
Intact Ability to Learn Internal Models of Arm Dynamics in Huntington’s
Disease But Not Cerebellar Degeneration

Maurice A. Smith and Reza Shadmehr
Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine,
Baltimore, Maryland

Submitted 10 September 2004; accepted in final form 23 December 2004

Smith, Maurice A. and Reza Shadmehr. Intact ability to learn
internal models of arm dynamics in Huntington’s disease but not
cerebellar degeneration. J Neurophysiol 93: 2809–2821, 2005. First
published December 29, 2004; doi:10.1152/jn.00943.2004. Two dif-
ferent compensatory mechanisms are engaged when the nervous
system senses errors during a reaching movement. First, on-line
feedback control mechanisms produce in-flight corrections to reduce
errors in the on-going movement. Second, these errors modify the
internal model with which the motor plan is transformed into motor
commands for the subsequent movements. What are the neural mech-
anisms of these compensatory systems? In a previous study, we
reported that while on-line error correction was disturbed in patients
with Huntington’s disease (HD), it was largely intact in patients with
cerebellar degeneration. Here we altered dynamics of reaching and
studied the effect of error in one trial on the motor commands that
initiated the subsequent trial. We observed that in patients with
cerebellar degeneration, motor commands changed from trial-to-trial
by an amount that was comparable to control subjects. However, these
changes were random and were uninformed by the error in the
preceding trial. In contrast, the change in motor commands of HD
patients was strongly related to the error in the preceding trial. This
error-dependent change had a sensitivity that was comparable to
healthy controls. As a result, HD patients exhibited no significant
deficits in adapting to novel arm dynamics, whereas cerebellar sub-
jects were profoundly impaired. These results demonstrate a double
dissociation between on-line and trial-to-trial error correction suggest-
ing that these compensatory mechanisms have distinct neural bases
that can be differentially affected by disease.

I N T R O D U C T I O N

Theoretical studies of motor control have proposed that the
brain generates motor commands as a consequence of compu-
tations that resemble control policies and internal models
(Shadmehr and Wise 2005). Control policies allow the brain to
select goals and plan actions, while internal models compute
motor commands that are appropriate for those plans and
monitor sensory feedback so to update the plans. For example,
when the goal is to reach a target, the motor system may
evaluate the current state of the limb with respect to the goal
and use a control policy to plan a small change in hand position
(Hoff and Arbib 1993; Todorov and Jordan 2002). It may use
an internal model of limb’s inverse dynamics (called an inverse
model) to convert that plan into motor commands (Atkeson
1989; Kawato 1989; Shadmehr and Mussa-Ivaldi 1994). It may
use an internal model of limb’s forward dynamics (called a
forward model) to predict the sensory consequences of the

motor commands (Jordan and Rumelhart 1992; Wolpert et al.
1995) and compare this prediction with sensory feedback
(Miall and Wolpert 1996) to re-estimate current hand position
with respect to the goal and update the motor plan (Bhushan
and Shadmehr 1999) by issuing an error-dependent response
aimed at correcting the ongoing movement.

We have previously showed that error feedback control is
disturbed throughout the course of Huntington’s disease—as
much as 7–11 yr before onset of clinical symptoms. But
surprisingly little is known about the neural mechanisms of
supraspinal real-time feedback control during voluntary move-
ment. How does the brain perform this real-time error feedback
control? Ideas from computational motor control provide a
framework for considering this problem. The simplest control
method would be to generate corrective responses proportional
to sensed error. However, significant delays that exist in the
sensorimotor loop would require the gain of these responses to
be quite small to maintain stability of the arm. These delays
may be effectively compensated if the motion state of the arm
can be predicted at the time point when compensatory motor
commands would take effect. Such a predictor has been termed
a forward model of dynamics (Jordan and Rumelhart 1992;
Wolpert et al. 1995), and it can be computationally imple-
mented using delayed sensory feedback, knowledge of the
recent history of motor output, and knowledge of how the arm
is likely to respond to this motor output (Bhushan and Shad-
mehr 1999). A good forward model can reduce delay driven
instability allowing high feedback gains and powerful correc-
tive responses based on simple linear responses to error, but
these responses may not maximize the smoothness or effi-
ciency of movement.

Recent theoretical work has suggested that the same com-
putational mechanism that initially plans movement can be
used to provide optimally efficient corrections to ongoing
movements that experience error. The idea is that motion
trajectories or motor commands themselves can be constantly
recomputed so as to maximize the efficiency of the remaining
portion of a movement at any time during its course. Alternate
versions of a neural mechanism that could provide this com-
putation have been termed control policies (Ijspeert et al. 2002;
Shadmehr and Wise 2004), next state planners (Hoff and Arbib
1993), or optimal feedback controllers (Todorov and Jordan
2002). Although definitive evidence of this type of real-time
re-planning has yet to be provided, this work suggests the
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possibility of a strong link between trajectory planning and
error feedback control.

While such theories of computational motor control have
been primarily applied to behavioral studies in healthy indi-
viduals, recent work has begun to apply the theories to patient
studies (Desmurget et al. 2004; Smith et al. 2000; Wolpert et
al. 1998). The aim is to use the theories to help identify
computations that are affected when there is damage to specific
parts of the motor system.

Studies of reaching in cerebellar patients are a good example
of this approach. These patients exhibit errors in their reaching.
The error patterns suggest that their motor commands do not
predicatively compensate for interaction torques inherent in
multi-joint motion (Bastian et al. 1996, 2000; Goodkin et al.
1993; Topka et al. 1998), suggesting that reaching deficits in
cerebellar patients may be due in part to a malfunctioning
inverse model.

Behavioral studies suggest that when a force field is imposed
on the hand, the inverse model adapts (Conditt et al. 1997;
Shadmehr and Mussa-Ivaldi 1994). Kawato and Gomi (1992)
were first to propose that the cerebellum may play a dominant
role in representing the inverse model. Using functional imag-
ing, Nezafat et al. (2001) found activation of the ipsilateral
cerebellum during force-field learning. This suggested that
cerebellar patients might have difficulty adapting their motor
commands when limb dynamics are altered. A recent study of
patients with cerebellar degeneration confirmed that prediction
(Maschke et al. 2004).

