Actuator and Kinematic Redundancy in Biological
Motor Control*

Reza Shadmehr

Center for Neural Engineering
University of Southern California
Los Angeles, CA 90089-2520 USA

Abstract

A task must be specified in terms of both the position and stiffness of the-limb
before muscle forces and activations are unambiguously assigned. To illustrate this,
we begin with the problem of how to conirol an inverted pendulum with a pair of
muscles. An active state model of the frog’s gastrocnemius is used to derive three
criteria for the stiffness characteristics of the system during posture and movement.
The differential equation represeniing this model is solved to indicate the relationship
between force and stimulation frequency. This result leads to an inferesting prediction
of muscle forces in @ minimum stiffness eguilibrium poini conirol scheme: neural
activity in the agonist muscle should decrease as the joint rotates the limb against
gravity. For the case where the number of joints exceeds the task’s degrees of freedom,
an algorithm for mapping end-effector position and stiffness to the lengths of the
ruscles is considered. We show that a previously proposed algorithm for control of
mulfi-joint limbs (Berkinblit et al. 1986a, Hinton 1984) is in fact a special case of this
mapping. We contend that these kFinemalic maps must be augmented by a mechanism
that takes into account the dynamics of the muscle-load-feedback system. We suggest
an adaptive conirol scherne where the dertved kinematic relationships are used to set
the bias of the sireich reflez feedback loop, while a learning mechanism produces a
virtual equilibrium trajectory that compensaies for the second order dynamics of the
load, as well as the dynamics of the muscles.

1 Introduction

The process of generating a movement may be viewed as a series of iransformations from an
overall movement objective (e.g., hitting a target with a baseball) to a plan specifying the
desired behavior of the end-effector (e.g., the path that the hand should follow before the ball is
released ), and finally to a pattern of muscle activations. There is a wealth of data that describes
the patterns of muscle activity and behavior of proprioceptive feedbacks during execution of
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particular trajectories, yet there has been relatively little progress made in describing algorithms
that the CNS might be using to learn the dynamics of the muscle-load-feedback structures, and
to aciually perform the planned trajectory. There has been some progress in understanding
the movement planning process in the CNS: By looking at the kinematics of reaching, Hogan
(1984) has suggested thal it is the position of the hand, rather than the joint angles, that is
being planned. Yet it is nol apparent how a task planned in terms of hand coordinates can
be executed by muscles that are inherently joini-based: There are generally more degrees of
freedom in a limb than there are degrees of freedom in the movement, so producing a trajectory
of muscle lengths for a desired hand trajectory is an ill-posed problem. This is the issue of
kinematic redundancy.

The situation is further complicated by the fact that at least two muscles act on a single
joint, and in many cases, a muscle spans more than one joint. The problem is that the map
from joint torques to muscle forces is not one-to-one, i.e., many levels of co-contraction can lead
1o the same eflective joint torque. How does one decide on the amounti of co-contraction? This
is the issue of actuaior redundancy.

Aside from the fact that kinematlic redundancies in the syste:n make the transformation
from a planned hand trajectory te muscle activations an ill-posed problem, there is also the
issue that the skeleton has non-linear and coupled dynamics: Forces produced by a muscle at
a given joint affect the position of all the joints in the limb. Therefore, to execute a task, one
must take into account the dynamics of the muscles, the skeleion, and the load. The controller
is further restricied by a relatively slow afferent system, prohibiting implementation of a host
of techniques that are commonly used in robolics in order to avoid compensation for dynamics
of the limb.

In this paper we begin with the problem of how to control a single joint (an inverted pen-
dulum) with a pair of antagonistic muscles. The muscles are modeled to faithfully reproduce
the mechanical behavior of a frog’s gastrocnemius, and are based on the ective state theory
(Gasser and Hill 1924) as parameterized by Inbar and Adam (1976). QOur objective is to be able
to aclivate these muscles so that the joint moves along 2 desired trajectory, with a particular
stiffness profile. Based on stability requirements of the imb and the intrinsic mechanical limi-
tations of muscles, we will derive three criteria for joint stiffness during posture and movement.
A minimum stifiness strategy is used to calculate forces that should be produced by the muscles
if an equilibrium point model (Feldman 1966) is used for control of the limb. This approach is
contrasied with = model that takes into account the dynamics of the task. We will then explore
algorithms for the problem of learning trajeciory control in multi-joint biological limbs, with
particular emphasis on representing and regularizing motor redundancy. We will show that the
mechanical characteristics of the muscles and the feedback systems can be used by the CNS to
nol only solve the redundancy issues (as has been suggested by Mussa Ivaldi et al. 1988), but
also to provide a means for building en adaptive internal madel of the muscle-load-feedback
system for precise execution of desired tasks.

