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Abstract

A task must be specified in teTTn$ of both the position (lnd stiffness of the-limb
before muscle forces and activations are unambiguously assigned. To illustrate this,
we begin with the problem of how to control an inverted pendulum with a pair of
muscles. An active state model of the frog's gastrocnemius is used to derive three
criteria for the stiffness characteristics of the system during posture and movement.
The differential equation representing this model is solved to indicate the relationship
between force and stimulation frequency. This result lea~ to em interesting prediction
of muscle forces in a minimum stiffness equilibrium point control scheme: neural
activity in the agonist muscle should decrease as the joint rotates the limb against
gravity. For the case where the number of joints excee~ the task's degrees of freedom,
an algorithm for mapping end-effector position and stiffness to the lengths of the
muscles is considered. We show that a previously proposed algorithm for control of
multi-joint limbs (Berkinblit et ai. 1986a, Hinton 1984) ill in fact a special case of this
mapping. We contend that these kinematic maps must be augmented by a mechanism
that takes into account the dynamics of the mU3cle-load-feedback system. We suggest
an adaptive control scheme where the derived kinematic relationships are used to set
the bias of the dretch reflex feedback loop, while a learning mechanism produces a
virtual equilibrium trajectory that compensates for the second order dynamics of the
load, aa well as the dynamics of the muscles.

1 Introduction

The process of generating a movement may be viewed as a series of transformations from an
overall movement objective (e.g., hitting a target with a baseball) to a plan specify.ing the
desired behavior of the end-effector (e.g., the path that the hand should follow before the ball is
released), and finally to a. pattern of muscle activations. There is a wealth of da.ta that describes
the patterns of muscle adivity and behavior of proprioceptive feedbacks during execution of
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Figure 1: A ball-and-socket joint with two muscle-like actuators. Length of each muscle is
denoted by ~i'

Consider the ball-and-socket joint of Fig. I', where the dyna.rnics of the skel~ton are described
by the following:

z" .
T = mc 8 +vlf +meg cos(9) (1)

~here m is the point mass at the end of the limb, c is the length of the limh, v is the joint's
VlSOOUS parameter, and 9 is the gravitational constant. The lengths of the muscles >. and >.
are related to the joint angle If by the functions: ' 1 2,

(2)

(3)

(4)

(5)

(7)

>'1 = Jb2 +c2-2bccos(()

>'2 Jb2 + c2 + 2be CO&( 9)

Differentiating the muscle lengths with respect to the joint angle yields the following:

d~l be sin( If)
=~ >'1

d>'2 -bcsin(9)
dB = >'2

The relationship between torque T at the joint, and muscle forces (Pi and rP2 is:

_ d>'l,+. d>.z,+. be sin.(8) be sin((J)
T - --'f'1 - -'1'2 =- rh + ¢ (6)

de dB >'1 >'2 2

Note that in Eq. (6), for a given joint torque trajectory T(t), a trajectory in terms of muscle
forces ¢J(t) cannot be calculated because there is an infinite set of antagonistic muscle forces
that can lead to generation of the same joint torque. A simple example of this is evident in
post~ral ~ont~ol: o~e .Cil.Il hold a limh at the same position with varying degrees of stiffness. For
the limb m FIg. 1, JOlDt stiffness, KJ, is defined as:

2 Actuator Redundancy

One of the fundamental differences between the way one programs robols to perform tasks a.nd
the way biological systems move is in the information that is needed before a command can be
sent to the actuators. In robots, once appropriate joint torques are determined, the robot will
move more-or·less along the desired trajectory. In this section we will see that this information
alone will not be sufficient for assignment of muscle a.ctivation rates,

particular trajectoJ:ies, yet there has been relatively little progress made in describing algorithms
that the CNS might be using to learn the dynamics of the muscle-load-feedback structures, and
to actually perform the planned trajectory. Tllere has been some progress in understanding
the movement planning process in the CNS: By loolcing at the kinematics of reaching, Hogan
(1984.) has suggested that it is the position of the hand, rather than the joint angles, that is
being planned. Yet it is not apparent how a task planned in terms of hand coordinates can
be executed by muscles that are inherently joint- based: There are generally more degrees of
freedom in a limb than there are degrees of freedom in the movement, so producing a trajectory
of muscle lengths for a desired hand trajectory is an ill-posed problem. This is the issue of
kinematic redundancy.

The situation is further complicated by the fact that at least two muscles act on a single
joint, and in many CMes, a muscle spans more than one joint. The problem is that the map
from joint torques to muscle forces is not one-to-one, i,e., many levels of co-contraction can lead
to the same effective joint torque. How does one decide on the amount of co-contraction? This
is the issue of actuator redundancy.

