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Internal models and contextual cues: encoding serial order and direc-
tion of movement. J Neurophysiol 93: 786–800, 2005. First published
September 22, 2004; doi:10.1152/jn.00240.2004. During reaching, the
brain may rely on internal models to transform desired sensory
outcomes into motor commands. This transformation depends on both
the state of the limb and the cues that can identify the context of the
movement. How are contextual cues and information about state of
the limb combined in the computations of internal models? We
considered a reaching task where forces on the hand depended on both
the direction of movement (state of the limb) and order of that
movement in a predefined sequence (contextual cue). When the cue
was available, the motor system formed an internal model that used
both serial order and target direction to program motor commands.
Assuming that the internal model was formed by a population code
through a combination of unknown basis elements, the sensitivity of
the bases with respect to state of the limb and contextual cue should
dictate how error in one type of movement affected all other move-
ment types. Using a state–space theory, we estimated this generaliza-
tion function and identified the adaptive system from trial-by-trial
changes in performance. The results implied that the basis elements
were tuned to direction of movement but output of each basis at its
preferred direction was multiplicatively modulated by a weak tuning
with respect to the contextual cue. Activity fields that multiplicatively
encode diverse sources of information may serve as a general mech-
anism for a single network to produce context-dependent motor
output.

I N T R O D U C T I O N

One way to link activity fields (e.g., receptive fields or motor
fields) of neurons in a particular region of the brain to percep-
tion or action is to assume that these fields are akin to
mathematical bases with which a function is computed. For
example, during a reach, some neurons in motor regions of the
brain exhibit a tuning with respect to movement direction �
(Georgopoulos et al. 1982). In population coding of movement
direction (Georgopoulos et al. 1986), tuning of each cell is a
basis function gi(�), and a weighted combination provides an
estimate of direction. This “internal model” simply produces
an identity map, �3 �̂, but with different weighting functions
any other function can be modeled (Pouget et al. 2000). This
perspective has implications for our understanding of motor
learning because the shape of the basis functions will deter-
mine how training in one part of the space generalizes to
another part of the space (Pouget and Sejnowski 1997; Thor-
oughman and Shadmehr 2000). The tuning of neurons can be

very different in different parts of the brain. This means that
the generalization patterns recorded in a task may be related to
the tuning of the neurons in the parts of the brain that are
involved in learning to compute the function of interest (Pog-
gio et al. 1992).

In control of limb movements, it has been suggested that the
brain computes a function that approximates inverse dynamics
of the limb (�, �̇, �̈) 3 f̂, estimating the forces f̂ that are
necessary to achieve a particular desired limb state �, �̇, �̈
(Conditt and Mussa-Ivaldi 1999; Shadmehr and Mussa-Ivaldi
1994). Assuming that the approximation of inverse dynamics is
linear, one can represent this computation with the expression
f̂ � Wg(�, �̇, �̈), where g � [g1, g2, . . . , gn]T is a vector of
bases that encodes state of the limb and W � [p1�p2� . . . �pn]
associates each basis with a preferred force vector pi. In theory,
movement errors produce a change in the preferred force
vector of each basis, which in turn produces a performance
change in the subsequent movement. If the subsequent move-
ment explores a different part of the state space than the effect
of the error on this new part of the state space is a measure of
generalization.