2 Actuator Redundancy

One of the fundamental differences belween the way one programs robots to perform tasks and
the way biclogical systems move is in the information thal is needed before a command can be
sent to the actuators. In robots, once appropriate joint torques are determined, the robot will
move more-or-less along the desired trajeclory. In this section we will see that this information
alone will not be sufficient for assignment of muscle activation rates.
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Figure 1: A ball-and-socket joint with two muscle-like actuators. Leu;gth of each muscle is
denoted by J;.

Consider the ball-and-socket joint of Fig. 1‘, where the dynamics of the skeleton are described
by the following:

7 =mc*d + v + meg cos(6) (1)
where m is the point mass at the end of the limb, ¢ is the length of the limb, v is the joint’s

viscous parameter, and g is the gravitational constant. The lengths of the muscles, A; and A,
are related to the joint angle 8 by the functions: '

A = .'/bz + €2 — 2bccos(f) (2)
Ay = \/b2 + ¢% + 2be cos(f) (3)

Differentiating the muscle lengths with respect to the joint angle yields the following:

d, besin(6)

i s (4)
s _ —besin(0)
70 =T (5)

The relationship between torque 7 at the joint, and muecle forces ¢; and &, is:

i, @y besin(0) , . besin(f)
=—Bh—h=- o vk S;: ¢2 (6)

Note that in Eq. (6), for a given joint torque trajectory 7(t), a trajectory in terms of muscle
forces ¢(t) cannot be calculated because there is an infinite set of antagonistic muscle forces
Lhat can lead to generation of the same Joint torque. A simple example of this is evident in
Postural control: one can hold a limb at the same position with varying degrees of stiffness. For
the limb in Fig. 1, joint stiffness, K, is defined as:

dr &\ dA )’ gy d2) ;)" d
K=o By, [Ea) ddy dds. [dd:\ des
Mt A i (de, dx, e (da) d; ¢
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Figure 2: An active state muscle model. A) The active state P(A,t) is the tensi?n devf:loicdrby
the force generator. B) Isometric lension produced by the muscle model at various stimulation

rales,

By specifying joint stiffness, one is describing, for example, how the I.ll'l:b should _rEa;:t ::[:il:::s:
i i i i t. In the next section we will des

any part of il comes in contact with the environmen . e

m:scl:e model and show that a unique set of muscle forces will result when joint torque and
tiffiness are specified. e A \ .

. ;::m Fig‘Pl we can see that Ky should always be negative: if a dlsturl:rance dlsp]acc; the
limb, the resulting change in torque should be in the opposite di.rcchonr Selting K, gfpen s on
the s’tability requirements of the system: The equilibrium of the system is at 85 = cos™!(7/mecg),

and in order to guarantee stability, the stiffness !Inust be:

(8)

The fact thal muscles cannot push against the skeleton will also limit the possible range :{f K,
during motion. In order to explain this, we need to fully specify (6) and (7) by formulating a
muscle model.

K; < —mcgsin(fg)

2.1 A Muscle Model

Here ‘;e describe a two component eclive state muscle model: an elastg compor;m];;r[;;g;:;
i i i is i del proposed by Gasser an
th a coniractile component (Fig. 2A). This is the mo y Gas: . :
:‘: explain the tension dynamics of various frog muscles. The following differential equation

describes force development in this model:

§= ESE(KPEM +Bi=(14 -{‘:’—E)os + P(A,t)) ©)

B Ksg
where Ksg is the series elastic component in the tendons, Kpg is the parallel elastic mmp:m:]r::
which with Ksp accounts for the passive tension properties of the n‘msr_le, B r;:pres;n ; o
viscous resistance opposing force development during shortening, Ao is the r;:st- :ngt). ow}wn
muscle beyond which passive force is developed (Aubert et al. 1951), and AX = A — Ap
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Figure 3: Tension output of the muscle model during isometric conditions at resting length after
1/At impulses, and just before the arrival of the next impulse.

Ao < A, else AN = 0, P(),t) is the active force produced by the contractile mechanism in
the muscle. It can be represented by the product of a length dependent function S5(A), and a
function Q(f) which depends on the history of muscle stimulation f (t') for ¢’ < ¢t. Using a linear

systems approach to Q(f), the input to the contractile mechanism, f(t), is a series of impulses,
while the output is force:

POV = S0) [ f(eme — ¢yar

Using a parameter estimation technique, Inbar and Adam (1976) bave calculated h(t), i.e., the
impulse response of Q. We approximated their results in Fig. 5A by a sum of two exponentials,
and derived the active tension (in grams) when the input to the system is a series of impulses
of frequency 1/At:

P=5(}) i(exp[-'?ﬂ(t = niAt)) — exp(—210(t — nAt))(u(t — nAt) —u(t - (n 4 1)At)) (10)

where u(¢) is a unit step function at ¢ = 0, and S() = 1200(21/X, - 1) when X < XAy, else
S(A) = 0. Fig. 2B is the simulation results of (9) and (10) during isometric conditions at \ — Ao.