Aside from the fact that kinematic redundancies in the system make the transformation
from a planned hand trajectory to muscle activatioDs an ill-posed problem, there is also the
issue that the skeleton has non-linear and coupled dynamics: Forces produced by a muscle at
a given joint affect the position of all the joints in the limb. Therefore, to execute a task, one
must take into account the dynamics of the muscles, the skeleton, and the load. The controller
is further restricted by a relatively slow afferent system, prohibiting implementation of a host
of techniques that are commonly used in robotics in order to avoid compensation for dynamics
of the limb.

In this paper we begin with the problem of how to control a single joint (an inverted pen­
dulum) with a pair of antagonistic muscles. The muscles ale modeled to faithfully reproduce
the mechanical behavior of a frog's 'gastrocnemius, and are based on the active state theory
(Gasser and Hill 1924) as parameterized by lnbar and Adam (1976). OUI objective is to be able
to adivate these muscles so that the joint moves along a. desired trajectory, with a particular
stiffness profile. Based on stability requirements of the limb and the intrinsic mechanicallimi­
tations of muscles, we will derive three criteria for joint stiffness during posture and movement.
A minimum stiffness strategy is used to calculate forces that should be produced by the muscles
if an equilibrium point model (Feldman 1966) is used for control of the limb, This approam is
contrasted with a model that takes into account the dynamics of the task. We will then explore
algorithms for the problem of learning trajectory control in multi-joint biological limbs, with
particular emphasis on representing and regularizing motor redundancy, We will show that the
mechanical characteristics of the muscles and the feedback systems can be used by the CNS to
not only solve the redundancy issues (as has been suggested by Mussa Ivaldi et al. 1988), but
also to provide a means for building an adaptive internal model of the muscle-load-feedback
system for precise execution of desired tasks.



243

200

150

~
c

1000
~c;;

co
OJ

E-o

50

0
0 10 20 30 40 50 60 70 80

StimUlation Rate (Hz)

Figure 3: Tension output of the muscle model during isometric conditions at resting length after
11D.t impulses, and just before the arrival of the next impulse,
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Figure 2: An active state muscle model. A) The active state P( A, t) is the tensi~n dev~lo~e~.bY

the force generator, B) Isometric tension produced by the muscle model at various stirn a Ion
rates.

The fact that muscles cannot push against the skeleton will also limit the possible ran~e ~f KJ
during motion, In order to explain this, we need to fully specify (6) and (7) by form atJDg a
muscle modeL

'd 'b' f Ie how the limb should react in caseBy specifying joint stiffness, one 1S esen mg, or =p , 'II d 'b
an art of it comes in contact with the environment. In the next section w~ ,WI escn e a
m:s~e model and show that a unique set of muscle forces will result when JOlOt torque a.nd

stiffness are specified, . , b d' I th
F F' 1 we can see that K J should always be negative: lf a dlstur ance lSP aces e

limb r~: r~;~lti~g change in torque should be in the opposite direction: Setting K J ~~r;dS 0)
the s;ability requirements of the system: The equilibrium of the system is at 0E = cos T mcg ,

and in order to guarantee stability, the stiffness must be:

KJ < -mcg sin(8E ) (8)

>'0 < A, else D.A =: O. P(>., t) is the a.ctive forc~ pcoduced by the contractile mechanism in
the muscle, It can be represented by the product of a length dependent function S(>'), and a
function QU) which depends on the history of muscle stimulation f( t/) for tt .$ t, Using a. linear
systems approach to QU), the input to the contractile mechanism, f(t), is a series of impulses,
while the output is force:

P(A,t) == S(A) loa f(t')h(t - t')dt'

Using a parameter estimation technique, Inbar a.nd Adam (1976) have calculated h(t), i.e., the
impulse response of Q. We approximated their results in Fig, 5A by a SUin of two exponentials,
and derived the active tension (in grams) when the input to the system is a series of impulses
offrequency 1/At:

00

P = S(A) L::(exp( -70(t - nL'.t») - exp( -21O(t - n6t»(u(t - n6t) _ u(t _ (n + 1)6t» (10)
n::O

(11)

2.1 A Muscle Model

, 'I d I· lastic component in seriesHere we describe a two component active state musc e rna e. an e .
with a contractile component (Fig, 2A). This is the model proposed by Gas,ser an~ HIill (19t~2)

. 'f cl Th. f II wing d1fferentla equa Jonto expla.in the tension dynanucs of vanous rog mus es. e 0 0

describes force development in this model:

¢ = KSE (KPE6A +B" - (1 + RR~PE)t/>+ P(A,t» (9)
B SE

where K SE is the series elastic component in the tendons, K pE is the parallel e1a.stic comPtonethnt
, , l' s of the muscle B represen s ewhich with K SE accounts for the paSSlve tenslOn propel' Ie " h f th

1 't d' h It 'ng >. IS the rest-Iengt 0 eviscous resistance opposing force deve opmen unng s 0 em , 0 >. A h
muscle beyond which passive force is developed (Aubert et al. 1951), and 6A = - 0 w en

where u( t) is a unit step function at t = 0, and S(,\) = 1200(2A/Ao _ 1) when A .$ AO. else
S(>.) = O. Fig, 2B is the simulation results of (9) and (10) during isometric conditions at >. = >'0.