How specific is this inability to adapt to altered limb dy-
namics to cerebellar patients? Here we examined both a group
of patients with cerebellar degeneration and a group of patients
with Huntington’s disease (HD). Imaging studies suggest that
HD begins as primarily a basal ganglia disorder that affects the
putamen (Aylward et al. 1994, 1998; Harris et al. 1996). Early
in the disease course, rapidly alternating movements are
slowed or disrupted (Hefter et al. 1987; Kirkwood et al. 2000
Penney et al. 1990). Patients become somewhat clumsy and
may have trouble with fine motor tasks such as tying shoelaces,
buttoning clothing, or performing needlework (Thompson
1988). We recently examined reaching movements in these
patients and observed a disturbance in error feedback control:
errors in the early part of a movement were poorly compen-
sated by the motor commands in the remainder of the move-
ment (Smith et al. 2000). This suggested that one of the many
computational mechanisms that are involved in error feedback
control was affected by damage to the basal ganglia.

However, error in a given movement not only requires a
motor response during the same movement, it also requires a
response in the subsequent movement: the error changes the
inverse model that is thought to be used by the brain to
compute the motor commands that initiate the subsequent
movement (Thoroughman and Shadmehr 2000). Therefore
here we asked whether the abnormal on-line response to error
in HD was extended to include trial-to-trial mechanisms of
adapting inverse models. We studied a group of HD and
cerebellar patients that were roughly comparable in their move-
ment disorder during reaching. Despite this impairment, HD
patients adapted normally to altered limb dynamics while
cerebellar patients were profoundly impaired.

M E T H O D S

Subjects

Eight individuals positive for the HD genetic mutation and symp-
tomatic with HD (median age: 51 yr), 15 asymptomatic gene carriers
(pre-HD, median age: 34), 5 subjects with cerebellar lesions (median
age: 41), and 14 control subjects (median age: 37) participated in the
experiment. All subjects used their dominant hand, and all subjects
but one asymptomatic gene carrier were right handed. The protocols
were approved by the Johns Hopkins Institutional Review Board.

Patients suffering from HD have alterations in the IT-15 gene
(Gusella et al. 1983), located on the short arm of chromosome 4. Close
to the beginning of this gene is a region that includes a variable
number of trinucleotide (the cytosine/adenine/guanine, CAG) repeats.
The CAG trinucleotide encodes the amino acid glutamine. The dif-
ference between the IT-15 gene in unaffected and affected individuals
is the length of this trinucleotide repeat. A genetic test to determine
the repeat length was conducted at the Johns Hopkins Huntington’s
Disease Project. Subjects with a CAG repeat length of �37 were
called mutation-positive. The genetic test was part of the HD
Presymptomatic Testing Program headed by Jason Brandt at Johns
Hopkins School of Medicine. In this program, mutation-positive
individuals participated in a longitudinal study that included annual
psychiatric and neurological evaluations, along with a brain MRI.
AGCs that participated in our study were part of this program.

Clinical evaluation of the pre-HD and HD subjects included a
quantitative neurological examination (QNE) (Folstein et al. 1983).
QNE includes an assessment of voluntary motor function via a motor
impairment score (MIS) and an assessment of involuntary motor
function via a chorea scale. Preliminary results from 17 AGC subjects
who were studied annually at the Johns Hopkins Huntington’s Disease
Project show that individuals who are five or more years from
predicted onset of the disease have QNE scores of �6. This score
gradually increases so that by the year of the onset QNE is �15. In the
early years of the disease development when the motor symptoms are
mild, QNE is �30. All but one of the presymptomatic subjects we
studied had QNE scores of �10 (mean � 5.9 � 3.5, mean � SD;
median � 6). Symptomatic HD individuals that we studied were
classified as mild to moderately affected (mean QNE � 29.1 � 14.7,
median � 27).

All five cerebellar subjects were clinically diagnosed with cerebel-
lar degeneration, were classified by their neurologist as having “pure
cerebellar symptoms” and had atrophy limited to the cerebellum on
MRI. Brief descriptions of MRI findings and dates of symptom onset
are provided for these patients in the following text. KH: MRI
documented cerebellar atrophy (SCA3) especially in the hemispheres,
tested 9 years after initial symptoms. RR: MRI documented bilateral
atrophy of the cerebellar hemispheres, tested seven years after initial
symptoms. PC: cerebellar degeneration of undermined etiology con-
firmed by MRI to be localized specially along the vermis, tested 9
years after initial symptoms. CM: MRI confirmed idiopathic cerebel-
lar degeneration with moderate bilateral atrophy of cerebellar hemi-
spheres tested 5 yr after initial symptoms. DB: MRI confirmed
idiopathic cerebellar degeneration particularly along the vermis tested
5 yr after initial symptoms.

Task

We studied the standard force field adaptation paradigm {Shadmehr
and Mussa-Ivaldi 1994}. Briefly, subjects held the handle of a ma-
nipulandum. A small cursor (4 mm) indicated the subject’s hand
position and was displayed on a vertically oriented computer monitor
in front of the subject (refresh rate of 60 Hz). They reached to 1 cm2

targets that were spaced 10 cm apart from each other. The manipu-
landum measured hand position and velocity (sampled at 100 Hz,
accuracy: �0.1 mm and 1.3 mm/s) and applied forces to the hand.
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Forces on the hand were perpendicular to hand velocity, producing
a curl field. The relationship between force (F) and velocity (V)
vectors was determined by matrix CA � [0 13;-13 0] N. s/m via the
relationship F � CA*V. We considered two kinds of fields: a clock-
wise curl field CA and a counter-clockwise curl field CB � �CA. We
refer to these force fields as field A and field B, respectively.

The experiment was divided into short sets of 96 or 100 trials, each
a reach to a target. Sets generally took 6–8 min to complete. The first
four sets were performed in the null field with the robot motors
disabled. The next three to four sets were performed in field A,
followed by one to four sets in field B. During the field sets, catch
trials were inserted at a probability of 1/6. In a catch trial, the field was
turned off.

We instructed subjects to “make a quick movement to the target.”
We instructed them that the reaction time was not important—they
could wait as long as they wished after target appearance before
starting each movement—but when ready, they were to move in a
rapid motion toward each target. The peak speed of each movement
was displayed to the experimenter after each trial, and subject was
coached to move faster or slower if movement speeds were outside the
range of 0.25—0.55 m/s. The endpoint of each movement was used
as the starting point for the subsequent movement, and movements
were made in eight target directions.