By formally defining a muscle model we have specified the dynamics of the system in Fig.
1. However, control of this system requires understanding how much activation the muscles
should receive in order to produce 2 particular force profile (the inverse dynamic model of the
muscles). Qur approach is as follows: We assumed that )y for the muscles in Fig. 1 is at the
point of maximal extension for each muscle in the physiological workspace (this means that the
{orce produced by each muscle is at a maximum when the muscle has its greatest length in the
workspace). We then solved the differential equation in (9) for an isometric muscle preparation
in order 10 indicate the amount of tension in the entire muscle afier n impulses, and just before
the (n + 1)st impulse:

exp(—210A¢)
210 - 23y

é=S(\)a (

_ exp(-T70A¢) ) exp(—a,e,n41) - 1 (11)

2 ¢
70 — aya, e exp(-a10,40) exp(—aja;At) — 1
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where ay = Ksg/B, a; = 1+ Kpg/Ksp, and a3 = 1/(70 — aya;) — 1/(210 — aya;). Bq. (11) is 2507
an approximation of muscle dynamics in (9). In Fig. 3 we’ve plotted muscle tension at A = Xy, A |1 e o
and nAt = 1. Using this figure we can now map a desired muscle force at a given muscle length
into a freguency of activation for that muscle. 200 7 o* 3

Let us now return to the claim in ihe previous section that specification of joint torque and %
joint stiffness will allow for a unigue solution to the muscle forces. In analogy with eq. (7), i & o
d¢/dX is muscle siiffness, and by differentiating eq. (11) and using the linear expression for % 1501 ° Lot =
5(X), we see that muscle stiffness is linear with respect to muscle force when A < Ap: g ] e 7 5 Wid

® .1 7 o Misde?
¢ < 1007
do/d) = P =
By using the above relation for d¢,/d); and d¢,/d), in eq. (7), K; now becomes a linear 50
function of the muscle forces, and since it is linearly independent of eq. (6), we can find a ]
ungqiue set of muscle forces for a given set of joint torque and stiffness. ]
e e —— N——

2.2 Experiments 2 4 60 80 100 120 140 160
Let us begin with the guestion of how to maintain posture with the muscle-skeleton system of Joint Angle (dep)
Fig. 1,i.e., how to assign muscle forces so the limb stays at a desired position 8;. The procedure B 1207 X\
is to find the set of muscle forces which position the equilibrium of the system at 84, and to q ‘,t
ensure thal this position is stable. By using the relationship befween joint equilibrium and 1004 & °
torque: T = mecgcos(fg), and by setting 0r = 6; and using eq. (8), we can solve (6) end ';
(7) for the muscle forces. For the minimum joint stiffness that satisfies (8), we've plotted the 8o .

muscle forces as a function of joint equilibrium position in Fig. 4A. Increasing joint stiflness
(i.e., making it more negative) simply scales this approximately parabolic relationship between
muscle forces and equilibrium joint angle, i.e., the ratio of muscle forces is independent of joint
stiffness at equilibrium,

An elegant model of motor control (Feldman 1966, Flash 1987) suggests that movement may 40 4
be thought of as a shift in equilibrium position of the sysiem. Assume that we wish the limb in
Fig.1 to rotate from 6, to 6, in At seconds and follow a desired trajectory 84(t) which minimizes
the lime derivative of acceleration, i.e., 2 minimum jerk trajectory (Hogan 1984):

©  Muscle 1-Dynamlc modsl
% Muscle 2-Dynamic model
£ Muscle 1-Equillbrium model
B Muscle 2-Equilibrium model

Tension (g)
[=]
(=]

20

84(t) =6, + (6, — 6) (15(&/(31)" —6(t/At) — lo(tmt)“) (12) 0 . !

) . . . 0.0 0.1 0.2 0.3 ;
As an example, we considered a movement from 45 to 135 degrees in 0.5 seconds. By shifting = 0=

the equilibrium position of the system along f4(t) and using, for example, a minimum stifiness Eie ()
protocol, we can solve for the muscle forces ¢;(t), and @;(t). The resulting force trajectory for
each muscle is ploited in the “Equilibrium model” of Fig. 4B.

