should result in a straight line. In Fig. 
4B we have plotted the function In( 1 + ~b), where ~b is 
the muscle force in Fig. 4A. Although the model of (7) 
appears to be an accurate description of the data for 
medium and large forces, it fails to capture the subtle 
behavior for smaller forces. Based on this, it would 
appear that Feldman's (1966) model in (7) can be 
improved upon. In the next section, we will take up this 
issue when we consider the role of the reflex system 
in the development of this force-length relationship, 
i.e., how much of the force is due to intrinsic muscle 
stiffness, and how much due to the action of the 
stretch reflex. 

3 Two types of muscle models 

Although the term fl in (7) has been suggested by 
Feldman to be the parameter that the nervous system 
uses to control the static behavior of a muscle-reflex 
system, its physiological basis remains unclear. Static 
muscle force depends on muscle length because of the 
mechanical stiffness of the muscle, and because of the 
role of the stretch reflex in increasing motoneuron 
activity: The traditional explanation of the stretch reflex 
is that when the whole muscle is stretched, since the 
spindle organs are mechanically in parallel with the 
muscle, they are stretched by the same relative amount 
(Ghez 1985). But it has been argued that the feedback 
gain of this loop (which, after all, is responsible for 
further activating the muscles as it is stretched) is 
simply too low to account for the appreciable gain in 
force that is obtained in Fig. 1 as the muscle is stretched 
beyond its set length (Matthews 1981). In fact, many 
computational models of the muscle-skeletal system 
tend to view muscles as spring-like elements with vari- 
able stiffness, rather than variable resting length (Stem 
1974; Hof  and Van den Berg 1981; Zheng et al. 1984; 
Hogan 1984; Winters and Stark 1985, 1987; Ramos and 
Stark 1987; Mussa-Ivaldi and Giszter 1991). In what 
follows we discuss implications of both kinds of ap- 
proach and present a discussion which will reject the 
variable stiffness model as an accurate description of 
the static force-length behavior of a muscle. 

Models which view a muscle as a non-linear spring 
with variable stiffness are usually based on data such as 
that shown in Fig. 5 (from Rack and Westbury 1969), 
which describes the steady-state tension measured in an 
isolated soleus muscle vs. muscle length for various 
levels of activation (Fig. 5A), and tension vs. activation 
rate for various muscle lengths (Fig. 5B). For example, 
in the work of Hogan (1984), a muscle was modeled as 
a linear spring with variable stiffness (a change in the 
activation of the muscle led to a change in the muscle's 
stiffness), and this approximation was used to predict 
the amount of co-activation in the elbow muscles of the 
human arm for a lifting task. In the work of Mussa- 
Ivaldi and Giszter (1991), the condition for linearity of 
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the spring was removed and the static behavior of  a 
muscle was described by a factored form of a functional 
dependence of  the output  force upon a length parame- 
ter 2 and activation parameter u: 

c~ = h(u)g(2) (8) 

where u is meant to represent the amount of  depolariza- 
tion received by the motoneurons of the particular 
muscle. This basic formulation also describes the static 
force-length relationship of  muscle models used in Stern 
(1974) (cf., their p. 413, equation for P), Hof  and van 
den Berg (1981) (cf., their equation 2), Winters and 
Stark (1985) (cf., their Fig. 2b and equation 4), and 
Winters and Stark (1987) (cf., the contractile element's 
active muscle torque-angle process, their p. 407): In all 
these cases, initially a force-length relationship for a 
maximally activated muscle is described and then a 
change in activation is represented by a scaling process 
(note that force in 8 may be a non-linear function of  
activation, as is the case in Fig. 5B). For  example, in 
Zheng et al. (1984), a muscle model based on the work 
of  Hatze (1977) was described where steady-state force 
developed in a single muscle fiber was: 

h(u) = al (1 - -  b I exp(aeu) -- b2 exp(a3u)) 

g(2) = cl + c2 e x p ( c 3 2 )  s i n ( c 4 2 )  (9) 

where h(u) produces a saturating exponential relation 
similar to that of  Fig. 5B, and g(2) is defined over a 
range for 2 (i.e., muscle length) such that it initially 
rises to a maximum and then declines, resembling to 

some extent the behavior in Fig. 5A 2. In Zheng et al. 
(1984), the force developed in a whole muscle is a sum 
of  the forces developed in single muscle fibers (since the 
fibers are more or less in parallel). 

Although with this kind of  model one can produce 
any force at any muscle length (the same can be said 
for the Feldman type muscle model), there is a crucial 
difference between it and the formulation in (7): The 
formulation in (8) suggests that the control parameter u 
has the units of  stiffness (force divided by length), 
rather than length (which is the unit of  the control 
parameter in the Feldman-type model). This crucial 
difference between the models will allow us to refute the 
stiffness control model based on experimental data. 

Theorem 1. f f  static muscle force (9(2, u)can be written 
in factored form ~(2, u)=h(u)g(2), then dq~/d2, i.e., 
muscle stiffness, evaluated at some length 20, is propor- 
tional to q~(20, u). 

, . -1 . ,  .dg(2)] 
~ao=h(u)dg~(d22)o=C~(u,,to)g t Z o ) - ~ - l a  ~ 

Note that since the function g only depends on 2, all 
the g terms in the above equalities are constants deter- 
mined by 20, and therefore not a function of u. It 
follows that if at some operating length, stiffness is not 
proportional to force, then force is not a factorizable 
function of  u and 2. 

The experimental data of Hoffer and Andreassen 
(1978, 1981) allow us to reject the model of  (8): In their 
work, decerebrate cats were held rigidly and a force 
increment was measured as the soleus muscle was 
stretched by a small amount. When the experiment was 
repeated over a wide range of different initial levels of 
muscle force, it was reported that: (i) stiffness of  the 
muscle-reflex system increased with force at low force 
levels, but soon reached a plateau, so that stiffness was 
almost constant at moderate and high force levels (Fig. 
6), and (ii) the force-stiffness curve was found not to 
vary as a function of  operating muscle length. The first 
conclusion contradicts the predictions of (9). 