Analysis of field blocks

We focused on motor commands that initiated a movement and
defined aiming error y as the angle between the net motion direction
during the first 300 ms of movement and the target direction with the
convention that counterclockwise errors are positive and movement
onset defined as the first time that the speed of hand motion exceeded
a threshold of 0.03 m/s for 200 ms consecutively. There are at least
two different ways in which the CNS may reduce these errors. When
forces are applied to the hand in field trials, stiffening of the limb will
produce reduction in reaching errors. However, this strategy will not
result in errors during catch trials. Alternately, learning of an internal
model of the forces will also result in a reduction in errors during field
trials. However, this strategy will produce large errors in catch trials.
Learning an internal model that predictively compensates for an
external force-field will produce the same motor output on field and
catch trials because the catch trials cannot be predicted. For this
reason, early movement errors (before feedback compensation) will
be shifted in the same direction for both force-field trials and catch
trials. Although, this will reduce the magnitude of errors on force-field
trials and will increase the magnitude of errors on catch trials, the
difference between these errors may not change. The difference
between error on force-field trials and catch trials corresponds to the
effect of the force-field on error. In our experiment the size of this
effect depends on the magnitude of the force-field and the net
compliance of the arm. Although the force-field magnitude is held
constant across subjects, arm compliance may vary across subjects,
resulting in subject-dependent force-field effects. For this reason, it is
useful to create a measure of learning that is independent of force-field
effect size. Because catch trial errors indicate internal model forma-
tion but their magnitude depends on the size of the force-field effect,
we defined a learning index that normalizes catch trial error size by an
estimate of the force-field effect

Learning index �
yc

�yc � yf�

This measure is similar to that used by Criscimagna-Hemminger et al.
(2003). Here, yc and yf are errors in catch and field trials, respectively.
Both of these measures of error were adjusted for any bias that may
have been present during the last null set. Therefore errors in a field
set always refer to change from errors in the null set. Note that if the
force field is fully compensated, errors on field trials, yf, will be zero

resulting in a learning index of magnitude 1, whereas when no
force-field adaptation occurs errors on catch trials, yc, will be zero
resulting in a learning index of 0. Note that if motor commands, on
average, compensate for 50% of the forces in field A, then and the
learning index magnitude is 0.5. Because of our sign conventions for
error, in field A the learning index approaches 1 as errors in field trials
decrease and errors in catch trials increase, whereas in field B, this
index approaches �1.

We also measured movement duration and relative path length of
each movement. Movement duration is quantified as the time elapsed
between movement onset and termination. We defined onset as the
first time that the velocity magnitude exceeded a threshold of 0.03 m/s
and remained above it for 200 ms consecutively, and we defined
movement termination as the first time after onset that the movement
speed went below the 0.03-m/s threshold and remained there for 200
ms consecutively. Relative path length was the distance traveled along
each movement path divided by the straight-line distance between the
start and endpoint of motion.

Analysis of null blocks

We observed that all subjects exhibited a similar pattern of errors
when training began in the null set. We suspected that this was due to
the unfamiliarity of the subjects to the passive dynamics of the robot.
That is, in the null set, the motor system needed to adapt to the small
but nontrivial inertial dynamics of the robot arm. To test for this, we
simulated dynamics of a human arm holding onto our robot handle
while reaching movements were performed to targets. Because the
human arm was constrained to move in the horizontal plane during
our task, the human and robot arms were modeled as coupled coplanar
two link systems. The structure of the model and the parameters were
described earlier (Shadmehr and Brashers-Krug 1997). Briefly, this
model was parameterized by the inertia and physical dimensions of
the robot and human arm, and by the stiffness and viscosity of the
human arm. We used 34 and 35 cm for the human upper arm and
forearm lengths, respectively, and used the following matrices to
represent human joint-based arm stiffness and viscosity, respectively
(expressed in absolute joint coordinates)

stiffness � � 25 �14
�14 19 �N/m

viscosity � stiffness*0.15s

Movement simulations were performed using MATLAB Simulink
with a 2-ms sampling interval. We first computed the feed-forward
human elbow and shoulder torques required to make perfect straight-
line minimum-jerk hand motion with a peak velocity of 0.375 m/s to
each target location in the condition that the human arm was not
holding the robot arm. We then applied these joint torques to our
model (with the human arm holding the robot arm) and computed the
aiming errors in the resulting imperfect hand trajectories.

Trial-by-trial effect of error

Adaptation is partly due to the influence of errors in one trial on the
motor commands that initiate the subsequent trial. To quantify adap-
tation nonparametrically, we compared all movement triplets in each
target direction that were force-catch-force (FCF) or force-force-force
(FFF). Using these force-any-force (FXF) triplets, we looked at the
relationship between error in the middle movement y(n � 1) and the
change in error from the first movement y(n) to the third move-
ment y(n � 2). The change in performance, i.e., y(n � 2) � y(n), might
have been due to random noise or due to the errors experienced on
trials n � 1, i.e., y(n � 1). In an adaptive system, a positive y(n � 1)

generally results in a negative y(n � 2) � y(n) and the greater this
sensitivity, the faster the learning. To measure the sensitivity, we
computed the slope of the linear fit to the relationship between
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y(n � 2) � y(n) and y(n � 1) in each subject. The distribution of
sensitivities for each group was then compared across groups. Note
that the triplets consisted of consecutive trials in the same direction,
and so movements in other directions occurred between the elements
of each triplet. However, we expected that errors experienced in
directions other than the triplet direction would have smaller effects
and these errors would at steady state be independent of the errors in
the triplet direction and thus should not substantially bias our esti-
mates of within-direction error sensitivity.

We used an ANOVA to compare the effect of group on the
measured variables and post hoc t-test to compare pairs of groups. All
P values resulting from multiple comparisons were corrected using
the Holm method (Holm 1979) to sequentially adjust the P values
deemed significant (P � 0.05).