A second approach to programming muscle activalion is to consider the dynamics of ihe Figure 4: A) M : 7

_ > ! ; 5 & uscle tension r 6 P e
moving imb when we assign muscle forces. This means that the torque trajectory should joint stiﬁ'nes)s. B) Muscle fens;:nw:::i::tokr;q:’o;h: ;::j] E:’ma: Sta::_"::; equilibrium, and at minimum
include the influence of joint velocity and acceleration along the desired trajectory 8;: d m shitness movement from 45 to 135

egrees. The resulls for a Dynamic Model and an Equilibrium Model strategy are illustrated.
(1) = mc*0y + vl + mcg cos(64) (13)

Since this means that the torques experienced by the system will be much higher than when the
equilibrium position of the system is changed, it may not be possible for the muscles to produce
a high joint torque while maintaining the stiffiness requirements of (8). Stiffness of a joint in
motion is constrained by the fact that muscles cannot push against a load. We implemented
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this constraint on the system by limiting the range of K; so that a muscle is never asked to
produce a negative active force (this criterion is a weaker condition than (8) when the limb is
at rest, however during motion, it becomes the limiting factor). The procedure is to solve for
¢, and ¢, in ierms of K7 and 7, and then find the conditions for which neither musde force can
become negative:

T(Xob*c® sin(8) + ApAlbe cos(8) — 2)3bc cos(8))
A2besin{6)(24; — Ao)

7{AoA2be cos(8) — Agb?c? sin?(6) — 2A%he cos(8))
- Nibesin(8)(2h — Ao)

(14)

K,

K, (15)

We repeated the original movement with the minimum stiffness that met the criteria of (8), (14),
and (15), using the torque trajectory of (13). The force trajectory for each muscle is plotied in
Fig. 4B (labeled Dynamic model).

Fig. 4B illustrates an essential property of the equilibrium model: I predicts thal in order
to move the limb in Fig. 1 from a small joint angle to a larger one, the force (and neural
activity) for both the agonist and anlagonist should decrease (this is also observed in Fig. dA).
The reason for this is that it takes less torque fo hold the mass at, for example, 80 degrees,
than 45 degrees. Never the less, the equilibrium mode] accomplishes the joint rotation due to
the stiffness requirement of (8): when the current position is not at the desired equilibsium
position, the joint stiflness is large enough to produce a correcting torque that exceeds the effect
of the gravitalional pull on the Joad and moves ihe limb toward the equilibrum position. It
appears Lo us that this property of the equilibrium hypothesis can be direcily tested if the
effect of the spinal reflexes can be eliminated or explicitly accounted for in a separate model.
Referring to Fig. 4B, in contrast to the results of the equilibrium strategy, vsing the dynamic
strategy suggests muscle forces that require an increasing burst to begin moving the limb, then
both muscles nearly become quiet, and finally the antagonist is strongly activated to brake the
movement.

The point of this example was to show that even for a single joint movement, the nature
of the biological actuators is such that a task must be specified in terms of both position and
stiffness before muscle aclivalions can be programmed. The notion of an equilibrium peint,
as introduced by Feldman (1966), and demonstrated as a control algorithm by Flash (1987),
suggesis that we can begin with the spring-like characteristics of the antagonistic muscles, ignore
the dynamics of the skeleton, shift the minimum of a potential energy surface along the desired
path, and ihe limb will more-or-less {ollow. We have specified the stiffness conditions for which
this hypothesis holds true, as well as the expected muscle forces for a typical movement. Our
results provide an easy test of the equilibrium hypothesis as a control paradigm for movement
generation: the force and neural activity in the agonist should decrease as a joint rotates a load
against gravity,

3 Kinematic Redundancy

The issue of kinemalic redundancy arises when the degrees of freedom in a limb exceed the
degrees of freedom in the movement, e.g., a planar three-joint arm. Formally, the definition is
as follows: Consider a multi-joint imb with an end-eflector atiached to ihe distal link. If the
position of the end-eflector is denoted by vector X = (23, Z2,...,Zm]T, and 8 = [6,,6s,... ,0.)F
specifies the joint angles, then there exists some continuous non-linear function k(8), such that
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= h(8), i.e., the forward kinematic mapping. If = < n, then the arm is kinematically
redundant, meaning that there is 2 unique x associated with each 8, but there may be many 6
associated with each x. When there are muscles attached to the joints, the issue becomes how
to assign muscle lengths for a given end-effector position: Assume that A = [Ay, Aq,.. .,J\,,]T
is a vector of muscle lengths where ); is the length of muscle 7, and » < ¢. Then there
exists some continuous non-linear function g(#), where A = g(@). Given a planned end-effector
trajectory x(t), describing an appropriate trajectory in terms of muscle lengths A(f) requires
finding g( A~%(x) ). A trajectory in terms of the muscle lengths may be required for setting
the bias of the stretch reflex loop (activation of the -y»motoneu:ons), and for assigning muscle
activalions as in the discussion in the previous section.