This result suggests that the static force developed 
in a muscle cannot be modeled as a factorizable func- 
tion of muscle length and activation. In fact, it also 
contradicts the predictions of  Feldman's formulation in 
(7) since dq~/d2 (stiffness) in this model is also a linear 
function of  q~ (force) at a given muscle length. How- 
ever, recall that (7), i.e., Feldman's (1966) model, was 
not a very good representative of  the experimental data 
of  Feldman and Orlovsky (1972) for small muscle 
forces, as illustrated in Fig. 4B. We will show that 
although the spirit of  the Feldman's hypothesis (as in 6) 
can be supported by the Hoffer and Andreassen (1981) 
data, its particular formulation needs to be changed. 

Based on the results of  Hoffer and Andreassen 
(1981), the stiffness characteristics of  a reflexive muscle 

2 The rationale for this formulation o f  g(2) is based on the work of  
Gordon et al. (1966). We discuss this work in section 4 where we 
describe the behavior of  a single muscle fiber 
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Fig. 6. Muscle stiffness vs. force in the cat soleus. When the stretch 
reflex is intact, muscle stiffness is a sharply rising function of force at 
the low end of the force range, but remains nearly constant at 
moderate and high forces. By contrast, when the reflex is eliminated 
by cutting the efferent soleus nerve and electrically stimulating the cut 
end to maintain tension, the isolated muscle shows a lower stiffness 
which is an approximately linear function of force (from Hoffer and 
Andreassen 1978) 

(i.e., a muscle with its spinal reflex system) can be 
approximated by: 

d__~ = k(1 - -  exp( - aq~)) (10) 
d2 

which presumes that the stiffness-force curve goes 
through the origin. This is a reasonable assumption 
because at zero force, a muscle will have a positive 
stiffness only if it happens to be at that length beyond 
which passive mechanical force develops (at zero force, 
this stiffness cannot be negative because it implies that 
the muscle produces a negative force as it is stretched). 
This passive stiffness is likely to be a fraction of the 
stiffness measured at maximum muscle tension (McMa- 
hon 1984) and is ignored in the formulation of (8). 

The solution to the differential equation in (10) is: 

~b = 1 ln(exp(~k0. - fl)) + 1) (11) 
(z 

where fl is the constant of integration and depends on 
the initial conditions for (10). Unfortunately, it is not 
possible to define fl precisely because the initial condi- 
tion for this kind of experiment cannot be known: In 
the decerebrate animal, reflex response of a muscle is 
measured at various initial force levels, and changing 
this initial muscle force is done by stroking the fur, 
blowing on the face, or by moving the contralateral 
limb (Nichols and Houk 1976; Hoffer and Andreassen 
1981). However, it is clear that the only way muscle 
force can be varied at some operating length is for the 
animal to vary t ,  therefore fl can be thought of as a 
controllable parameter (note that it has to have the 
units of length). 

Consider how force varies as a function of length 2 
in ( l l ) :  At a given t ,  when ). is such that 
exp(ak(2 - f l ) )  ~ 1, then force in (11) is approximately 
1/ct exp(ak(2 - f l ) ) ,  i.e., when the control parameter is 
such that the muscle is producing a small force, as we 
stretch it to new lengths, force will grow exponentially 
with length (i.e., faster than linearly). When 2 is such 
that exp(ctk(2- fl))>> 1, then force is approximately 
k(iL- fl), i.e., when the muscle is producing a large 
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force, as we stretch it, force should grow linearly 
with length. 

By varying t ,  i.e., the only controllable parameter 
of the system, one is in effect changing the resting length 
of a non-linear (exponential-like) spring. Interestingly, 
it can be shown that the formulation in (11) is an 
excellent estimate of the data in Fig. 4A. A measure of 
goodness of fit for this model can be visualized by 
plotting the function ln(exp(ct~b)- 1)) for the data 
points in Fig. 4A. Our result should be a family of 
straight lines with the same slope. This is in fact the 
case, as is illustrated in Fig. 7 (except for the passive 
curve, which does not follow the behavior of an actively 
controlled muscle). Therefore it appears that the model 
derived from the data of Hoffer and Andreassen (1981) 
strongly supports the contention that a muscle and its 
associated reflex system can be viewed as a non-linear 
spring with a variable resting length, and is a better 
model of the Feldman and Orlovsky (1972) data than 
the formulation in (7). 

Hoffer and Andreassen (1981) also reported on the 
stiffness of the areflexive muscle (i.e., a muscle without 
the reflex system) after cutting the efferent soleus nerve 
and electrically stimulating the cut end to produce 
various force levels. Their results are shown by the 
straight line in Fig. 6. The isolated muscle shows a 
lower stiffness which is a steadily rising function of 
force. Based on there results we can conclude that the 
model in (8), where a muscle is seen as a non-linear 
spring with variable stiffness, cannot express the ob- 
served non-linear stiffness-force characteristics of a re- 
flexive muscle, although its predictions regarding a 
linear stiffness-force relationship appears to be valid for 
an areflexive muscle 3. 

4 
In(exp(e41-1) . ~  

i ' 
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Fig. 7. A test of the hypothesis that the family of force-length curves 
obtained at different Deiters' nucleus stimulation by Feldman and 
Orlovsky (1972) (in Fig. 4A) represents the model of (7). If so, then 
the transformation ln(exp(a~b)- 1) should result in a family of 
straight lines with constant slope. This prediction matches the behav- 
ior of the data, except for the passive length-tension curve 