State-space model of trial-to-trial error

The triplet analysis described in the preceding text assessed the
trial-by-trial effect of error by relating performance changes in a
certain movement direction to errors experienced in that same direc-
tion. However, errors made in other movement directions may also
influence (albeit to a lesser degree) these performance changes. A
recent theory describes how one can account for the effect of error
experienced in any movement on any other movement (Donchin et al.
2003; Thoroughman and Shadmehr 2000). The idea is to fit a simple
linear state-space model of direction-dependent error-driven learning
to the full trial-to-trial sequence of aiming errors displayed by each
subject during the force-field sets

ŷ�n	 � Dd � f�n	 � zd�n	

Zd�n � 1	 � Zd�n	 � B � ŷ�n	

where ŷ(n) is the model’s estimate of error on the nth trial. The
movement at the nth trial was toward direction d, f(n) is the force field
magnitude on the nth trial, Dd is the arm compliance in direction d,
and zd(n) is the (learned) motor output that opposes the force-field on
trial n. This model has two parts. The first part predicts error on a
particular trial based on the force field applied and the estimated
motor output on that trial. Here the predicted error is the difference
between the effect of the force-field, Dd � f(n), and the compensatory
motor output on that trial. The second part of the model predicts motor
output state on the next trial based on the state of motor output in the
current trial, the error experienced in the current trial, and the error
generalization parameter B. This second equation predicts that the
change in motor output state on a particular trial is the product of the
error generalization parameter and the error experienced on that trial.
Note that the first equation in the model is scalar, whereas the second
is an eight-dimensional vector equation (because there are 8 move-
ment directions). In this equation, motor output state is updated for all
possible directions of movement on every trial, but only the motor
output state corresponding to a particular trial’s movement direction
contributes to the predicted error for that movement.

This type of autoregressive computational modeling of the trial-to-
trial changes in motor output has been previously used to characterize
properties of error-dependent motor adaptation in healthy human
subjects (Donchin et al. 2003; Scheidt et al. 2001; Thoroughman and
Shadmehr 2000) Our model is most similar to the model of Thor-
oughman and Shadmehr (2000) but has a few key differences: Dd is
now constrained to correspond to the pattern of effective compliance
conferred by a two-dimensional compliance matrix (see derivation in
the following text), the trial-to-trial sequence of errors corresponds to
angular aiming errors rather that perpendicular displacements, and the
current model was fit to data from individual subjects rather than to a
data set averaged across subjects. This was necessary because we
could not assume that the patient groups were homogenous. Note that
fitting such models to across-subject averaged data will not produce
the same results as the average of the fits to individual subject data

because state-space model fits are not linear with respect to the data.
Therefore fitting individual subject data allowed us to make unbiased
estimates of average patient group generalization and compliance
functions. Additionally, fitting individual subject data allowed us to
make direct estimates of error bounds for the average fits without
resorting to bootstrapping techniques which can be problematic for
smaller data sets.

This model was fit to the data from each subject in each group to
estimate the compliance and error generalization parameters for that
individual. In the preceding equations the parameters D and B are
eight-dimensional vectors (1 dimension for each direction of move-
ment). D represents the compliance (inverse of stiffness) in each
movement direction, whereas B represents the generalization magni-
tude for differences in movement direction between �180 and �180°.
To reduce the number of parameters, we noted that arm compliance in
the horizontal plane is well modeled by a 2 
 2 compliance matrix
(Mussa-Ivaldi et al. 1985). We derived the relationship between this
two-dimensional compliance matrix and the direction-dependent one-
dimensional compliance in our model and found that the latter
depended only on the symmetric components of the former (see
APPENDIX 1). Therefore we constrained D to three free parameters
according to this relationship. Furthermore, previous work has shown
that error generalization functions are essentially symmetric (i.e., the
amount of generalization to �45° is essentially the same as general-
ization to �45°). Therefore we enforced symmetry on B, which
constrained it to five free parameters.

Because the force-field was kept constant on all trials in which it
was applied but the actual force experienced varied depending on the
movement velocity, we followed Thoroughman and Shadmehr (2000)
in representing the force input to the model, f(n), as a discrete scalar
representing force-field magnitude and assigning it values of 1, 0, or
�1 corresponding to field A, catch, or field B trials, respectively. Thus
the compliance computed from this model has units of angular error,
and it corresponds to the aiming error directly induced by the force-
field. Although this measure of compliance is nonstandard, it is
intrinsically related to the usual measure of compliance, and the
relationship between the two is a simple multiplicative constant (see
APPENDIX 2). We use this conversion to report stiffness in Fig. 5.

We used a least-squares optimization to find the parameters, B and
D, that minimized the difference between the aiming error sequence
predicted by the model and the actual aiming errors produced by each
subject.

R E S U L T S

Subjects initially reached in a null field, then in field A (a
clockwise curl field), and finally in field B (a counter-clock-
wise curl field). Figure 1 plots hand paths for typical subjects.
The force field perturbed movements (Fig. 1, 2nd row), but
reaching of control subjects improved with training (Fig. 1, 3rd
row), and errors in catch trials closely mirrored the errors made
on initial exposure to the field. Subjects with HD also appeared
to learn the field. Like controls, initial exposure to the field
substantially perturbed movements in HD, but their move-
ments late in training trials became straighter and their catch
trials closely mirrored the errors recorded in field trials. How-
ever, stemming from their feedback control dysfunction (Smith
et al. 2000), HD subjects showed some difficulty stopping their
movements. In contrast, subjects with cerebellar degeneration
showed signs of impaired adaptation. In catch trials, move-
ments did not have errors that mirrored the errors in field trials,
indicating that these subjects did not produce anticipatory
compensation for the field.
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Errors in the null field

Our task involved holding a robot with potentially signifi-
cant passive dynamics. Therefore even in the null field sets the
robot’s passive dynamics could contribute to reaching errors
(Fig. 2A). These errors would in turn require an adaptive
response. We noted that despite training, the cerebellar subjects
still displayed substantial errors in the null sets (Fig. 2B). We
began by asking whether these errors were related to the
passive dynamics of the robot.

The robot’s passive dynamics produced forces on the hand
that depended on movement direction. To explore the effect of
these forces on reaching, we simulated dynamics of the human
arm coupled to our robot and noted the trajectory errors when
the human arm controller did not account for the robot’s
dynamics. We computed the error in direction of motion at
300-ms movement time for each target direction. Counter
clockwise errors were marked as positive, and clockwise errors
were marked as negative. The average error across target
directions had a zero mean, but for each target direction, the
error was consistently positive or negative (thick black lines in
Fig. 2C). For example, the simulations predicted that robot’s

passive dynamics should produce counter clockwise errors for
reaches toward 45o and clockwise errors for reaches at 135o.