To find h~!(x), the most direct approach is certainly to find an analytical expression, an
approach that has proved to be very difficult in robotics, due 1o the complexity of A(#) (Sciavicco
and Siciliano 1988). A novel approach has recently béen suggested by Mussa Ivaldi et al. (1988):
taking advantage of the elastic properties of the neuromuscular system, they have proposed an
algorithm that allows one to map small changes in the position of the end-effector into changes
in joint angles. We have sketched the derivation of the algorithm below:

d9 = Cjdr (16)
dr = JTdf (17)
df = Ksdx (18)
by substitution: d@ = C;JiKsdx (19)

where C; is the limb’s joint compliance, J5 is the Jacobian at the end-effector: Js = 8x/80, {
is a force vector at the end-effector, and K is the imb’s stiflness al the end-effector. Given a
limb’s joint compliance C, by using the principle of virtual work one can calculate the end-point
stifiness K s:

Ks=(JsC, %)~ (20)

which basically shows how to go from impedance at joint coordinates to impedance at end-point
coordinates. The inverse in (20) always exists because from the change in pofential energy of
the system, it can be shown that C; is a positive definite matrix (Mussa Ivaldi et al. 1988), and
Js is full rank by construction. The idea of the algorithm in (19) is that a particular pattern
of changes in joint angles will occur if an external agent forced the end-effector to make small
displacements dx. The resulting changes in the imb’s configuration can be fully specified if the
limb’s impedance is known. So to perform a movement with the algorithm in (19), one would
need a priori knowledge regarding the impedance of the limb during the movement.

Assume that a task is specified in terms of an end-effector trajectory x(t) for a kinematically
redundant biological imb. What (19) implies is that the task must also specify joint stifiness
during motion (or that the CNS can assume a minimum stiffness value that is appropriate for
the task). Since the task needs to be performed by muscles, we should rewrite the algorithm in
(19) in terms of muscle lengths:

dA
dA

) (21)
I C;I5 Ksdx (22)

I

Where Jp = 81/00 (for example, see (4) and (5)). The elgoritbm in (22) suggests a method
by which the CNS can set the bias of the stretch reflex circuitry for each muscle, given an
arbitrary end-effector trajectory and joint impedance. The contribution of Mussa Ivaldi et al.’s
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Figure 5: Model robot nomenclature and vector definition for the Error Vector Algorithm.

(1988) work has been to exploit the fact that motor impedance provides a unigue solution to
the configuration of a mechanism given an externally imposed motion to its end-effector. In
the next section we will review a previously proposed algorithm, referred to as the Error Vecior
Algorithrn, for solving kinematic redundancies (independently developed by Berkinblit el al.
1986a, and Hinton 1984), and we will show that this algorithm is a special case of the relation
derived in (19).

4 Error Vector Algorithm

A current hypothesis in motor control is that motor behaviors are organized of compartments
or segments ihat can be combined in different ways 1o form new movement patierns (e.g.,
Berkinblit et al. 1986b, Fentress 1987, Viviani and Terzuolo 1982). The essential component
of this hypothesis is that “every limb joint is subserved by a set of individual conirol systems
which interact in the process of solving a common motor task” (Berkinblit et al. 1986b). These
organizations are said to exist in locomotion of cats—where it has been argued that limb joints
‘are conirolled by a set of generators which interact with each olher fo produce an overall
locomotor patiern (Grillner 1975)—as well as in reaching movements (Hinton 1984), and the
wiping refiex in the {rog (Berkinblit et al. 1986a).

In this hypothesis, control of each joint is accomplished in parallel while information about
the position of each joint relative to the end-effector is shared between all controllers in order
to perform a common motor task. Each coniroller “produces an individual movement in the
corresponding joint, based on the information on the position of the target and on the result
of collective work of ell the limb’s joints, in particular, the knowledge of the position of the
limb's tip relalive Lo the target” (Berkinblit et al. 1986a). We refer to this as the Error Vecior
Algorithm. In this section we will generalize the algorithm for a robot with n joints, and show
that the algorithm uses ibe transpose of ihe robol’s Jacobian at the end-effecior 1o simulate
attachment of an imaginary spring between the target and the end-effector. Our discussion will
indicate that is a special case of the relationship in (19).