3 The basic results of Fig. 6 regarding behavior of a reflexive muscle 
have been validated in other experiments (Greene and McMahon 
1979; Allure et al. 1982; Nichols 1985) 
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What has not been discussed thus far is to what 
extent the force-length relationship in (11) is due to the 
inherent mechanical properties of the muscle: Recall that 
two factors contribute to the compensatory force devel- 
oped by a muscle which undergoes a length change, one 
is recruitment and variation in frequency of the motor 
units because of  reflex action, and the other is from the 
mechanical properties of the muscle (its force-length 
relationship). In order to establish the contribution of 
each factor to the observed force-length relationship in 
Fig. 1, Vincken et al. (1983) repeated the experiments of 
Feldman while recording motor unit activity from the 
loaded elbow muscles. Subjects were asked to move their 
arms to a prescribed position against an applied torque, 
and unexpected changes in the torque were made while 
activity of a single motor unit was recorded. The torque- 
joint angle relationship obtained matched the findings of 
the Feldman experiments. Firing frequency of motor 
units changed significantly when the torque acting on the 
joint was altered and a new position was reached: The 
direction of change in torque, e.g., an increase, corre- 
sponded to the same direction of change in the firing 
frequency. For a given motor unit, a plot of firing 
frequency vs. joint torque was obtained: The larger the 
torque acting on the joint, the larger the firing frequency. 
In order to determine the contribution of the elastic 
properties of the muscle to the restoring force, motor 
unit firing frequencies were recorded for a large number 
of arm positions and joint torques. This allowed the 
authors to construct isotonic torque-joint angle plots for 
a given motor unit. Because there was a very small 
change in the muscle torque as a function of muscle 
length (for the entire tested region of the joint space) at 
a given frequency of motor unit firing, Vincken et al. 
(1983) concluded that the influence of intrinsic mechan- 
ical properties of the muscle on the recorded force-length 
relationship is very small, and nearly all of the restoring 
force is due to an increase in the motor unit firing 
frequency and recruitment of new motor units. Since this 
is presumed to occur only through reflex action (the 
subjects being told not to intervene voluntarily), it 
appears that afferent feedback plays a determinant role 
in establishing the exponential-like force-length behavior 
for constant central activation. 

It is worth noting that in Fig. 6, at maximum force, 
stiffness of the reflexive muscle is only marginally greater 
than that of  the areflexive muscle, so one cannot say that 
the reflexes significantly increase the maximum stiffness 
of a muscle. However, at smaller muscle force, there is 
a marked increase in stiffness (experiments of Vincken et 
al. 1983 were presumably conducted in this region). 
Therefore the question is, what is the advantage of the 
non-linear relationship between force and stiffness in the 
intact muscle-reflex system, i.e., what is gained by having 
a muscle which has its stiffness at near maximum levels 
at a fraction of the maximum force? 

In order to answer this question, in the remainder of 
this work we have compared the characteristics of each 
type of muscle when they are used to control a single 
joint system. This modeling effort will also be useful in 
solidifying the concept of maintaining an equilibrium 

position, modulating joint stiffness through co-activa- 
tion of the muscles, and introduces some issues of 
stability. It turns out that because in an areflexive 
muscle, stiffness grows linearly with force, and because 
of the non-monotonic nature of the muscle moment arm 
(e.g., Fig. 3B), it is possible that co-contraction may 
actually de-stabilize the limb. A stable equilibrium posi- 
tion is not guaranteed simply because muscles have 
positive stiffness. The advantage of the non-linear stiff- 
ness force relationship in the reflexive muscle are readily 
observed in this framework. 

4 A model of  an areflexive muscle 

The terms areflexive and reflexive are a short-hand way 
of separating the instances of a muscle which is without 
its spinal reflex control circuitry, and one which is 
behaving under normal, intact conditions. In this section 
we provide a model of an areflexive muscle and show 
that it does indeed exhibit the linear relation of stiffness 
to force shown in the lower trace of Fig. 6. Our approach 
is to describe a two component active state model of an 
areflexive muscle, where the two components are com- 
posed of an elastic component in series with a contractile 
component (Fig. 8A). The "active" component of the 
force is due to the action of the pure force generator. 
This is the model proposed by Gasser and Hill (1924) to 
explain the tension dynamics of various isolated frog 
muscles. We can write the force-length relationship of 
this model by relating the force produced by each 
component at the node (a) of Fig. 8A: 

dp = Kse(21 - 2*) (12) 

B d22 
= K,,E(22 -- 2*) + -d-;- + e (2 , f ( t ) )  (13) 

where Kse is the series elastic component which lies in 
the contractile machinery, Kee is the parallel elastic 
component which with Kse accounts for the passive 
tension properties of the muscle, B represents the vis- 
cous resistance opposing force development during 
shortening, and P(2, f ( t ) )  is the active force produced 
by the contractile mechanism in the muscle (which 
depends on the length of the contractile element and the 
history of muscle activation f ( t ) ) .  21 and 42 are the 
lengths of the series and parallel elastic elements and 2 ~' 
and 2~' are the resting lengths of these elements. We can 
derive the differential equation relating muscle force q~ 
to muscle length 2 and muscle resting length 4" (i.e., 
the length beyond which a passive force develops) with 
the following procedure: Noting that 2 = 21 + 42 and 
4 " =  4" + 4" (Glantz 1974), (13) can be rewritten as: 

(a = Kee(2 - 4") - Kee(21 - 4") 

+B(d2 d21  
\-dt dt ] + P(2, f ( t ) )  

Using the relation in (12) we have: 

Kee d2 a dq~ + P(2, f ( t ) )  
r = Kee(2 - -4")  --~SE ~b +B-dt  KsE dt 
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Fig. gA-C. An active state muscle model. A The mechanical model 
of the muscle: )-i and 22 are taken as the displacement about the 
resting length, while P(2,f(t)) is the active tension developed by the 
force generator. B Active tension vs. length for a single fiber of frog 
semitendinosus muscle (dashed line and data points from Gordon 
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et al. 1966). This function was approximated by a third order 
polynomial: S(2) = -6.3 + 8.12 - 2.9,1. 2 + 0.323. C The estimated im- 
pulse response of the active state component of the frog gastrocne- 
mius muscle (redrawn from Inbar and Adam 1976), and the model 
approximation: h(t) = 1200(exp( - 70t) - exp( - 2100) 

Solving for the rate of change in force: 

d t -  E Kee~2 + B - - ~ -  l+~s~)4~ + P(2,f(t)) 

(14) 

where A2 = 2 - 2 " ,  i.e., the displacement beyond the 
resting length (length at which passive force develops). 
The forces which develop at lengths smaller than 2* are 
solely due to the action of active component. The 
length that a muscle occupies in the body is thought to 
be at or very near this length (McMahon 1984, chap 1). 