Reach trajectories of a control subject and a cerebellar
subject in the first null set (averaged for each direction) are
shown in Fig. 2A. To compare the direction-dependent pattern
of errors with the errors produced by the model, Fig. 2C plots
average error as a function of direction. The model predicted
positive (counter clockwise) errors for targets at 45 and 225o,
and negative errors for targets at 135 and 315o. This pattern is
present in the reaching trajectories of the two subjects plotted
in Fig. 2A. Average errors across subjects in each group also
tended to show a direction dependent pattern of errors similar
to the model (Fig. 2C). However, the directional errors tended
to be smaller than predicted for targets at 135 and 315o and
larger than predicted for targets at 45 and 225o.

With training in the null set, control and HD subjects
produced significantly reduced direction-dependent errors (Fig.
2E, P � 0.01 for control, pre-HD, and HD groups). Figure 2D
shows that errors in these groups converged toward the middle
circle (the middle circle indicates 0 error in each direction).
However, cerebellar subjects continued to produce errors that

FIG. 1. Hand paths from representative subjects. Subject
groups: HD, symptomatic HD; CON, controls; CBL, cerebel-
lar degeneration. Movement sets: null, final movement in
each direction in the null field; early F, first movement in each
direction after onset of field A; late FF, last movement in each
direction during final set of field A; catch trials, last catch trial
in each direction during final set of field A.
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FIG. 2. Analysis of aiming errors in null
field sets. A and B: average hand paths in the
1st set and in the 4th set of null field trials for
a control and a cerebellar subject. C and D:
aiming errors (at 300-ms movement time) are
plotted as a function of movement direction in
the 1st and last null field sets. The middle
black circle denotes 0 error. Counter clock-
wise errors are marked positive and are plot-
ted outside of this circle and clockwise errors
are marked negative and are plotted inside of
the circle. E: change in magnitude of error
with null field training. The average magni-
tude of error across all movement directions is
shown for the 1st and last null field sets. HD
and control groups display significant reduc-
tions in directional error from the first to the
last set (P � 0.01 for all groups). There is no
significant change in the cerebellar group
(P � 0.5).
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were essentially unchanged throughout the null field training
(Fig. 2E). Therefore it appeared that although the passive
dynamics of the robot was a significant factor in the errors that
all subjects produced in the null field training sets, with
training all but cerebellar subjects were able to adapt to the
novel dynamics.

Errors in the force fields

Figure 3 plots movement errors for each group in all the null
and field sets (bin size � �25 trials). In control subjects,
training produced a reduction in errors in field trials and an
increase in errors in catch trials. When we switched the field
from A to B, large errors were produced in field trials, but these
errors declined rapidly. Similarly, catch trial errors changed
sign and became appropriate for field B. If motor commands
compensated for 50% of the forces in a field, then errors in
catch trials should be equal in magnitude but opposite in
direction to errors in field trials. By the third set in field A, for
control subjects, the catch trial errors were more than double
the field trial errors. To estimate percent compensation of the
field, we computed a learning index that considered errors in
catch and field trials. The index is 1 if there is 100% compen-
sation for field A, �1 if there is 100% compensation for field
B, and 0 if compensation is appropriate for a null field. With
1/6 probability of catch trials, maximum possible compensa-
tion is 83%. Figure 3B shows that in control subjects, three sets
of training produced �65% compensation for the field.

Presymptomatic and symptomatic HD subjects displayed
similar behavior to controls. Field trial errors decreased with
training while catch trial errors increased (Fig. 3A). By the 3rd
set of training in field A, both groups of HD subjects had catch
trial errors that were generally larger than field trial errors. This
implies �50% compensation for the field. The learning indices
were very similar between the HD and control groups in both
field A (Fig. 3, B and D) and field B (Fig. 3B). Size of errors
in catch trials was not significantly different in HD and control
subjects (Fig. 3, B and E). Percent improvement in force-field
trial errors was comparable in HD and control subjects (Fig. 3,
B and F). Therefore the data suggested that the HD subjects
adapted normally to both the passive and active force fields
produced by the robot.

By the third set of training in field A, errors in field trials were
not significantly different between the cerebellar subjects and
other groups (Fig. 3A). However, the cerebellar subjects displayed
significantly smaller errors in catch trials (Fig. 3E, P � 0.001
compared with controls and P � 0.01 compared with symptom-
atic HD subjects) and significantly smaller learning indices (Fig.
3D, P � 0.0001 compared with controls and P � 0.01 compared
with symptomatic HD subjects). It is possible that in cerebellar
subjects, the field trial errors were relatively small because of
increased stiffness of the arm. The lack of field-dependent errors
in catch trials seems consistent with this. For example, the y axis
of Fig. 3C plots the change in catch trial errors for each subject
when the field switched from A to B.
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force field sets. A: aiming errors as a function
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A: clockwise curl field; B: counter-clockwise
curl field. Each set contained 96–100 move-
ments. There are 4 bins per target set (�21
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null field sets, there were no true field or
catch trials, but the movement numbers cor-
responding to these during the field sets were
designated as field or catch trials for the sake
of comparison. B: learning index indicates
the ratio of errors in catch and field trials (see
METHODS) and is an estimate of the percent
compensation for the field. A value of 1
indicates full compensation for field A and
�1 indicates full compensation for field B.
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first training set are labeled “early A,” and
the data from the last bin in the 3rd training
set are labeled “late A.” D: learning index. E:
catch trial errors. F: percent change in field
trial errors. *, significant differences from
controls; {, significant differences from sub-
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0.01, ***P � 0.001, ****P � 0.0001. All
P values are corrected for multiple
comparisons.
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The x axis of Fig. 3C plots the change in catch trial errors
when the field switched from null to A. In HD and control
groups, catch trial errors in every subject changed significantly
when the field switched from null to A and then to B. This was
not the case for the cerebellar subjects. Furthermore, while
control and HD subjects displayed 60–70% reduction in errors
in field trials (Fig. 3F), cerebellar subjects displayed a signif-
icantly smaller error reduction of 10–20% (P � 0.01). There-
fore the data suggest that subjects with cerebellar degeneration
displayed an impaired ability to alter their motor commands to
compensate for the applied force fields.