Thus, theory predicts that there is a relationship between
trial-by-trial change in performance and the shape of the bases
(Donchin et al. 2003; Thoroughman and Shadmehr 2000). For
example, patterns of generalization have been used to show
that bases elements are tuned to movement direction (Donchin
et al. 2003); that directional tuning is multiplicatively modu-
lated by a linear function of limb position (Hwang et al. 2003);
and that the encoding of limb position and velocity is in terms
of the intrinsic coordinates of muscles and joints (Malfait et al.
2002; Shadmehr and Moussavi 2000). These are also proper-
ties of some cells in the primary motor cortex (Georgopoulos
et al. 1984) and the cerebellum (Bosco et al. 1996; Coltz et al.
1999). However, there has been very little exploration of the
representation of cues other than the current state of the limb.
For example, if one needs to reach a target while holding a
tennis racquet in one instance and a badminton racquet in
another instance, a contextual cue must predict different forces
for similar states of the limb (Osu et al. 2004; Wada et al.
2003). Our ability to interact with various objects in our
environment predicts that contextual cues must have a signif-
icant influence on the activity fields of the bases. How are
“high level” contextual cues and “low level” information about
the state of the limb combined in the bases that compute
internal models of dynamics? Here we use a system identifi-
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cation technique to quantify generalization patterns across a
multidimensional space that includes both contextual cues and
state of the limb.

This work is part of an MS thesis submitted by S. K.
Wainscatt to Johns Hopkins Biomedical Engineering Depart-
ment.

T H E O R Y

In out task, subjects reach to targets while interacting with a
force field that depends on both the state of the limb (its
velocity) and the serial order of that movement within a
sequence. Assume that this task requires computation of a
function (s, �)3 f̂, where s is a contextual cue, � is limb state
(its velocity), and f̂ is an estimate of force on the limb. The cue
is the ordinal number of a movement within a sequence. We
assume that the map is computed with a collection of bases gi,
each a scalar function representing the activity of the basis
element in different parts of the input space (s, �). Each basis
is associated with a preferred force vector pi. Adaptation
results in changes in these preferred force vectors. We have f̂ �
Wg(s, �), where g � [g1, g2, . . . , gm]T and W � [p1, p2, . . . ,
pm]. f̂ and pi are 2 � 1 vectors. If in trial n a reaching
movement is made, the force error in that trial is

f̃ �n� � f �n� � f̂ �n�

where f (n) is the actual force (e.g., at max velocity) in that trial.
The “input state” in trial n is defined as �(n) � [s(n), �̇(n)],
where �̇(n) is evaluated at maximum velocity during that trial.
Error in trial n results in a change in the preferred force vector
associated with each basis. If we define scalar quantity

e �
1

2
f̃T f̃, minimizing this cost function describes how error

in trial n should produce a change in pi

de

dpi

� � f̃gi

pi
�n�1� � pi

�n� � �f̃ �n�gi��
�n��

W�n�1� � W�n� � �f̃ �n�gT���n�� (1)

In Eq. 1, � is a learning rate. Following Thoroughman and
Shadmehr (2000), we multiply both sides of the above expres-
sion by g(�(n�1)) and note that gT(�(n))g(�(n�1)) is a scalar
quantity and arrive at

f̂ �n�1� � W�n�1�g���n�1��

� W�n�g���n�1�� � �gT���n��g���n�1�� f̃ �n� (2)

Therefore, if trial n occurred in state �(n) and trial n � 1
occurred in state �(n�1), the error experienced in trial n
produces the following observable change in the system when
the system is evaluated at �(n�1)

f̂ �n�1����n�1�� � f̂ �n����n�1�� � �gT ���n��g���n�1�� f̃ �n� (3)

Because of the error in trial n, the system might have changed
everywhere, but because in each trial only one state is observed
(e.g., a movement is made to only one direction), the rest of
these changes (e.g., forces that are expected for other direc-
tions) are not observable. In Eq. 3, the term gT(�(n))g(�(n�1))
is a generalization function. This scalar function determines

how much of the error experienced in one state affects any
other state.

Our discussion assumed that in a given trial (a movement),
the internal model computed a single vector of force. This is a
gross simplification, and elsewhere we have derived Eq. 3 with
the assumption that a trial is a trajectory of forces and states
(Donchin et al. 2003). In that case, the generalization function
takes the form of an integral. The result is that generalization
from the state in which error was experienced to another state
is a correlation between the basis elements as evaluated along
the 2 states. When the basis elements are broad, this correlation
is high and there is large generalization. When the basis
elements are narrow, the correlation quickly drops off as a
function of distance between the states.