The function P(2,f(t)) is the active force produced 
by the contractile component of  the muscle and de- 
pends on the history of  muscle stimulation and the 
operating length. When a muscle is stimulated, a num- 
ber of  muscle cells become depolarized (each cell is an 
individual muscle fiber). Sufficient depolarization leads 
to a calcium release from the sarcoplasmic reticulum 
which eventually leads to formation of crossbridges and 
development of  tension (Huxley 1974). In a depolarized 
muscle fiber, the tension developed is a function of  the 
degree of  overlap between thick and thin filaments in 
the sarcomeres (Huxley 1974). Gordon et al. (1966) 
experimented on a single fiber of  a frog muscle and 
found that the developed tension was an increasing 
function of  fiber length and reached a plateau at a 
length corresponding to that which the muscle occupies 
in the body, and then declined as the muscle was 
stretched beyond this point (this is the g(2) that was 
used in Zheng et al. (1984) in the discussion of  Sect. 3). 
Results of  Gordon et al. (1966) and our curve-fit (a 
third order polynomial) are plotted in Fig. 8B. Let us 
call this function S(2): it represents the tension in a 
single muscle fiber as a percent of  maximum tension in 
that fiber. 

It turns out that for different muscle fibers, the 
muscle length for which S(2) is a maximum (call this 
length 2,,) is not constant. For different muscle fibers of  
the same muscle, 2,,, obeys a statistical distribution 

whose variance depends on the type of  muscle (Hatze 
1977). In the whole muscle, the effect of  this is that the 
region of near-maximum tension is sometimes broader 
than in the isolated fiber (Hatze 1977). However, the 
discussion for the remainder of  this section is indepen- 
dent of  the particular function used to approximate 
S(2) for a single muscle fiber. 

In a whole muscle, if we assume that muscle fibers 
are arranged in parallel (Hatze 1977, a reasonable 
assumption for a large number of  muscles 4, e.g., 
sartorius, McMahon 1984), then the tension produced 
by each fiber adds to the tension present in other 
fibers: 

q(f(t)) 

P(A,f(t))= ~ ciSi(2 ) 
i = 1  

where q(f(t)) is an integer specifying the number of  
muscle fibers depolarized (as a function of  the history 
of  activation), and c~Si(2) is the tension produced by 
the depolarized muscle fiber i. I f  we further assume that 
a muscle is composed of  a nonhomogeneous set of  
muscle fibers and this property is represented by a 
scaling of  S(2) (which presumes that the variance of  2m 
is small), we have: 

q(f(t)) 
P(2,f(t)) = S(2) ~ ci = S(2)y(t) 

i = l  

Suppose that the input funct ionf( t ' )  is the temporal 
history of  activation for t '  ~< t .  Using a linear systems 
approach, the active force developed in the contractile 

4 There are two types of arrangements for muscle fibers in a muscle 
(Pansky 1979). Fibers are either arranged in parallel to the long axis 
of the muscle, or obliquely. In the oblique ease, muscle fibers are 
arranged as in a feather (this organization is called pennate), and 
tension developed in each fiber results in a force vector that is not 
directed along the long axis of the fiber. In this kind of muscle, the 
fibers are arranged symmetrically along the long axis of the muscle so 
the total force in the muscle is directed along the long axis 
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mechanism can be written in terms of its impulse re- 
sponse: 

t 

P(2,f(t)) = S(2) ~ f( t ' )h(t  - t') dt" (15) 
- - o o  

Using a parameter estimation technique, Inbar and 
Adam (1976) have described h(t) for a frog gastro- 
cnemius muscle. We approximated their results by a 
difference of  two exponentials: h(t)= 1200(exp(-70t)  
-exp(-210t)), where the unit of tension is in grams 5. 
In Fig. 8C we have plotted our approximation of  h(t) 
along with the results of  Inbar and Adam (1976). Note 
that the impulse response of  the contractile component 
in the experimental data is composed of  a very large 
positive force region followed by a small negative force 
region. In the present paper we only modeled the 
positive force region since it is not clear how a muscle 
can produce an acive negative force 6. 

Figure 9 shows the simulation results of  this muscle 
model during isometric conditions (at 2 = 2*) for vari- 
ous simulation rates (the input to the system was 
modeled as a series of  unit impulses with frequency of  
1~At). For the general model, we used the parameter 
values estimated by Inbar and Adam (1976) (in their 
Table 2) for a frog gastrocnemius muscle: 
KsE = 1500 g/cm, KpE = 1460 g/cm, and B = 225 g.s/ 
cm. The overall isometric response of  our model com- 
pares favorable with the experimental data of  Inbar and 
Adam (1976): Maximal tension (185 g), the frequency 
of  activation required for tetanus (79 Hz), contraction 
time (40 ms), half relaxation time (54 ms), and twitch- 
tetanus ratio (0.27) are all with in 12% of  the experi- 
mental data. 