As a group, cerebellar subjects reached �15% more slowly
(Fig. 4A) than controls, and subjects with HD reached with
speeds intermediate between cerebellar subjects and controls.
Size of catch trial errors might be expected to be larger in
movements that are faster. Could the difference in movement
speeds explain the difference in the size of errors in catch
trials? To explore this possibility, we compared within subject
relationships between movement speed and size of catch trial
errors. We found that catch trial errors were not modulated
with movement speed over the speed range present in this
experiment (Fig. 4B). Cerebellar subjects displayed small catch
trial errors at slow, midrange, and fast speeds. In contrast, HD
and control subjects displayed large catch trial errors over the
same range of movement speeds.

We also considered movement parameters other than aiming
errors. Figure 4, C and D, plots movement times and path
lengths. As the task began in the null field, the HD and
cerebellar subjects had nearly identical movement times and
path lengths. Whereas in HD subjects training produced a
reduction in this variable, no changes were apparent in the
cerebellar group. When the field was introduced, movement
time increased in all subjects, but failed to decline with practice
in the cerebellar group. Similar patterns were evident in move-
ment path lengths (Fig. 4D). Therefore measures of task
performance other than aiming errors also suggested normal
adaptation in symptomatic and presymptomatic HD subjects
but impaired adaptation in cerebellar subjects.

Trial-to-trial effect of error

Figure 5A shows the time course of movement errors for a
single direction (90o) during training in field A for control
subjects. For clarity, errors for intervening trials that were not
in this same direction are not shown. A steady-state pattern is
reached after �50 total trials—this corresponds to �5–8 trials
in each movement direction. However, note that the force-field
movement after each catch trial generally shows an increase in
error magnitude relative to the movement before that catch
trial, whereas between catch trials, errors on force-field move-
ments are reduced. In Fig. 5B, we aligned the sequence of
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movement errors to catch trials and averaged the results across
subjects and across all movement directions. This analysis
shows that in healthy subjects field trial errors increase in
magnitude following catch trials and decrease after field trials.
The resulting saw-tooth pattern of error that can be seen in Fig.
5A has been attributed to error-dependent trial-to-trial learning
(Donchin et al. 2003; Thoroughman and Shadmehr 2000) in
which catch trial errors lead to partial unlearning of the field
and force-field trial errors lead to partial re-learning of the
force-field. Unlike the control and HD subjects, cerebellar
subjects had essentially zero error in catch trials and displayed
no improvement in the subsequent field trials suggesting re-
duced error-dependent learning.

To quantify the amount of trial-to-trial learning, we assessed
the relationship between error on a given trial and the adaptive
motor response to that error on a subsequent trial. To accom-
plish this, we compared all movement triplets in each target
direction that were FCF or FFF. Error in the first movement is
labeled y(n); second movement is y(n � 1), etc. Note that for a
given direction, y(n � 1) is the next movement after y(n), but
there may be intervening trials in other directions. Figure 5C
plots y(n � 2) � y(n) as a function of y(n � 1) for all FCF and FFF
triplets in each target direction for each subject. For each
subject, we computed the slope of a line through this data and
then computed an average slope across subjects in that group.
This slope represented the average sensitivity of motor output
to error in the previous trial. An adaptive response to error
should display a negative slope. Average sensitivity to error is
plotted for each group in Fig. 5D. HD and control subjects
displayed significantly negative error sensitivities (HD �
�0.13, P � 0.003; pre-HD � �0.15, P � 0.0003; control �
�0.15, P � 0.0008), but cerebellar subjects had a sensitivity
close to zero (CBL � �0.04, r � 0.06, P � 0.8). Therefore in
all groups except cerebellar, the change in movement errors
from y(n) to y(n � 2) was related to the error y(n � 1).

Figure 5C also shows that in cerebellar subjects, there was a
variance in the measure y(n � 2) � y(n) that was comparable to
other groups. Therefore the motor commands in cerebellar
subjects did vary from trial to trial. However, these trial-to-trial
changes were uninformed by the error in the previous trial.

The pattern of errors in Fig. 5A is partially but not fully
explained by the average responses to same-direction catch-
trial errors shown in Fig. 5B. Thoroughman and Shadmehr
(2000) demonstrated that much of the deviation more this
average response can be explained by the effect of errors
experienced in other movement directions. The triplet analysis
described in the preceding text assessed the trial-by-trial effect
of error by relating motor output changes in a certain move-
ment direction to errors experienced only in that same direc-
tion. However, errors made in other movement directions may
also influence motor output changes in a given direction, and
so a more general analysis of the trial-to-trial effect of error
could consider all of the interactions between errors made in
one direction and motor output changes in another. This pattern
of interactions has been termed generalization. We estimated
the pattern of generalization of error-dependent learning from
one movement direction to another using a state-space model
of direction-dependent trial-to-trial learning (see METHODS).
Here the idea is that when an error is experienced in a certain
movement direction, subsequent movements in that direction
are programmed differently to partially compensate for the

error experienced. But subsequent movements in other direc-
tions may also be modified because of that error experience.
The generalization pattern of error describes this effect by
quantifying the amount of compensation induced by error as a
function of the directional similarity between the trial on which
a given error was experienced and subsequent trials on which
this compensation manifests.

The state-space model we used is similar to several other
autoregressive models of trial-to-trial motor adaptation used to
study motor in healthy individuals. (Donchin et al. 2003;
Scheidt et al. 2001; Thoroughman and Shadmehr 2000). It
determines arm compliance and the pattern of error generali-
zation for each subject by finding the values of these parame-
ters that best predict the sequence of errors produced by that
subject. Arm compliance (the inverse of stiffness) and gener-
alization patterns of error are shown for all groups in Fig. 5,
E–G. Compliance varies substantially from one direction of
motion to another because of the biomechanical properties of
the arm. Figure 5E shows that the size and shape of the
compliance ellipses are similar for all groups. Cerebellar sub-
jects and presymptomatic HD subjects do display somewhat
smaller average compliance (greater stiffness) than other
groups (see Fig. 5F), but all groups display average compliance
within 15% of control values.

Figure 5G shows that the healthy volunteers and HD sub-
jects that we tested display a pattern of generalization similar
to that previously reported for normal controls (Thoroughman
and Shadmehr 2000). For HD and control subjects, directional
error generalizes with a significantly positive learning rate to
movements in the same direction (directional difference � 0),
the strength of this generalization falls to �50% at 45o, and
becomes negative for movements in the opposite direction
(directional difference � 180o). CBL subjects show a mark-
edly different pattern. They fail to show any consistent gener-
alization of error from one movement direction to another,
suggesting that errors experienced on one trial fail to influence
motor output on subsequent trials.