To give a simplified example, ignore the fact that there may
be contextual cues in the task and imagine that our internal
model consisted of 6 states, each a direction of movement �.
On any given trial, the particular values of pi (i.e., preferred
force vector) associated with each gi (i.e., basis function)
constitute the motor system’s memory of the task. If we
evaluate this memory for all states, the result is a field of forces
F̂, as shown in Fig. 1A1. Therefore, at trial n, F̂(n) is a field
(represented as a 12 � 1 vector) that contains a force f̂ (n) (a 2 �
1 vector) for each of the 6 states. The experimenter provides a
target and the subject evaluates F̂ (n) along that direction and
predicts f̂ (n). We write this as

f̂ �n� � K �n�F̂ �n�

where K(n) is a sparse matrix (2 � 12) that selects the force
along the desired direction from the field F̂. Because the
movement is made to that direction, the experimenter has the
robot produce a force f (n). The robot force interacts with force
produced by the subject, resulting in hand trajectory. Suppose
among the points along this trajectory we pick hand position at
peak velocity and label it y(n). If there was a difference between
f (n) and f̂ (n), there will be a movement error

ỹ�n� � y�n� � y*

where y* is the reference hand position that the subject would
ideally like to achieve. Because there are 6 possible directions
of movement, we use the 12 � 1 vector Y* to represent the 6
reference positions and the sparse matrix L(n) (2 � 12) to select
the appropriate reference position for that trial

y* � L�n�Y*

Thus ỹ(n) depends on f̂(n) and the actual forces in that trial f (n).
Because errors are generally small (typically � 1.5 cm), we
assume that this dependency is linear

ỹ�n� � y�n� � y* � D�f �n� � f̂ �n��

where D is a 2 � 2 matrix, and it measures how far the arm will
be displaced in different directions for one unit of force error.
In this sense, if the arm has some springlike properties during
movement, D is the inverse of the strength of the spring.
Another way to think of this is that D is the inverse of the gain
of an online feedback system that corrects errors during the
movement.

In the example of Fig. 1A2, error ỹ(n) was experienced along
state �(n) � 90°, but because of generalization, it affected all
states i � 1 � � � 6. Generalization is a scalar function b that
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depends on the distance between the state in which the error
was experienced �(n) and all other states �(i)

b���i� � ��n�� � �gT���i��g���n�� � /i

Accordingly, if there are q directions of movement, there are q
distances between these directions and the generalization func-
tion can be parameterized with q parameters. The field of
forces in trial n � 1 is described as

F̂ �n�1����i�� � F̂ �n����i�� � b���i� � ��n�� f̃ �n� i � 1· · ·6

For an arbitrary generalization function, the resulting field is
shown in Fig. 1A3. Generalization affected the field for every
direction. It is convenient to write the above equations in a
more compact form

F̂ �n�1� � F̂ �n� � BK�n�Tf̃ �n�

where B is a 12 � 12 matrix that contains the 6 parameters of
the generalization function (because there are 6 directions of
movement, the function b is evaluated at 6 discrete angular
distances)

M � �
b�0� b�5�/3� · · · b��/3�

b��/3� b�0� · · · b�2�/3�
b�2�/3� b��/3� · · · b���

···
···

···
b�5�/3� b�4�/3� · · · b�0�

�
B � � M 0

0 M �
In the above description for matrix B, 0 represents a 6 � 6
matrix where all elements are zero.

In an ideal adaptive system, transition from trial to trial is
dictated by the error in the previous trial and the generalization
function. However, other factors may also affect the system.
For example, memory may decay from one trial to the next. We
can represent this effect with another parameter a

F̂ �n�1� � aF̂ �n� � BK�n�T f̃ �n�

Figure 1B provides an example of this system. In this example,
we have only one direction of movement but the sequence
consists of 2 movements (odd and even, i.e., s � 1 or s � 2)
and only 2 states. To perform movement n, we have f̂ (n),
resulting in trajectory error ỹ(n). f̃ (n) updates contents of both
states by a generalization function b. Because we have 2 states,
we assume that b can be represented with 2 parameters:
distance between movements of same ordinal number (i.e., 0)
and distance between movements of different ordinal number
(i.e., 1).