Since our intention is to eventually use this muscle 
model for controlling a limb, it is useful to know how 
much activation we need to provide in order to produce 
a given amount  of  force at a given muscle length, and 
how stiffness varies as a function of  muscle parameters. 
Therefore, we solved the differential Eq. of (14) and 

60 Hz 

Fig. 9. Force in the active state muscle model of  Fig. 8 at resting for 
a series unit  impulses at various frequencies 

5 In measur ing the tension developed in a muscle, it is often the case 
that  experimentalists report their results in terms of  the amount  of  
weight the muscle could hold, e.g., 5 g. The force developed by this 
muscle is 0.005 g • 9.8 m/s  2 = 0.049 N 
6 In a later modeling effort ( Inbar  and Ginat  1983), this negative 
region was also ignored 

derived an expression for force (units are in grams) 
produced in the entire muscle as a function of the 
number of  impulses, n, and their period, At (the deriva- 
tion is summarized in Appendix 1). The following is the 
force produced by the muscle of  (14) at At seconds after 
the arrival of  the nth impulse, i.e., just before the 
arrival of  impulse number n + 1: 

~a,S(2)fexp(--21OA,),,,__,, e x p ( -  70At) r 
\ z l u  - -  a l a  2 70  - -  a l a  2 

+ as exp(--ala2At) ) + l  (KeeA2 

B d 2 \  + ~--])(1 - exp(1 - ala2nAt)) (!6) 

where 

exp( - alaznAt) - 1 
r = 12oo 

exp( - -  ala2At) -- 1 

al = KsE/B 

a2 = 1 + Kee/gsF~ 
1 1 

a3 70 -- ala2 210 -- al a2 

In Fig. 10 we have used (16) to describe the tension 
developed in this areflexive muscle as a function of  
stimulation rate at nat = 1 s, i.e., we wait one second 
after we begin the stimulation to measure the force in 
the muscle. This graph gives us a way to go from a 
desired muscle force to the activation necessary to 
produce that force in isometric conditions. 

From (16) we can prove that for a reflexive muscle, 
force and stiffness at some operating length 2o will be 
linearly related. The first point to note is that because 
a l a 2 ~ l  (in our case, it is 13), in (16), the term 
exp(1 -a laEnAt )  is almost zero at nat = 1. Therefore 
the steady-state force will be related to frequency of 
stimulation At as follows: 

K ~  
r At) = bS(2)g(At) + 1 + Kee/Ks~(2_ - 2") 

where g(At) and b are substitutions for the frequency 
dependent and constant terms in the first term of  (16). 
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Fig. 10. Steady state tension output  of  the muscle model at 2 = 2*, 
i.e., length beyond which passive force develops 



Differentiating above with respect to 2 gives us muscle 
stiffness as a function of  length and activation rate: 

dr A t) daS(2) 
d2 - b ~,~ g (A t )  + K 

dS(2) r At)  -- K ( 2  -- 2*)  
- - -  + K  

d2 S(2) 

where 

K =  
1 + K e e / K s e  

At a given muscle length 2 = 20 (i.e., isometric condi- 
tions), because S(2) and its derivative with respect to 
length are constant, stiffness varies linearly with force. 
This agrees with the experimental data of  Fig. 6 regard- 
ing stiffness-force relationship of an areflexive muscle as 
measured at isometric conditions. 
, In order  to understand what is gained when this 
areflexive muscle in endowed with a reflexive control 
system, we next consider control of a single joint with a 
pair of  areflexive muscles. The results are then com- 
pared to the case where the single joint is being con- 
trolled by a pair of  reflexive muscles. 

5 Actuator redundancy and stability 
of  a single joint system 

Let us consider the problem of  how to assign muscle 
activation rates so that the single joint system in Fig. 11 
moves from a (previously) stable equilibrium at one 
joint angle, to a stable equilibrium at another position. 
If  the limb in Fig. 11 is an inverted pendulum, then its 
dynamics are described by the following: 

2 d20 dO 
z = m c  - ~  + v --~ + m c g  cos(0) (17) 

where z is the joint torque, m is the point mass at the 
end of  the limb, c is the length of  the limb, 0 is the joint 
angle, v is the joint's viscous parameter, and g is the 
gravitational constant. Parameter values used in simula- 
tion are: m = 0.1 g, c = 1 cm, v = 0.01 g.cm2/s. In order 
to relate joint torque to muscle forces, we first need to 
describe muscle-link kinematics. In Fig. l l, muscle 

Fig. 11. A ball-and-socket joint with two muscle-like actuators 
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lengths are related to the joint angle by: 

21 = x / b  2 + c 2 - 2bc cos(0) (18) 

22 = x/b 2 + c 2 + 2bc cos(0) (19) 

where b = 0.2 cm. Differentiating each muscle length 
with respect to the joint angle defines the muscle Jaco- 
bian JM =[d21/dO,  d22/dO] r, whose elements are the 
moment arm of  each muscle as a function of  joint 
configuration: 

d21 bc sin(0) 
- - -  (20) 

d0 21 

d2 2 bc sin(0) 
-- (21) 

dO 22 

This kind of  muscle geometry captures the salient qual- 
ity of muscles such as biceps where the moment arm is 
maximum near the middle of  the joint-span: For  exam- 
ple, in Fig. 3B we see that the moment arm of  the 
biceps has its maximum value near 90 deg, which is the 
case with the muscles in Fig. 11 as well. 

From the principle of  virtual work, muscle forces 
counter-act each other to produce a joint torque: 

z = - Jmrr = d21 d22 
- dO- r - - ~  r (22) 

Note that for a given joint torque z, muscle forces r 
and r cannot be calculated because there is an infinite 
set of  antagonistic muscle forces that can lead to the 
generation of  the same joint torque (Shadmehr 1991a). 
A simple example of this is evident in postural control: 
one can hold a limb at the same position while chang- 
ing the amount  of  co-contraction in the antagonistic 
musc le s -  increasing muscle activation leads to an in- 
crease in muscle force, but the same effective torque is 
produced at the joint because the limb does not move. 
This is one example of  actuator redundancy. 