D I S C U S S I O N

We altered the dynamics of reaching movements by impos-
ing passive and active force fields on the hand. These forces
produce reaching errors. It is thought that the errors modify an
internal model with which the brain computes motor com-
mands that initiate a reach. We found that this ability was intact
in asymptomatic individuals at risk for HD as well as patients
with manifest HD. In contrast, patients with cerebellar degen-
eration were profoundly impaired. Whereas in control and HD
groups, the errors in a given trial produced compensatory
changes in the motor commands that initiated the next trial, in
cerebellar patients, the changes in motor commands were
unrelated to the error in the previous trial. Furthermore, a
quantitative model of error-dependent learning showed that
HD subjects not only learned normally from error but also
generalized what they learned from one direction to another
with the same spatial pattern as healthy controls. In contrast,
cerebellar patients displayed substantial deficits in both trial-
to-trial adaptation and generalization.

Symptomatic HD individuals that we studied here were
clinically classified as mild to moderately affected in their
movements [median quantified neurological examination
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(QNE) score of 27, see METHODS]. MRI analysis suggests that
when the clinical symptoms are detected, the mildly affected
individuals have significant loss of volume in the caudate and
putamen (Harris et al. 1996) with the damage to the putamen
more prominent than the caudate. Examination of brain regions
other than basal ganglia in mildly affected individuals (QNE �
41) has not found any significant differences in the volumes of
the frontal, parietal, occipital, and temporal lobes, or the
volumes of the cerebellum and the brain stem, despite having
found clearly abnormal basal ganglia volumes (Aylward et al.
1998). Taken together, it is likely that the HD genetic mutation
in the individuals that we studied had resulted in atrophy of the
striatum, in particular the putamen, although the possibility of
mild cortical damage cannot be excluded.

Both the cerebellum and striatum have been implicated as
neural structures that contribute to motor control and learning,
yet the contribution of each is not well understood. The
learning deficit that we found in cerebellar subjects confirms a
previous finding that the learning of internal models of limb
dynamics depends on the integrity of the cerebellum (Maschke
et al. 2004). In this work, a group of patients with cerebellar
atrophy secondary to SCA-6 showed decreased force-field
adaptation. Our finding extends that work by showing that this
deficit in cerebellar patients is related to a lack of sensitivity of
motor commands to errors in the previous trial and by dem-
onstrating that individuals with cerebellar damage from a
variety of etiologies can show marked deficits in force-field
adaptation.

Our observation that learning of internal models of physical
dynamics is impaired in cerebellar subjects is consistent with
the functional imaging results that have suggested a role for the
cerebellum in this kind of learning (Nezafat et al. 2001). It is
also consistent with the finding that the learning of internal
models of dynamics relies on motor primitives that have
receptive field properties similar to those reported for some
Purkinje cells in the cerebellum (Donchin et al. 2003) and that
Purkinje cells in the cerebellum display simple spike activities
that correlate with anticipation of predictable load force per-
turbations during grasping (Dugas and Smith 1992).

However, It has been suggested that habit formation (often
loosely defined as stimulus-response behavior) and skill learn-
ing in general (Bachevalier 1990; Mishkin and Appenzeller
1987; Mishkin et al. 1984; Paulsen et al. 1993), or more
specifically open-loop skill learning, is disturbed in HD and
with striatal dysfunction. Our results are inconsistent with this
generalization. Because of sensorimotor feedback delays
(Cordo 1990; Miall et al. 1986), the first 200–300 ms of
movement is open-loop. Data taken from this open loop period
in the force-field task show normal learning by HD subjects,
indicating that at least certain kinds of skill learning, and in
particular open-loop skill learning, can be well-preserved in
both symptomatic and presymptomatic carriers of the HD
gene. The preservation of open-loop skill learning in HD is
supported by a recent study demonstrating intact prism adap-
tation despite somewhat decreased aftereffects in a large sam-
ple of patients with HD and Parkinson’s disease (Fernandez-
Ruiz et al. 2003).

Our results that in HD there is an intact ability to adapt to
altered dynamics of reaching movements is consistent with
the finding that in HD there is also an intact ability to adapt
to altered kinematics of reaching movements (Fernandez-

Ruiz et al. 2003). Remarkably, cerebellar damage can pro-
foundly inhibit learning in both of these conditions (Chen et
al. 1996; Martin et al. 1996; Maschke et al. 2004; Robertson
and Miall 1999; Sanes et al. 1990; Topka et al. 1993).
Computationally, this kind of learning involves using the
errors in a movement to update the sensorimotor map that
transforms the desired behavior (or limb states) into motor
output that produces that movement (i.e., the inverse
model). In other words, errors are associated with the recent
history of sensory states of the limb.

In contrast, HD patients typically perform poorly on tasks
that depend on an ability to produce reactions to real-time
sensory input. For example, HD patients are impaired in
learning the pursuit rotor task where limb movements try to
follow a repeating goal trajectory lasting 30–60 s (Willingham
et al. 1996). That task depends substantially on the incorpora-
tion of real-time sensory information about the current trajec-
tory to correct and minimize errors between the actual and
desired trajectory.

Our earlier work suggesting that this error feedback
system is disturbed in HD (Smith et al. 2000) is consistent
with several lines of evidence that point to disordered
responses to real-time sensory feedback as a manifestation
of HD. Reaction times to both auditory and visual stimuli
are slowed even early in the disease course (Kirkwood et al.
2000; Siemers et al. 1996). The cortically mediated (Mars-
den et al. 1978; Petersen et al. 1998; Rothwell 1990)
long-latency component of the stretch reflex responses is
reduced or absent in HD patients (Noth et al. 1985;
Thilmann et al. 1991; Thompson et al. 1988), and electrical
potentials evoked in somatosensory cortex by peripheral
nerve stimulation are reduced throughout the course of HD
(Meyer et al. 1992; Topper et al. 1993). Additionally, the
modulation of manual grip forces when grasping objects has
also been found to be disturbed in HD (Fellows et al. 1997;
Schwarz et al. 2001). Taken together, it might appear that a
generalized dysfunction in the processing of sensory infor-
mation occurs in HD.