By formally defining a muscle model we have specified the dynamics of the system in Fig.
1. However, control of this system requires understanding how much activation the muscles
should receive in order to produce a particular force profile (the inverse dynamic model of the
muscles), Our approach is as follows: We assumed that >'0 for the muscles in Fig. 1 is at the
point of maximal extension for each muscle in the physiological workspace (this means that the
force produ,ced by each muscle is at a maximum when the muscle has its greatest length in the
workspace). We then solved the differential equation in (9) for an isometric muscle preparation
in order to indicate the amount of tension in the entire muscle afi.er n impulses, and just before
the (n + 1)st impulse:

A. - S( ') (eXP(-21OL'.t) exp( -70.6.t) ( A ») exp(-ala2n6t) _ 1
't' - A al - + a3 exp -al u2<.J.t

210 - a)a2 70 - ala, exp(-al u2At) _ 1
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~i.gure~: A) Muscle tension required to keep the joint at stable equilibrium, and a.t minimum
JOlDt stJtrness. B) Mu&cle tension trajectory for a minimum stiffness movement from 45 to 135
degrees. The results for a Dynamic Model and an Equilibrium Model strategy are illustrated.

B

(12)

(13)

4>
dl/>/ d>' = ,\ _ >'0/2

By using the above relation for d¢>t / d>'J and dif>z/d>'2 in eq. (7), K J now becomes a linear
function of the muscle forces, and since it is linearly independent of eq. (6), we ca.n find a.
unqiue set of muscle forces for a. given set of joint torque and stiffness.
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where at = KSE/B, a2 = 1 +KPE/KsE, and a3 =1/(70 - ala2) -1/(210 - ala2)' Eq. (11) is
an approximation of muscle dynamics in (9). In Fig. 3 we've plotted muscle tension at >. = >'0,
and nLlt = 1. Using this figure we Can now map a desired muscle force at a given muscle length
into a frequency of activation for that muscle.

Let us now return to the claim in the previous section that specification of joint torque and
joint stiffness will allow for a unique solution to the muscle forces. In analogy with eq. (7),
drP/d>. is muscle stiffness, and by differentiating eq. (11) and using the linear expression for
S(>'), we see that muscle stiffness is linear with respect to muscle force when >. :S >'0:

Let us begin with the q"uestion of how to maintain posture with the muscle-skeleton system of
Fig. 1, i.e., how to assign muscle forces so the limb stays at a d~ired position 8d , The procedure
is to find the set of muscle forces which position the equilibrium of the system at (id, and to
ensure that this position is stable. By using the relationship between joint equilibrium and
torque: T = meg cos(8E ), and by setting 8E = Btl and using eq. (8), we can solve (6) and
(7) for the muscle forces. For the minimum joint stiffness that satisfies (8), we've plotted the
muscle forces as a fundion of joint equilibrium position in Fig. 4A. Increasing joint stiffness
(Le., making it more negative) simply scales this approximately pa.rabolic relationship between
muscle forc~ and equilibrium joint angle, Le., the ratio of muscle forces is independent of joint
stiffness at equilibrium.

An elegant model of motor control (Feldman 1966, Flash 1987) suggests that movement may
be thought of as a shift in equilibrium position of the system. Assume that we wish the limb in
Fig. 1 to rota~e from BJ to 11 2 in ().t seconds and follow a desired trajectory 8d (t) which minimizes
the time derivative of acceleration, i.e., a minimum jerk trajectory (Hogan 1984):

2.2 Experiments

As an example, we considered a movement from 45 to 135 degrees in 0.5 seconds. By shifting
the equilibrium position of the system along Od(t) and using, for example, a minimum stiffness
protocol, we can solve for the muscle forces t1>l(t), and ¢>2(t). The resulting force trajectory for
each muscle is plotted in the "Equilibrium model" of Fig. 4B.