It is commonly believed that co-contraction is a 
technique for modulating joint stiffness. Joint stiffness, 
K j, is in general a matrix which is the derivative of  
torque with respect to joint angle: 

dz (dJ~ '~  r dr  
Kj d 0 -  k, dO // r - - j T  d-O (23) 

which can be written in terms of  muscle force and 
stiffness as: 

(dJM~ r . r  d e  
K j =  - X  dO ] r  (24) 

In the case of our single joint system, muscle stiffness is 
a scalar: 

= - r - \ dO } d2, 

_(d2fi2dr (25) 
\ dO / d22 

So we see that in this system, muscle forces counter-act 
to produce a torque at the joint, while their stiffnesses 
add to produce a joint stiffness. By specifying joint 
stiffness, one is describing, for example, how the limb 
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should react in case any part of  it comes in contact with 
the environment. A certain amount of  stiffness will also 
be required to ensure stability of  the limb. For  the 
system of Fig. 11, we can see that Kj should always be 
negative: if a disturbance displaces the limb, the result- 
ing change in torque should be in the opposite direc- 
tion. Setting a value on K~ depends on the stability 
requirements of the system: From (17) it is clear that 
for an inverted pendulum, given torque ~, the equi- 
librium of  the system is at 0e, where 

0E = cos-  l(m---~g ) (26) 

Through non-linear stability analysis (Appendix 2, 
see also Shadmehr 1991b), one can show that in order 
to guarantee stability at this equilibrium, the stiffness 
must be: 

Ks < - meg sin(0e) (27) 

i.e., the stiffness of  the joint must be more negative than 
the rate of  change in the gravitational torque experi- 
enced by the limb at this equilibrium position. How- 
ever, in order to produce such a stiffness, there might be 
complications: A muscle which has a moment arm that 
is not a monotonically increasing function of  joint 
angle, such as the biceps and muscles used in Fig. 11, 
will at certain configurations have a negative value for 
its second derivative of  length with respect to joint 
angle. The leads to a paradox: Assuming that muscle 
force is always positive (i.e., muscles cannot push), we 
see that in (25) an increase in muscle force will tend to 
destabilize the limb by making joint stiffness more 
positive! In other words, co-contraction may actually be 
a destabilizing mechanism in this system. Therefore, 
just because two muscles are in antagonistic geometric 
configuration, one cannot assume that co-activation 
(increase in muscle force) will necessarily lead to an 
increase in joint stiffness. In fact, co-activation may 
actually destabilize the limb 

Theorem 2. For a ball and socket joint f i t ted with muscle- 
like actuators, situated in a horizontal plane, muscle 
stiffness must increase at least linearly as a function of  
muscle force in order to generate a negative joint stiffness 
(the requirement for stability). The proof  is as follows: In 
(22), at equilibrium ~ = 0. Solve for ~b2, then substitute 
d21/d0 and d2z/d0 from (20) and (21). This gives us: 

q~2 = 4~1 2__2 
21 

Therefore dq~z/d22=q~l/2~. These give us force and 
stiffness in muscle number 2 in terms of muscle number 
1. Substitute these in (25), and after some algebra, it 
can be shown that: 

b2c2 sin20/ d4~1~ 
K j =  23 ~ b , - 2 ,  d 2 , ]  

A necessary condition for stability of  the system is for 
Kj to be negative, which can be realized if and only if: 

dq~l q~l > - -  
d21 )-i 

This shows that at isometric conditions, muscle stiffness 
must grow at least linearly with force in order to 
guarantee stability (therefore, a muscle cannot obey 
Hooke's law). In light of  this result, let us reconsider 
the data of Hoffer and Andreassen (1981) as plotted in 
Fig. 6. In the isometric areflexive muscle, stiffness grows 
linearly as a function of force until it reaches a maxi- 
mum value. Approximately the same maximum stiffness 
is also reached by the reflexive muscle, but here the 
stiffness grows faster than linearly. The faster the rate 
of increase in stiffness of  the muscles as a function of 
force, the more likely that co-contraction will lead to a 
further stiffening of the joint. For  the problem of  
maintaining an equilibrium position and modulating 
stiffness, it would also be advantageous to be able to 
produce a larger muscle stiffness at lower muscle forces. 
The issue is taken up in the next section where both 
muscle models (i.e., Eq. 11 and Eq. 16) are used to 
control an inverted pendulum. 

6 Programming an equilibrium position 

Our concern here is to maintain posture with the mus- 
cle-skeleton system of Fig. 11, given that its dynamics 
are specified in (17), i.e., to assign muscle forces so the 
limb stays at a desired position Od. The procedure is to 
find the set of  muscle forces which position the equi- 
librium of  the system at Od, and to ensure that this 
position is stable. The initial step is to set 0E = Od and 
determine the amount of  torque that the muscles must 
collectively produce: this can be calculated by solving 
for z in (26): z = m c g  cos(0e). The next step is to assign 
a desired joint stiffness compatible with the constraint 
in (27). We can then solve for muscle forces in (22) and 
(25): recall that the stiffness terms can be written as a 
linear function of  muscle force in the case of  the 
areflexive muscles. We have plotted the muscle forces as 
a function of  joint equilibrium position in Fig. 12 
for the case where the desired joint stiffness was ten 
times the minimum requirement of  (27) (qualitatively, 

1 

~ 0.8 ~ areflexive 
muscle 1 .~ 2 1 

g'~ 0.6 areflexive 
muscle 2 

0.4 
reflexive 
muscle 1 0.2 
reflexive 
muscle 2 

I I I I I I 
0.5 1 1.5 2 2.5 3 

Joint Angle (rad) 

Fig. 12. A mapping from joint equilibrium to muscle forces at ten 
times minimum joint stiffness compatible with stability. The forces for 
the reflexive and areflexive muscles are shown. The same posture can 
be maintained with significantly smaller muscle force when the refl- 
exes are available 



the results do not change as this stiffness multiple 
is changed). 

We formulated the reflexive muscle model in terms 
of  the parameters of  the areflexive muscle as follows: 
Hoffer and Andreassen (1981) showed that when the 
muscle was isolated by cutting the soleus nerve, maxi- 
mum stiffness of the reflexive muscle was about 1.2 
times the maximum stiffness of  the areflexive muscle. 
Therefore in (11), k = 12 x max{dq~/d2}, where q~ is the 
force produced by the areflexive and max {dq~/d2} is 
the maximum stiffness of the areflexive muscle. For  the 
areflexive muscle model introduced in the previous sec- 
tion, maximum stiffness is 1430 N/m. Therefore if the 
same muscle was under reflex control, we would expect 
maximum stiffness (or k) to be about 1716 N/m. This 
relatively small increase in the stiffness of the areflexive 
muscle is similar to the 25% increase that was found by 
Inbar et al. (1970) when comparing the stiffness of  a 
passive areflexive muscle to a passive reflexive prepara- 
tion. 