To compute a map that depends on both the direction of
movement and the order of that movement in a sequence, the
bases must be sensitive to both variables. Therefore, state of a
trial is �(n) � [s(n), �(n)]. Distances in “sequence” space are not

FIG. 1. System identification of internal models. A: in this example, the
internal model consists of 6 states, each a direction of movement. (1) If the
internal model could be evaluated at all its states, it would produce a field of
forces F̂ (n), i.e., a snapshot of the contents of the internal model on trial n. (2)
However, on trial n, the content of only one state can be (indirectly) measured
by making a movement toward a target. This produces a trajectory y(n) that, in
comparison to a reference trajectory y*, produces an error ỹ(n). That error is
related to a force error f̃ (n) by an online error correcting gain D. (3) Error f̃ (n)

is broadcast to all directions by a scalar generalization function b, which
depends on the distance of the state in which the error was experienced and the
state that is updated. After all states are updated, the result is F̂ (n�1) (drawn in
black). For comparison, F̂ (n) is drawn in gray. B: in this example, movements
are performed in only one direction, but there are 2 movements in a sequence
and therefore movement order is a contextual cue. There are 2 hidden states,
f̂o

(n) and f̂e
(n)-, expressing the force predicted for an odd-numbered and an

even-numbered movement. f̂ interacts with the actual force in that movement
f (n)-, producing an error f̃ (n). Force error interacts with D and produces a
movement error ỹ(n). f̃ (n) updates both hidden states with a generalization
function b, which is a function of the distance between the state in which the
error was experienced and the state that is updated (in this case, the distance
is either 0 or 1). C: when the internal model is represented as a population code
by a set of basis elements, the generalization function b depends on the shape
of the bases. Here, the task depends on both movement direction and order
within a sequence and therefore the bases encode both variables. Figure shows
the generalization functions when the bases encode these 2 variables additively
vs. multiplicatively. Multiplicative nature of generalization is also a feature of
a mixture of experts.
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equal to distances in “direction” space. As a result the gener-
alization function will be parameterized as

b��s�i� � s�n��, ��j� � ��n�� � �gT�s�i�, ��j��g�s�n�, ��n�� (4)

For example, when there are 2 movements in a sequence and 6
directions of movement, the generalization function b will be
represented with 2 � 6 parameters. Matrix B becomes a 24 �
24 matrix where each entry is one of these 12 parameters.
Alternatively, one can dispense with the assumption of sym-
metry; that is, one can assume that distance from state 1 to state
2 is not the same as the distance between state 2 to state 1. In
that case, for q states the generalization function will be
parameterized with q2 number of parameters. Here we assumed
that distances could be symmetrically measured between
states.

In summary, an internal model that learns to compute a
function (s, �) 3 f̂ may be thought of as a dynamical system
with many hidden states. At any given time, the experimenter
can indirectly examine the contents of only one of those states
by having the subject make a movement. The result is a
movement that may have some error. The error is broadcast to
all states. The effect of the broadcast is observed as a gener-
alization function that depends on the tuning of the bases with
respect to those states. We represent this process with the
following dynamical system

ŷ�n� � D�f �n� � K�n�F̂ �n�� � L�n�Y*

F̂�n�1� � aF̂�n� � BK�n�T �f �n� � K�n�F̂�n�� (5)

where ŷ(n) is the model’s estimate of hand position in trial n. In
that trial, the robot produced a force f(n), and we measure the
resulting hand position y(n). For that trial we also know the
“state” of the task [i.e., L(n)] and K(n). The rest of the variables
are unknown and will need to be estimated by fitting the ŷ(n) to
the measured data y(n).