A second approach to programming muscle activalion is to consider the dynamics of the
moving limb when we assign muscle forces. This means that the torque trajectory should
include the influence of joint velocity and acceleration along the desired trajectory 8d :

Since this means that the torques experienced by the system will be much higher than when the
equilibrium position of the system is changed, it may not be possible for the muscles to produce
a high joint torque while maintaining lhe stiffness requirements of (8). Stiffness of a joint in
motion is constrained by the fact that muscles cannot push against a load. We implemented
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3 Kinematic Redundancy

(20)

(21)

(22)
d>" = JM dO

d>" = J M CJJ~Ksdx

dO = C J dr (16)

dT "- Jf df (17)

df = Ksdx (18)
by substitution: dO = CJJ~ K s dx (19)

where CJ is the limb's joint compliance, J s is the Jacobian at the end-effector: J s = &x/oO, f
is a force vector at the end-effector, and K s is the limb's stiffness at the end-effector. Given a
limb's joint compliance CJ, by using the principle of virtual work one can calculate the end-point
stiffness K s:
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x = h(9), i.e., the forward kinematic mapping. If m < n, then the arm is kinematically
redundant, meaning that there is a unique x il!;sociated with each 9, but there may be many 0
associated with each x. When there are muscles attached to the joints, the issue becomes how
to assign muscle lengths for a given end-effector position: Assume that >.. = l.Ab >'2, ... ,>'qjT
is a vector of muscle lengths where Ai is the length of muscle i, and n < q. Then there
exisis some continuous non-linear function g(O), where>.. =g(O). Given D. planned end-effector
trajectory x(t), describing an appropriate trajectory in terms of muscle lengths >..(t) requires
-finding g( h-l(x) ). A tra.jectory in terms of the muscle lengths ma.y be required for setting
the bias of the stretch reflex: loop (activation of the i-motoneurons), and for assigning muscle
activations a.s in the discussion in the previous section. ,

To find h-1 (x), the most direct approach is certainly to find an analytical expression, an
a.pproach that has proved to be very difficult in robotics, due to the complexity of h(O) (Sciavicco
and Siciliano 1988). A novel approach has recently been suggested by Mussa lvaldi et al. (1988):
taking a.dvantage of the elastic properties of the neuromuscular system, they have proposed an
algorithm that allows one to map small changes in the position of the end-effector into changes
in joint angles. We ha.ve sketched the derivation of the algorithm below:

which basico.lly shows how to go from impeda.nce at joint coordinates to impedance at end-point
coordinates. The inverse in (20) always exists because from the change in potential energy of
the system, it cau be shown that C J is a positive definite matrix: (Mussa Ivaldi et al. 1988), and
J s is full rank by construction. The idea. of the algori thm in (19) is that a particular pattern
of changes in joint angles will occur if an external agent forced the end-effector to make small
displacements dx. The resulting changes in the limb's configuration can be fully specified if the
limb's impedance is known. So to perform a. movement with the algorithm in (19), one would
need a priori knowledge rega.rding the impedance of the limb during the movement.

Assume that a task is specified in terms of a.n end-effector trajectory x(t) for a kinematically
redundant biological limb. What (19) implies is that the task must a.lso specify joint stiffness
during motion (or that the CNS can assume a minimum stiffness value that is appropriate for
the task). Since the task needs to be performed by muscles, we should rewrite the algorithm in
(19) in terms of muscle lengths:

Where JM = 8>../fJ(} (for example, see (4) and (5». The algorithm in (22) suggests a. method
by which the CNS can set the bias of the stretch reflex circuitry for each muscle, giver! an
ar1:litrary end-effector trajectory and joint impedance. The contribution of Mussa Ivalcli et lJ.'s

(14 )

(15)

T( .AOb2<? sin'(B) + .Ao>'~bc cos(8) - 2.A~bc cos( 8»

.A~bc sine 9)(2.A2 - .Ao)

T{.Ao.A~bc cos(8) - .Aol1c2sin Z
( B) - 2A~bc cos(8»)

>'~bc sine8)(2)'1 - Ao)

this constraint on the system by limiting the range of K J so that a' muscle is never asked to
produce a negative active force (this criterion is a weaker condition than (8) when the limb is
at rest, however during motion, it becomes the limiting factor). The procedure is to solve for
rPl and 4>, in terms of K J and T, and then find the conditions for which neither muscle force can
become negative;

We repeated the original movement with the minimum stiffness that met the criteria of (8), (14),
and (15), using the torque trajectory of (13). The force trajecto'ry for each muscle is plotted in
Fig. 4B (labeled Dynamic model).