The term ~t in (11) describes how rapidly stiffness 
reaches its maximum level as muscle force increases. A 
result of Hoffer and Andreassen (1978, 1981) was that 
the reflexive muscle achieves 65% of  its maximum 
stiffness at 25% of  its maximum force. Since the maxi- 
mum force produced by a reflexive muscle is about the 
same as that of  an areflexive muscle, ~ is approxi- 
mately 4/~bmax, where ~max is the maximum force possi- 
ble in the areflexive muscle (in our case, this is 
180 g or 1.77 N). 

Unlike the situation for the areflexive muscles, it is 
not possible to find an analytical solution to (22) and 
(25) in terms of  force for a pair of reflexive muscles. 
This is because for reflexive muscles, stiffness is a 
non-linear function of force, as in (11). We used a 
numerical technique to solve the simultaneous non-lin- 
ear Eq. in (22) and (25). The results are plotted in Fig. 
12. The joint torque and stiffness at each equilibrium 
position is the same as in the areflexive case, yet the 
forces at each muscle are significantly smaller. Since 
larger muscle force requires an exponentially higher 
level of muscle activation (as in Fig. 10) and conse- 
quently exponentially higher amount  of  metabolic en- 
ergy, the energy cost of posture with reflexive muscles is 
much less than the energy cost of  posture with areflex- 
ive muscles. This implies that control of  muscles 
through modulation of  the input to their spinal reflexes 
(i.e., via control of the spring's resting length) results in 
very significant improvements in the efficiency of  the 
system: the same posture can be maintained at a far 
smaller metabolic cost. This is a result of  the fact that 
a reflexive muscle is near its maximal stiffness while 
producing a fraction of its maximal force (the non-lin- 
ear relationship in 10), as compared with an areflexive 
muscle where stiffness grows linearly with force. 

7 Conclusions 

We have considered how spinal reflexes affect the static 
length-tension characteristics of  a muscle. Based on the 
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experimental data on the response of  the human elbow 
muscles, Feldman (1966) concluded that the static char- 
acteristics of the muscle-reflex system resembles a non- 
linear spring with an adjustable resting length. In 
contrast, many other researchers tend to model static 
characteristics of  muscles as a non-linear spring with an 
adjustable stiffness. To understand the relative merits of  
each approach, we showed that the variable stiffness 
model would predict that at a given length, muscle 
stiffness would increase linearly as muscle force in- 
creased. This prediction does not agree with the data on 
the intact muscle-reflex system (Hoffer and Andreas- 
sen 1979, 1981), but it does resemble the behavior 
of  that muscle when its reflex system has been rem- 
oved (Fig. 6). 

From the stiffness-force relationship in the intact 
muscle preparation, we derived the necessary length- 
tension characteristics of  a reflexive muscle. The key 
point is that stiffness-force relationship in a reflexive 
muscle is a non-linear function that does not vary as a 
function of  muscle operating length. Based on this, it 
was shown that a reflexive muscle does indeed appear 
as a non-linear spring with an adjustable resting length. 
This supports the spirit of  the Feldman hypothesis, 
albeit not his formulation of  the static force-length 
characteristics of a reflexive msucle. We showed that 
our formulation (in 11) fits the original Feldman and 
Orlovsky (1972) data better than the model proposed 
by Feldman (1966). So it would appear that there is 
independent experimental evidence supporting the hy- 
pothesis that the static behavior of  a muscle-reflex 
system appears as a non-linear spring with an ad- 
justable threshold length. 

In order to show the functional difference between 
these two classes of  models (i.e., non-linear springs with 
variable stiffness vs. variable resting lengths), we con- 
sidered control of an inverted pendulum. To this end, 
we initially derived an active-state model of  an areflex- 
ive frog muscle and then formulated a reflexive muscle 
based on the parameters of  this model. Given our 
assumptions regarding the components of  the areflexive 
muscle, it was proven that the stiffness-force behavior 
at isometric conditions will be linear (and this agrees 
with measurements of  Hoffer and Andreassen 1981). 

This model for the areflexive muscles was used to 
control an inverted pendulum where we introduced the 
problem of  actuator redundancy: It was shown that 
unique muscle forces cannot be assigned to maintain 
the limb at a desired position since many degrees of  
co-activation can lead to generation of the same joint 
torque. To deal with this issue, it was suggested that 
description of  posture must include not only the posi- 
tion of  the limb, but also its stiffness. Lower bounds on 
the stiffness of  the joint can be defined when one 
considers the stability requirements of  the system at 
equilibrium. Using this information on stiffness of  the 
system, the minimum amount  of  muscle force required 
for the pendulum to be maintained at equilibrium can 
be determined. 

Stiffness of  the joint can be varied when antagonist 
muscles co-contract. With the example of  control of  an 
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inverted pendulum we were able to present a paradox 
which challenges the notion that any pair of  antago- 
nist spring-like elements attached to a single joint sys- 
tem can produce a stable equilibrium position: In fact, 
it was shown that if the moment  arm of  one of the 
muscles is not a monotonically increasing function of  
joint angle (e.g., muscles such as biceps and triceps), 
then force produced by a muscle can act to make the 
joint 's  stiffness more positive (a destabilizing effect). 
Therefore, just because two muscles are in antagonis- 
tic geometric configuration, one cannot assume that 
co-contraction (increase in muscle force) will neces- 
sarily lead to an increased (i.e., more negative) joint 
stiffness. 

Co-contraction will lead to an increase in joint 
stiffness if the stiffness of  each muscle increases linearly 
with muscle force at isometric conditions. This condi- 
tion may or may not be met in the areflexive muscle, 
but is more likely to be met in the reflexive case where 
stiffness grows faster than linearly with force (cf. Fig. 
6). This means that co-contraction will stiffen the limb, 
rather than destabilize it. 