Consider a planar, multi-joint limb such as the one in Fig. 5. Assume that each joint has one
degree of freedom (along the axis perpendicular to the plane of motion) and joints are connected
by a rigid link of some length . Point (z;,v:) is the location of joint 1, (z.,¥.) is the position of
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the end-effector, (z, %) is the position of the target, and a limb of length [; connects to joinls
i —1 and 1. Assuming that (z;,3;) = (0,0), then the forward kinematics are described by the

{ollowing:

I, = T;-1 -i"f'_] sin[ﬁ‘,., e 9.’_2 + 9.‘_3 E TR {—1),91) {23)
Yi = Yi-1 + (—l)‘f‘._l Cos(s.’_l — 3.‘_2 -+ 81'-3 — 0 naf (_1)"81) (24)

The iterative algorithm proposed by Hinton (1984) and Berkinblit et al. (1986a) describes how
a particular target can be reached when the number of joints exceed the number of coordinates
that define the target. The idea is to plan changes in joinl angles as calculaied by an error
vector that points from the tip of ihe limb to the target position, as in Fig. 5: For each joint 1, a
veclor r; points to the current position of the end-effector. There is also a vector e which points
from the end-effector to the target position. If ¢; is a constant, and o; is the angle between r;
and e, then ihe change in the angle of joint 1 is a vector that points along an axis perpendicular
to the plane of movement, and is defined by Berkinblit.ef al, (19862) as

Al; = ¢; |r;] |e| sin(a;) (25)

where |x| is the magnitude of the vector x.

We will examine the rationale for this algerithm ﬁrst intuitively, and then rigorously by
finding the Jacobian of the robot at the end-eflector position. In (25), a rotation from r; to e
through an angle o; will change #; aboul an axis perpendicular to the plane of motion. It is
desirable to make the change in 6; proportional to the magnitude of the error vector e. Also,
Ab; is reasoned to be proportional to |r;| since the longer this vecior is, the more effectively
the position of the end-effector can approach the desired target.

To show the reasoning behind (25) in e rigorous fashion, we need to initially express Af; in
terms of the end-effector coordinates. By use of geometry (Law of Cosines), ; can be eliminated
from (25). In general, for the notation that was introduced in Fig. 5, and using equations (23)
and (24), we can express (25) as follows:

ci{(@e — zi) (¥ — ¥e) — (Ve — )2 — 2¢)) (26)
&i((¥e — i)z = Ze) — (2 — @) (vt — ¥e)) (27)

For the 4-joint limb of Fig. 5, let us derive the Jacobian matrix Js, where J5 = Ox/80. From
(23) and (24), substituting (z.,v.) for (zs,ys) and differentiating with respect to 8 we have:

dz. = 1 cos(6;)d0, + Ly cos(t; )def + Iy cos(s + 8, )(dps + db;)

if i is even: AOG;
iliis odd: Ad;

e cos(s + ¥a)(ds + d) (28)
dye = —bLsin(6,)df; + L sin(n)dyy + Iy sin(h, + 6,)(d, + d6,)
lysin(ps + 1) (dbs + ds) (29)
where 1; = 0,y —6,. For e:xample, the element in the first row of the first column in the Jacobian

mairix J¢ will be:
Js 10y =l cos(8) — I, cos(6; — 6y) + Iy cos(fy — 6, + 6) — Iy cos(By — b3 + 6, — 6,) (30)

By comparing (24) with (30), we see that the (20) is in fact y,. Similarly, we can show that:

Jsz( Yo V2=V Vi ¥ yq—y,) (31)
-Z, I, — Ty T,— T3 IT,— I4
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By substituting the aoove Jacobian in (26) and (27), we can rewrite (26) and (27) in the following
format:

A8 =Cile (32)

where C is 2 diagonal matrix made up of ¢; (one constant for each joint), and e is the error
vector, e = [(y — ¥.), (z: — z.)]%. The relation in (32) is another way to write the Error Vector
Algorithm that has been suggested by Berkinblit et al. (1986a) and Hinton (1984).

Now compare the relation in (32) with (19). In (19), C; is the joint compliance matrix, and
K35 is the end-point stifiness. The relation in (19) assigns changes in joint angles as a function
of small displacements in the end-effector and limb impedance. In (32), the error vector e
represents the affect of the displacement after it interacts with end-point sfifiness (to become a
force acting on the end-effector).

It turns out that when we simulated movements with a kinematic model, the algorithm in
(32) worked only if the matrix C had elements that were all very small (on the order of 1% of ||
before onset of movement), otherwise, the limb would either oscillate about the target position,
or become unstable. Therefore we conclude that the algorithm proposed by Hinton (1984) and
Berkinblit et al. (1986a) in equation (25), is a special case of the relation in (19)-—the special
case being that (25) assumes an identity matrix for end-point stiffness K.

The jdea that every joint has a controller which interacts with other joini-controllers in
the process of solving a common motor task can be described by the relation in (13) when one
realizes that (19) is a precise formulation of (25). Each controller “works” by imitating the effect
of a displacement at the Lip of the limb on the joint that it controls. To do this, the controller
needs to know three kinds of information: (1) where the tip of ithe limb is with respect to the
target, (2) where the joint is with respect to the tip of the limb, and (3) what the impedance of
ihelimb is. Since the algorithm is iterative and highly dependent on initial conditions, it is likely
that quite different joint angles may be observed when the end-effector cycles through a given
trajectory., Another reason for this phenomenon is that the mapping in (19) is not integrable,
meaning that after tracing a circle, the joint angles do not return to their original posifion al
the start of the irace. A final reason is that we have only mapped the kinematics of movement
here. The actual trajectory of limb is affected by forces linked to its motion.