Fig. 4B illustrates an essential property of the equilibrium model: 1t predicts that in order
to move the limb in Fig. 1 from a small joint angle to a larger one, the force (a.nd neural
activity) for both the agonist and antagonist should decrease (this is also observed in Fig. 4A).
The reason for this is that it takes less torque to hold the mass at, for example, 80 degrees,
than 45 degrees. Never the less, the equilibrium model accomplishes the joint rotation due to
the stiffness requirement of (8); when the current position is not at the desired equilibrium
position, the joint stiffness is laIge enough to produce a correcting torque that exceeds the effect
of the gra.vitational pull on the load a.nd moves the limb toward the equilibrium position. It
a.ppears to us that this property of the equilibrium hypothesis can be directly tested if the
effect of the spinal reflexes can be eliminated or explicitly accounted for in a separate model.
Referring to Fig. 4B, in contrast to the results of the equilibrium strategy, using the dynamic
strategy suggests muscle forces that require an increasing burst to begin moving the limb, then
both muscles nearly become quiet, and finally the antagonist is strongly activated to brake the
movement.

The point of this example was to show that even for a single joint movement, the nature
of the biological actuators is such that a task must be specified in terms of both position and
stiffness before muscle activations can be programmed. The notion of an equilibrium point,
as introduced by Feldman (1966), and demonstrated as a control algorithm by Flash (1987),
suggests that we can begin with the spring-like characteristics of the antagonistic muscles, ignore
the dynamics of the skeleton, shift the minimum of a potential energy surface along the desired
path, -and the limb will more-or-Iess follow. We have specified the stiffness conditions for which
this hypothesis holds true, as well as the expected muscle forces for a typical movement. Our
results provide an easy test of the equilibrium hypothesis as a control paradigm for movement
generation: the force and neural activity in the agonist should decrease as a joint rotates a load
against gravity.

The issue of kinema.tic redundancy arises when the degrees of freedom in a limb eJeceed the
degrees of freedom in the movement, e.g., a planar three-joint arm. Formally, the definition is
as follows; Consider a multi-joint limb with an end-effector a.ttached to the distal link. If the
position of the end-effector is denoted by vector x = [Xl, X" • .. , x",jT, and 9 = [81,82" , . ,8n ]T
specifies the joint angles, then there exists some cominuous non-linear function h(O), such that
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the end-effector, (:ttl yc) is the position of the target, and a limb of length i; connects to joints
i-I and i. Assuming that (:Cit yd = (0,0), then the forward kinematics are described by the
following:

The iterative algorithm proposed by Hinton (1984) and Berlcinblit et al. (1986a) describes how
a particular targel can be reached when the number of joints exceed the number of coordinates
that define the target. The idea is to plan changes in joint angles as calculated by an error
vector that points from the tip of the limb to the target position, as in Fig . .5: For each joint i, a
vector r. points to the current position of the end-effector. There is also a vector e which points
from the end-effector to the target position. If c; is a constant, and iX; is the angle between fi

and e, then the change in the a.ngle of joint i is a vector that points along an axis perpendicular
to the plane of movement, and is defined by Berkinblil-et al. (1986a) as:

Figuxe 5: Model robot nomenclature and vector definition for the Error Vector Algorithm.

X; = X,_l + Cl sin(8;_1 - 0'_2 + 8;_3 - ... + (-l)iOd
Yi Y'-I + (-1 )'1._1 cos( 8;-1 - 8;_2 + Oi_3 - ••• + (-1 );01 ).:

(23)

(24)

where tP; =B'+ l - e,. For example, the element in the first row of the first column in the Jacobian
matrix J s will be:

For the 4-joint limb of Fig. 5, let us derive the Jacobian matrix ls, where J s = &x/f)O. From
(23) and (24), substituting (x.,Yo) for (xs,Ys) and differentia.ting with respect to 0 we have:

Js (1.1) = II cos(B1 ) - 12 cos(8z - (1 ) + 13 cost 83 - 82+ (1 ) - 14 cos(84 - 03 +82 - 01 ) (30)

By comparing (24) with (30), we see that the (30) is in fact Yeo Similarly, we can show that:

(25)

(26)

(27)

(28)

(29)

(31)

e;((;co - :l:;)(Yt - Yo) - (Yo - Y;)(Xt - :Co))
e;((yo - y;)(x( - ;ce) - (ze - ;c;)(V( - Y.»)

!lO; = c; 11'.1 lei sin(er;)

J s = ( Ye
-:Ce

if i is even:

if i is odd:

dXe = II coste1 }dOl + 12 cos( t/J1 )d1/Jl + lJ cos(1/12 +(1 )(dtP2 + dOl)

+14cos(..pJ + tPl)(#3 +dtPl)

dYe -i1 sin(8ddBI + i2sin( 1/J1 )dt/Jl + 13sin(1/J2 + 0d( d1/J2 + dBd

+14 sin( tP3 +1/Jd( d1/J3 + dt/Jl)

where I:x: I is the magnitude of the vector x.
We will examine the rationale for this algorithm first intuitively, and then rigorously by

finding the Jacobian of the robot at the end-effector posi'tion. In (25), a rotation from !; to e
through an angle 0:; will change 0; about an axis perpendicular to the plane of Illation. It is
desirable to make the change in e; proportional to the magnitude of the error vector e. Also,
!lei is reasoned to be proportional to II; I since the longer this vector is, the more effectively
the position of the end-effector can approach the desired target.