However, our present findings are sharply inconsistent with
this characterization. Instead, our results suggest that in HD,
there is an intact ability of the motor system to respond to
sensed errors from movement-to-movement but a reduced
ability to form an appropriate response during the execution of
the movement. Therefore in HD the deficits in reaching cannot
be due to a general deficit in sensing movement errors. Rather,
the sensory processing deficits may be limited to the on-line
utilization of sensory information and the on-line feedback
control of the limb in response to error. Conversely, we see that
with degeneration of the cerebellum the ability to adjust motor
output from trial to trial in response to error is impaired despite
intact ability to produce in-flight error-correcting responses,
suggesting distinct neural bases for these two important re-
sponses to error. In computational terms, these observations
hint that in HD, deficits in simple reaching may be related to
monitoring movement progress and producing real-time re-
sponses to sensed error. In cerebellar degeneration, the deficits
in simple reaching may be related to dysfunctional updating of
internal models that transform high level kinematic movement
plans into motor commands.
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A P P E N D I X 1 : R E L A T I O N S H I P B E T W E E N T W O -

D I M E N S I O N A L C O M P L I A N C E A N D O N E -

D I M E N S I O N A L O P P O S I T I O N A L C O M P L I A N C E

To translate a two-dimensional compliance matrix into the effective
one-dimensional oppositional compliance for each direction of move-
ment, we derived the relationship between these variables. The two-
dimensional compliance matrix is defined by

� x
y �� � D11 D12

D21 D21
�� Fx

Fy �
In our experiment, both the perturbing force-field and the error
measure are in the same direction on any given trial (the direction
perpendicular to movement). So the effective one-dimensional com-
pliance can be defined as the constant of proportionality between the
projection of the two-dimensional displacement onto the two-dimen-
sional force and the magnitude of the two-dimensional force, F.
Because this one-dimensional compliance may depend on the direc-
tion of the applied force we will refer to it as D1(�)

�projection of � x
y � onto � Fx

Fy ��� D1��	 � F

Note that the value of the projection of a vector A onto another vector
B can be computed as the dot product of A and a unit vector in the
direction of B. If we use this relation and we represent the applied
force in terms of its magnitude F and direction (�), then the preceding
equation becomes

� x
y �•� F � cos �

F � sin � �
F

� D1��	 � F

substituting from Eq. A1 yields

�� D11 D12

D21 D21
�� F � cos �

F � sin � ��•� F � cos �

F � sin � �
F

� D1��	 � F

this simplifies to

�� D11 D12

D21 D21
�� cos �

sin � ��•� cos �

sin � �� D1��	

D11 cos 2� � D12 cos � sin � � D21 cos � sin � � D22 sin 2� � D1��	

D11 � D22

2
� �D11 � D22

2
� cos �2�	 � �D12 � D21

2
� sin �2�	 � D1��	

without loss of generality we can rewrite the off-diagonal elements of
the compliance matrix as

D12 � DS � DA and D21 � DS � DA

where DS and DA are the symmetric and anti-symmetric off-diagonal
components of the two-dimensional compliance matrix

� D11 D12

D21 D21
�� � D11 DS � DA

DS � DA D21
�

Substituting into the previous equation yields

D11 � D22

2
� �D11 � D22

2
� cos �2�	 � DS � sin �2�	 � D1��	

Note that D1(�) depends on D11, D22, and DS but not on DA. This
implies that the amount of asymmetry in the two-dimensional com-
pliance matrix has no effect on the one-dimensional compliance.
Conversely, the amount of asymmetry in the two dimensional com-
pliance cannot be determined from characteristics of the one-dimen-
sional compliance. Note also that D1 has 3 df and is a function of �,

meaning that the magnitude of the one-dimensional compliance de-
pends on the direction of the applied force but can always be fully
described by three parameters D11, D22, and DS as shown in the last
equation above. In the state-space learning model, D1(�) was con-
strained according to this equation.

A P P E N D I X 2 : R E L A T I O N S H I P B E T W E E N R E A L

C O M P L I A N C E A N D T H E C O M P L I A N C E M E A S U R E

I N T R I N S I C T O T H E S T A T E - S P A C E

L E A R N I N G M O D E L

Because the force-field was kept constant on all trials in which it
was applied but the actual force experienced varied depending on the
movement velocity, we followed Thoroughman and Shadmehr (2000)
in representing the force input to the model, f(n), as a discrete scalar
representing force-field magnitude and assigning it values of 1, 0, or
�1 corresponding to field A, catch, or field B trials, respectively. Thus
the compliance computed from this model has units of angular error
and it corresponds to the aiming error directly induced by the force
field. Although this measure of compliance is nonstandard, it is
intrinsically related to the usual measure of compliance. The relation-
ship between these measures is derived in the following text.

Here we compute the relationship between force-field induced
angular displacement and real arm compliance. Compliance is the
constant of proportionality between force and displacement. Because
the force-field induced displacement at a certain point in time is
caused by forces experienced up to that time, it is reasonable to define
the effective compliance at a certain time point, D1, as the constant of
proportionality between the average force experienced up to that time
point and the displacement at that time point

X�t	 � D1 � FxAVG�03 t	

Note that in the force-field used in these experiments, x-direction force
depends on y-direction velocity, and the force-field viscosity, C. That
is, FxAVG(0 3 t) � C � VyAVG(0 3 t). Average velocity is simply the
ratio between change in position and change in time

VyAVG�03 t	 �
Y�t	

t

Combining these three equations yields

X�t	 �
D1 � C � Y�t	

t

if we consider the time point 300 ms after movement onset, we get

X300 �
D1 � C � Y300

t

X300

Y300

�
C

300ms
� D1

Note that our model’s compliance measure, angular displacement, is
closely related to the ratio of x and y displacements, and therefore is
closely related to stiffness

�300 � arctan�X300

Y300
� �

X300

Y300

�
C

300ms
� D1

For angular displacements of �15°, �X300

Y300
� is within 2.2% of

X300

Y300

, and

for angular displacements of �20°, �X300

Y300
� is within 3.8% of

X300

Y300

,

yielding a nearly linear relationship between �300 and D1 for the range
of angular displacements in our data. Thus �300 can be approximately

converted to D1 by simply multiplying it by
300ms

C
.
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