In the next section we will consider some of the dynamic forces inherent in motion. Our goal
will be to show how to rapidly learn to compensate for muscle and limb dypamics in order to
produce a precise end-eflector trajectory.

5 Learning System Dynamics

Assume that we have a task that requires the end-eflector to follow a trajectory x(t), with a
stifiness profile K;(¢). Based on our discussion in the previous two sections, we have an algorithm
in (22) which specifies what the muscle lengths should be during this task. This algorithm's
purpose is to specify the kinematics of the task in the same coordinate system as the actuators.
The kinematfics of the task are, however, only a static representation of the dynamics of the
system. For example, consider that the skeleton has non-linear and coupled dynamics, meaning
that the relation in (16) is only valid for small disturbances from equilibrium since it has not
taken inlo account ithe effeci of centripetal, Coriolis, or gravitational forces. In order for the
end-eflector 1o produce the desired trajectory, a trajectory of muscle activations will have to be
arrived at which compensates for these forces.

We propose thal the dvaamics of the muscle-load-feedback system can be learned with a
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Figure 6: A schematic for learning dynamics of a biological limb. The trajectory generator
specifies end-eflector position x, velocity %, and stifiness K for the desired movement. The
Equilibrium Model produces a trajectory of muscle lengths and activations without regard Lo
dynamics of motion. The error between the observed and desired paths of the limb leads to
formation of a Virtual Equilibrium Model that augments the equilibrium path.

control structure that adapts its model of the system with information from efferent copy and
proprioceptive receptors, as shown in Figure 6. In this figure there are actually two motor
maps: one is the static equilibrium map that is hypothesized to reside in the spinal cord (see
Giszter et al. in this bock) which maps a desired end-effector position and limb stiffness onto
muscle lengths and activation: (x,K;) — (A,u), and the other is an adaptive motor map which
attempts to compensate for the limb’s dynamics during the movement. This adaptive model
interacts with the equilibrium model to produce a virtual equilibrium trajectory. Formally, the
mapping that is learned by the adaptive model is: (x,%,K;) — (x/,K/), where the resulting
variables represent error terms that add fo the original trajectory in order to produce a new
trajeclory that compensates for limb dynamics.

For example, consider a two joint limb thai we wish to move along a trajectory such as
the one specified in Fig. TA. The equilibrium trajectory specifies the end-efector position and
stifiness profile during movemeni: the mapping o muscle activation and muscle lengths is
performed in the spinal cord, e.g., in a region analogous to L4 and LS in the cat—the area
thought to be responsible for pattern generation in the scratch reflex (Berkinblit et al. 1978).
For a particular stifiness profile (Shadmehr 1990), the resulting movement of the imb (referred
to as the actual movement) is plotted by the dotted lines in Fig. TA. Note that in this case,
the limb lags the equilibtium trajectory and oscillates about the desired end-point before it is
damped out. When 2 learning mechanism is in place, a virtual equilibrium trajectory can be fed
to the spinal mechanism so that the aclual trajectory is identical to the one that was desired.
In Fig. 7B, the virtual equilibrium trajeclory is the doited set of lines, Note that in order to
begin the movement, the virtual trajectory needs to accelerate the arm beyond the amount
that is specified by the cquilibrium irajectory. Correspondingly, to stop the motion, the virtual
trajeciory needs to reverse the movement to activate antagonist muscles and brake the motion.
In Shadmehs (1990), we used a gross computational model of the Cerebellum, the Cerebellar
Model Articulation Controller (Albus 1975), fo rapidly learn this virtual equilibrium trajectory.
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Figure 7: A learned virtual equilibrium joint trajectory that compensates for limb dynamics
of a two joint arm. A) The equilibrium trajectory (solid lines) is the desired joint trajectory,

while the dotted lines show the actual trajectory of the limb. B) The learned virtual equilibrium:
trajectory (dotted, more “noisy” lines) compensates for the limb dynamics. For this case, the
actual trajeclory is identical to the desired one.
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6 Discussion

A fundamental queslion in motor confrol is how the CNS interacts with limbs that possess
kinematic and actualor redundancies, for there are many more system parameters (e.g., a-
and y-motoneuron activation raies) than there are independent variables (e.g., posilion of the
end-effector and limb stifiness). Ourgoal has been to discuss issues of actuator and kinematic re-
dundancy within the framework of robotics in order to understand how to represent a movement
so that it can uniquely specify how to perform it.