To show the reasoning behind (25) in a rigorous fashion, we need to ini tiaUy ex:press !lOi in
terms of the end-effector coordinates. By use of geometry (Law of Cosines), iX; can be eliminated
from (25). In general, for the notation that was introduced in Fig. 5, and using equations (23)
and (24.), we can express (25) as follows:

(1988) work has been to exploit the fact that motor impedance, provides a unique solution to
the configuration of a mechanism given an externally imposed motion to its end-effector. In
the next section we will review a previously proposed algorithm, referred to as the Error Vector
Algorithm, for solving kinematic redundancies (independently developed by Berkinblit et al.
1986a, and Hinton 1984.), and we will show that this algorithm is a special case of the relation
derived in (19).

4 Error Vector Algorithm

A current hypothesis in motor conlrol is that motor behaviors are organized of compartments
or segments that can be combined in different ways to form new movement patterns (e.g.,
Berkinblit et a1. 1986b, Fentress 1987, Viviani and Terzuolo 1982). The essential component
of this hypothesis is that "every limb joint is subserved by a set of individual control systems
which interact in the process of solving a common motor task" (Berkinblit et al. 1986b). These
organizations are said to exist in locomotion of cats-where it has been argued that limb joints
-are controlled by a set of generators which interact with each'other to produce an overall
locomotor pattern (Grillner 1975)-as well as in reaching movements (Hinton 1984), and the
wiping reflex: in the frog (Berkinblit et aI. 1986a).

In this hypothesis, control of each joint is accomplished in parallel while information about
the position of ea.ch joint relative to the end-effector is shared between all controllers in ordet
to perform a common motor task. Each controller "produces an individual movement in the
corresponding joint, based on the information on the position of the target and on the result
of collective work of all the limb's joints, in particular, the knowledge of the position of the
limb's tip relative to the target" (Berkinblit et aI. 1986a). We refer to this as the Error Vector
Algorithm.. In this section we will generalize the algorithm for a robot with n joints, and show
that the algorithm uses the transpose of the robol's Jacobian at the end-effector to simulate
attachment of an imaginary spring between the target and the end-effector. Our discussion will
indicate that is a special case of the relationship in (19).

Consider a planar, multi-joint limb such as the one in Fig. 5. Assume that each joint has one
degree of freedom (along tlle axis perpendicular to the plane of motion) and joints are connected
hy a rigid link of some length I,. Point (:Ci,Yi) is tne location of joint i, (Z.,Ye) is the position of
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5 Learning System Dynamics

By substituting toe ",oove Jacobian in (26) and (27), we can rewrite (26) and (27) in the following
format:

Trajeclor)'
Generalor

dulr<d/i=1
poswor.

(ifI'f"C/tu:curacy
COfUlrtlUUS

(x.;. K ,) Virtual
£qUJlibrillm 1-.-----1
Model

Figure 6: A schematic for learning dynamics of a biological limb. The trajectory generator
specifies end-effector position x, velocity x, and stiffness K J for the desired movement. The
Equilibrium Model produces a trajectory of muscle lengths and activations without regard ~o

dynamics of motion. The error between the observed and desired paths of the limb leads to
formation of a Virtual Equilibrium Model that augments the ,equilibrium path.

control structure that adapts its model of the system with information from efferent copy and
proprioceptive receptors, as shown in Figure 6. In this figure there arc actually two motor
maps: one is the static equilibrium map that is hypothesized to reside in the spinal cord (see
Giszter et al. in this book) which maps a desired end-effector position and limb stiffness onto
muscle lengths and a.ctivation: (x, K J ) -> (A, u), and the other is an adaptive motor map which
attempts to compensa.te for the limb's dynamics during the movement. This adaptive model
interacts with the equilibrium model to produce a virtual equilibrium trajectory. Formally, the
mapping that islea.rned by the adaptive model is: (x,x,KJ ) -t (:x:',K~), where the resulting
variables represent error terms that add to the original trajectory in order to produce a new
trajectory that compensates for limb dynamics.