Another  advantage of  the reflexive system on con- 
trol of  a single joint was illustrated when it was shown 
that posture may be maintained throughout the work 
space at a significantly reduced energy cost to the 
muscles if the muscles behaved as non-linear springs 
with an adjustable resting length (the model of  a reflex- 
ive muscle). The reflexes enhance the stability of  the 
system because stiffness of  a reflexive muscle ap- 
proaches its maximum value at a fraction of its maxi- 
mum force, so that only a small amount  of  force is 
required of  each muscle to maintain posture of  an 
inherently unstable limb. 

Appendix 1: solution to the areflexive 
muscle's differential equation 

The force produced by a muscle is related to its me- 
chanical parameters  by the following relation: 

(9 = _ K _ ~ ( K e e A 2 + B ~ _ (  1 +_K~sE)4 + P ( t ) )  

where q~ is the muscle force, Kse is the series elastic 
component ,  Kee is the parallel elastic component,  B is 
the viscous component ,  2 is muscle length, A2 is the 
change in muscle length beyond its resting length, and 
P(t) is the force pumped into the system by the active 
contractile component.  This active force depends on the 
history of  muscle stimulation, where the response to a 
series of  stimuli of  period A t is modeled by the follow- 
ing: 

P(t) = ~ h(t - nAt)(u(t - nat) -- u(t -- (n + 1)At)) 
n = 0  

where h ( t ) = k ( e x p ( - o t t ) - e x p ( - f l t ) ) .  For the period 
0 < t < At, i.e. the period after the first stimulus, we 
have: 

q~l = al (a3 -- a2 ~b + k exp( - at) - k exp( - fit)) 

where am = KseB, a2=  1 + K e e / K s e ,  and a 3 =KpEA2 
+ b)~. The general solution to this equation is: 

q~l = a3 + kal exp(--fi t)  kal e x p ( - a t )  

a2 fl - al a2 a - al a2 
+ cl e x p ( - a l a 2 t )  

where c~ depends on the initial condition. Assuming the 
initial condition is 4)(0) = 0, the solution to this differ- 
ential equation is: (1 q~l = a l  k ( e x p ( - f i t )  e x p ( - - e t ) +  a ala2 

\ fl - al a2 a - al a2 - 

fl ._l-al a2 )exp( -- al az t )'~ + -~2(1-- exp( -- al az t ) ) 
] a2 

After a period of  At, the second impulse arrives. 
For  the period At < t <2At ,  set t ' =  t - A t .  It can be 
shown that the force in the muscle during this period 
is related to ~bl by the following: 

~b 2 (t ')  = ~b 1 ( t ') + q~ l (A t) exp( -- a I a2 t ') 

In general, for the period (n - 1)At < t < nAt, i.e., af- 
ter n stimuli, we have: 

~p,(t) = ~ ( t  --(n - 1)At) + ~l(At) 

x ~ e x p ( - a l a 2 ( t - - ( n - -  1)At +mAt))  
m = 0  

At time t = nAt, i.e., just before the arrive of  the n + 1st 
stimuli, we have: 

n - - I  

(~n = ( ~ 1 ( A t )  E e x p ( - - a l a 2 q A t )  
q = 0  

- "A .exp( - al a2nA t) - 1 
=if)l( t ) ~ x p ( ~  -_ l 

Equation (16) represents the above force in the muscle. 

Appendix 2: stability of an inverted pendulum 
with joint stiffness 

The state variable equations for the system of  Fig. 11 
are: 

= I0" = o~ r v g cos(0) F(O, O3) 
[ o~ = -~cc2 mc2~O c 

This system is in equilibrium when 0 = o~ = 0, which 
occurs at co e = 0 and 0 e = cos-l(z/mgc). We will show 
that this equilibrium is stable if dr~dO > - m c g  sin(0e), 
where dr~dO is joint stiffness. The proof  is as follows: 

"t- " " " --- f ( O e '  (De) -'l- (l[ff ,  (D) O=O . . . . . .  (.0 (.0 e 

o '](O:Oe) 
drdo mc 21 + g_c sin(0e) ~cV2j\ + "" " 



F o r  the  sys tem to  be  s table ,  b o t h  e igenva lues  o f  the  
m a t r i x  dF/d(O, 09), as e v a l u a t e d  a t  0 = 0e a n d  09 = 09e, 
m u s t  h a v e  nega t i ve  real  par ts .  T h e s e  e igenva lues  are:  

v f v 2 [ K j  + g  . \ \ 1 1 2 \  
21,2 --12 _ _ _  + ~m__~c4 + 4 ~ c 2 m c  2 - c s l n ( 0 e ) ) )  ) 

w h e r e  Ks = d r / d 0 .  S u p p o s e  the  t e r m  u n d e r  the  s q u a r e  
r o o t  is pos i t ive ,  c aus ing  the  e igenva lues  to  be  real .  I t  
f o l l ows  t h a t  i f  the  t e r m  u n d e r  the  s q u a r e  r o o t  is l a rge r  
t h a n  v /mc  z, t hen  one  o f  the  e igenva lues  will  be  a 
pos i t i ve  n u m b e r ,  caus ing  ins tabi l i ty .  T h e r e f o r e  we  wil l  
h a v e  ins tab i l i ty  i f  Ks~me z + g sin(Oe)/c > 0, sugges t ing  
t h a t  o n e  c o n d i t i o n  fo r  s tab i l i ty  is Ks < - m e g  sin(0e). 
N o w  s u p p o s e  t h a t  the  t e r m  u n d e r  t he  s q u a r e  r o o t  is 
nega t ive ,  c aus ing  the  e igenva lues  to be  c o m p l e x  
( d a m p e d  osc i l la t ions) .  Th i s  w o u l d  m e a n  t h a t  Ks < - 1/ 
4 v Z / m c 2 - - m c g  sin(Oe), w h i c h  is a w e a k e r  c o n d i t i o n  
t h a n  the  p r e v i o u s  c o n s t r a i n t  on  Ks.  T h e r e f o r e  the  sys- 
t e m  is a t  s table  e q u i l i b r i u m  i f  Ks < - mcg sin(Oe). 
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