The issue of actuator redundancy arises because assignment of muscle forces 1o produce a
given joint torque is not possible since many degrees of co-activation can lead to generation of
identical joint torques. To deal with this issue, we suggested thal description of a task must
include not only the trajectory of the end-effector, but also, at least the trajectory of the stiffness
at the end-effector. Within the framework of the equilibrium trajeciory hypothesis (Flash 1987),
this suggests that, for example, an equilibrium trajectory of the hand for reaching movements is
an incomplete description of the fask since the same trajectory may be performed with various
degrees of joint stiflness. With reference to the A-model (Feldman 1966), where X ig a threshold
length for activation of a muscle, joint slifiness must be decided upon before the distance of
the thresholds from ihe equilibrium joint angle can be assigned. Interestingly, for a task that
requires rotating a join! from a horizontal to a vertical position, we showed that the equilibrium
hypothesis predicts a reduciion in the activily of both the agonist and the antagonist muscles,
given that the imb's stifiness remains at a level just sufficient to ensure stability, This result
is in sharp contrast {o the muscle activity that is expected if 2 dynamic model of movement is
used: for the same movement, this model predicts  sharp initial increase in the activity of both
muscles, then a decrease and finally 2 braking pattern of activity by the antagonist muscle.

Mussa Ivaldi et al.’s (1988) work suggests that the kinematic redundancies of the limb can
be overcome when Lhe elastic properties of the system are considered. When an external agent
displaces the end-effector, the resulting changes in joint angles can be determined i the stiff-
ness characteristics of the limb are known. The same line of analysis can be used to relate
displacements in the position of the end-effecior to changes in muscle lengths (as in equation
(22)). By “imitating” the eflect of a foreign agent on the end-eflector, the CNS can produce a
trajectory in terms of joint angles and muscle lengths. The notion of an independent controller
for each joint (the error vector algorithm) was shown {o fit well with in this framework: the
only information that is necessary for each controller is the distance of the tip of the limb to
the target, and the distance from the center of the controlled joint to the end-eflector. How-
ever, this mapping only describes the kinematics of the task: il muscle activations are assigned
without regard to, {for example, the inertial forces that act on the skeleton, then the observed
trajectory of the end-eflector will deviate significantly from the desired path. Learning dynam-
ics of the muscle-load-feedback system is essential especially for execution of ballistic ar precise
Tnovernents.

In the adaptive control scheme that we proposed, the kinematic requirements of the task
(as specified by (22)) are used by an equilibrium model, located in the spinal cord, to produce
an equilibrium trajectory. This irajectory is augmented by a supra-spinal center to produce
a virtual equilibrium irajectory that compensates for the dynamics of the imb. Our current
work is exploring the usefulness of this approach in predicting muscle aclivation patterns and
eng-eflector trajectories for control of redundant limbs.
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MOTOR PATTERN GENERATORS IN ANURAN PREY
CAPTURE

Ananda Weerasuriya
Deparrmenf of Basic Medical Sciences
Mercer University School of Medicine

Macon, GA 31207, U.S.A.

SUMMARY. Anuran prey capture, released by specific stimuli, consists of a sequence of motor
synergies. This series of steps includes an approach or orientation toward the prey stimulus, a
fixation of the prey in the frontal visual field and the consummatory event of snapping at the prey
and swallowing it. The key stimulus that elicits prey capture is either visual, tactile or olfactory,
and the outputs of their respective sensory analyzers share common access to motor patiern
generators responsible for the elaboration of the appropriate motor outputs. An approach path can
be altered midstream in response to movement of the prey, but an orenting turn once initiated
cannot be modified. Thus these two motor components (approach and orient), while being similar
in that they are produced by adjustable pattern generators, are dissimilar with Tespect to the degree
of modifiability during execution. This distinction is largely attributable to the differences in the
speed of execution and duration of the two motor patterns. The snapping stage of prey capture is a
swift, stereotyped, and ballistic motor pattern with very little variability. It is the component with
the smallest degree of variability in its duration and execution, is the most rapidly executed, and
has several subcomponents. Snapping starts with the lunge of the head toward the prey, followed
by opening of the mouth, tongue projection toward the prey, retraction of tongue with prey,
closure of mouth, and swallowing of prey. The neuronal substrate responsible for this chain of
Events can be modeled as a linearly operating sequence of modules controlling the different
subcomponents of snapping. Variations in neck muscle contractions are considered to provide the
Parametric control necessary 1o match the lunging distance with the relative location of the prey.
On the other hand, jaw and tongue movements appear 1o be relatively invariant and stereotyped. A

model wilh three integrator networks is proposed for the control of tongue muscies during prey
Capture,