For example, consider a two joint limb that we wish to move along a trajectory such as
the one specified in Fig. 7A. The equilibrium trajectory specifies the end-effector position and
stiffness profile during movement: the mapping to muscle activation and muscle lengths is
performed in the spinal cord, e.g., in a region analogous to L4 and L5 in the cat-the area
thought to be responsible for pattern generation in the scratch reflex (Berkinblit et 0.1. 1978).
For a particular stiffness profile (Shadmehr 1990), the resulting movement of the limb (referred
to as the actual movement) is plotted by the dotted lines in Fig. 7A. Note that in this case,
the limb lags the equilibrium trajectory and oscillates about the desired end-point before it is
damped out. When a learning mechanism is in place, a virtual equilibrium trajectory can be fed
to the spinal mechanism so that the actual trajectory is identical to the one that was desired.
In Fig. 7B, the virtual equilibrium trajectory is the dotted set of lines. Note that in order to
begin the movement, the virtual trajectory needs to accelerate the arm beyond the amount
that is specified by the equilibrium trajectory. Correspondingly, to stop the motion, the virtual
trajectory needs to reverse the movement to activate antagonist muscles and brake the motion.
In Shadmehr (1990), we used a gross computational model of the Cerebellum, the Cerebellar
Model Articulation Controller (Albus 1975), to rapidly learn this virtual equilibrium trajectory.

inilial pO:.:J::.:iu:.:'o::.n__-----'---~

(32)A.9 = C J~ e

where C is a diagonal matrix ma.de up of c; (one constant for each joint), and e is the error
vector, e = l(Yt - 31.), (Xt - xc)]T. The relation in (32) is another way to write the Error.Vector
Algorithm that has been suggested by Berkinblit et al. (1986a) and Hinton (1984).

Now compare the relation in (32) with (19). In (19), CJ is the joint compliance matrix, and
K s is the end-point stiffness. The relation in (19) assigns changes in joint angles as a fundion
of small displacements in the end-effector and limb impedance. In (32), the error vector e
represents the affect of the displacement after it interacts with end-point stiffness (to become a.
force acting on the end-effector).

It turns out that when we simulated movements with a kinematic model, the algorithm in
(32) worked only if the matrix C had elements that were all very small (on the order of 1%of Ie I
before onset of movement), otherwise, the limb would either oscillate about the target position,
or become unstable. Therefore we conclude that the algorithm proposed by Hinton (1984.) and
Betlcinblit et al. (1986a) in equation (25), is a special case of the ,relation in (19)-the special
case being that (25) assumes an identity matrix for end-point stiffness K s.

The idea that every joint has a controller wruch interacts with other joint-controllers in
the process of solving a. common motor task can be described by the relation in (19) when one
realizes that (19) is a. precise formulation of (25). Each controller "works" by imitating the effect
of a. displacement at the tip of the limb on the joint that it controls. To do this, the controller
needs to know three kinds o[ information: (1) where the tip of the limb is with respect to the
target, (2) where the joint is with respect to the tip of the limb, and (3) what the impedance of
the limb is. Since the algorithm is iterative and highly dependent on initial conditions, it is likely
that quite different joint angles may be observed when the end-effector cycles through a given
trajectory. Another reason for this phenomenon is that the mapping in (19) is not integrable,
meaning that after tracing a circle, the joint angles do not return to their originaJ position at
the start of the trace. A final reason is that we have only mapped the kinematics of movement
here. The actual trajectory of limb is affected by forces linked to its motion.

In the next section we will consider some of the dynamic forces inherent in motion. Our goal
will be to show how to rapidly learn to compensate for muscle and limb dynamics in order to
produce a. precise end-effector trajectory.

Assume that we have a task that requires the end-effector to follow a trajectory x(t), with a
stiffness profile KJ( t). Based on our discussion in the previous two sections, we have an algorithm
in (22) which specifies what the muscle lengths should be during this task. This algorithm's
purpose is to specify the kinematics of the task in the same coordinate system as the actuators.
The kinematics of the task are, however, only a static representa.tion of the dynamics of the
system. For example, consider that the skeleton has non-linear and coupled d)'namics, mea.Ding
that the relation in (16) is only valid for small disturbances from equilibrium since it has not
taken into account the effect of centripetal, Coriolis, or gravitational forces. In order for the
end·effector to produce the desired trajectory, a trajectory of muscle activations will have to be
arrived at which compensates for these forces.

We propose that the dynamics of the muscle-load-feedback system can be learned with a
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Figure 7: A learned virtual equilibrium joint trajectory that compensates for limb dynamics
of a two joint arm. A) The equilibrium tTajectory (solid lines) is the desired joint trajectory,
while the dotted lines show the actual trajectory of the limb. B) The learned virtual equilibriuJI,1
trajectory (dotted, more "noisy" lines) compensates for the limb dynamics. For this case, the
actual trajectory is identical to the desired one.

In the adaptive control scheme that we proposed, the kinematic requirements of the task
(a.<; specified by (22» are used by an equilibrium model, located in the spinal cord, to produce
an equilibrium trajectory. This trajectory is augmented by a supra·spinal center to produce
a virtual equilibrium trajectory that compensates for the dynamics of the limb. Our current
Work is exploring the usefulness of this approach in prewcting muscle activation patterns and
end-effector trajectories for control of redundant limbs.

6 Discussion

A fundamental question in motor control is how the CNS interacts with limbs that possess
kinematic and actuator redundancies, for there are many more system parameters (e.g., (t.

and ,-motoneuron activation rates) than there are independent variables (e.g., position of the
end-effector and limb stiffness). Our-go:&:J has been to discuss issues of actuator and kinematic reo
dundancy within the framework of robotics in order to understand how to represent a movement
so that it can uniquely specify how to perform it.

The issue of actuator redundancy arises because assignment of muscle forces to produce a
given joint torque is not possible since many degrees of co· activation can lead to generation of
identical joint torques. To deal with this issue, we suggested that description of a task must
include not only the trajectory of the end-eIrector, but also, at least the trajectory of the stiffness
at the end-effector. Within the framework of the equilibrium trajeciory hypothesis (Flash 1987),
this suggests that, for example, an equilibrium trajectory of the hand for reaching movements is
an incomplete description of the task since the same trajectory may be performed with various
degrees of joint stiffness. With reference to the >'-model (Fe.ldman 1966), where). is a. threshold
length for activation of a muscle, joint stiffness must he decided upon before the distance of
the thresholds from the equilibrium joint angle can be assigned. Interestingly, for a task that
requires rotating a joint from a horizontal to a vertical position, we showed that the equilihrium
hypothesis predicts a reduction in the activity of hoth the agonist and the antagonist muscles,
given that the Umh's stiffness remains at a level just suffici~nt to ensure stability. This result
is in sharp contrast to the muscle activity that is expected if a dynamic model of movement is
used: for the same movement, this model predicts a. sharp initial increase in the activity of both
muscles, then a decrease and finally a braking pattern of activity by the antagonist muscle.

Mussa Ivaldi et a1.'s (1988) work suggests that the kinematic redundancies of the limb can
be overcome when t.he elastic properties of the system are considered. When an external agent
displaces the end-effector, the resulting changes in joint angles can be determined if the stiff­
ness characteristics of the limb are known. The same line of analysis can be used to relate
displacements in the position of the end·effector to changes in muscle lengths (as in equation
(22)). By "imitating" the effect of a foreign agent on t.he end.effector, the CNS can produce a
trajectory in terms of joint angles and muscle lengths. The notion of an independent controller
for each joint (the error vector algorithm) was shown to fit well with in this fra.mework: the
only information that is necessary for each controller is the distance of the tip of the limb to
the target, and the distance from the center of the controlled joint to the end·effector. How­
ever, this mapping only describes the kinematics of the tazk: if muscle activations are assigned
without regard to, for example, the inertial forces that act on the skeleton, then the observed
trajectory of the end-effector will deviate significantly from the desired path. Learning dynamo
ics of the muscle-load·feedback system is essential especially for execution of ballistic or precise
m.ovements.
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MOTOR PATTERN GENERATORS IN ANURAN PREY
CAPTURE

Ananda Weerasuriya

Department ofBasic Medical Sciences

Mercer University School ofMedicine

Macon, GA 31207, U.S.A.

SUMMARY. Anuran prey capture, released by specific stimuli, consists of a sequence of motor

synergies. This series of steps includes an approach or orientation toward the prey stimulus, a

fixation of the prey in the frontal visual field and the consummatory event of snapping at the prey

and swallowing it. The key stimulus that elicits prey capture is either visual, tactile or olfactory,

and the outputs of their respective sensory analyzers share common access to motor pattern

generators responsible for the elaboration of the appropriate motor outputs. An approach path can

be altered midstream in response to movement of the prey, but an orienting turn once initiated

cannot be modified. Thus these two motor components (approach and orient), while being similar

in that they are produced by adjustable pattern generators, are dissimilar with respect to the degree

of modifiability during execution. This distinction is largely attributable to the differences in the

speed of execution and duration of the two motor patterns. The snapping stage of prey capture is a

swift, stereotyped, and ballistic motor pattern with very little variability. It is the component with

the smallest degree of variability in its duration and execution, is the most rapidly executed, and

has several subcomponents. Snapping starts with the Junge of the head toward the prey, followed

by opening of the mouth, tongue projection toward the prey, retraction of tongue with prey,

closure of mouth, and swallowing of prey. The neuronal substrate responsible for this chain of

events can be modeled as a linearly operating sequence of modules controlling the different

SUbcomponents of snapping. Variations in neck muscle contractions are considered to provide the

parametric control necessary to match the Junging distance with the relative location of tJle prey.

On tile other hand, jaw and tongue movements appear to be relatively invariant and stereotyped. A

mOdel with three integrator networks is proposed for the control of tongue muscles during prey
capture.