H Y P O T H E S I S

There are a number of ways to learn a task that depends on
both the ordinal number of a movement (s) within a sequence
and movement velocity �̇. We considered 3 ways of encoding
this information: a model with separate basis functions for
direction and serial order that interacted additively, a model
that combined coding of direction and serial order multiplica-
tively, and a mixture of 2 models resembling a mixture of
experts. Here we show the patterns of generalization that each
type of encoding predicts.

First consider an additive model that uses separate bases for
encoding ordinal and velocity information. A weighted sum of
the bases approximates the function of interest

f̂ �n� � �
i

w1,i
�n�g1,i�s

�n�� � w2,i
�n�g2,i��̇

�n��

To compute the generalization properties of this system, we
find the derivative of f̂ (n) with respect to the weights and write
an expression like Eq. 3 (i.e., an estimate of forces in the next
trial as a function of the errors in the previous trial). If
movement n was in state [s(n), �̇(n)], then generalization from
that state to the next movement in the same direction will be
b(1, 0) � �¥i g1,i(s

(n)) g1,i(s
(n�1)) � g2,i

2 (�̇(n)). We note that the
term b(0, 0) 	 b(1, 0) is independent of velocity. Therefore, in

this model the differences in the serial order of movements in
the sequence will have an additive effect on the generalization
function. A second point to note is that with an additive model,
it will not be possible to compute a function where movement
velocity and serial order are combined nonlinearly in the
production of force. We will be presenting our subjects with
such a nonlinear function.

To combine both cues in each basis functions, we can have
one variable act as a gain to modulate sensitivity of the other
variable

f̂�n� � �
i

wi
�n�g1,i �s�n��g2,i ��̇�n��

Generalization from the movement state in trial n to the next
movement in the sequence in the same direction will be:
b�1, 0� � ��i g1,i �s�n�� g1,i �s�n�1�� g2,i

2 ��̇�n��. Generalization
to the same movement number in the sequence and the same
movement direction will be: b�0, 0� � ��i g1,i

2 �s�n�� g2,i
2 ��̇�n��. Un-

like the additive model, in this model the term b(0, 0) 	 b(1,
0) is not independent of velocity. Rather, the change in the
contextual cue multiplicatively modulates the generalization
function with respect to direction, and so we can call this the
multiplicative model.

In a mixture of experts (Ghahramani and Wolpert 1997), for
each possible ordinal position in the sequence there is a
separate basis (or expert) that encodes velocity during those
movements. A separate model selector chooses which of the
experts to use based on the serial order of the current move-
ment. For example, if there are 2 movements in a sequence, we
have

f̂�n� � r�s�n�� �i
w1,i

�n�gi��̇
�n�� � 
1 � r�s�n�� �i

w2,i
�n�gi/��̇

�n��

It turns out that the generalization pattern of the mixture of
experts model is identical to the multiplicative model if the
encoding of movement order is similar. Therefore, both the
multiplicative model and the mixture of experts predict that the
generalization function should exhibit a multiplicative interac-
tion between movement order and movement direction.

For example, imagine that each basis has a preferred move-
ment number si and a preferred velocity �̂i. The coding of
movement number may be with a Gaussian

gi,1�s� � exp�	�s � si�2

2	s
2 	 (6)

To represent encoding of velocity, one can also assume a Gaussian
with a center randomly positioned in limb velocity space. However,
our earlier work suggests that a better guess for velocity
encoding may be a bimodal function (Donchin et al. 2003)

gi,2��̇� � c � exp�	��̇ � �̇i�2

2	q
2 	�

1

k
exp�	��̇ � �̇i�2

2	q
2 	 (7)

To compute a generalization function, we assumed that there
were 2 movements in a sequence. We distributed the preferred
velocity �i uniformly in the 2D space (with maximum values at
�0.7 m/s). We assumed that movement n was in direction
�(n) � 90° with ordinal value s(n) � 1. We evaluated the bases
at peak hand velocity typical for a reaching movement (0.3 m/s),
and then computed the generalization function b[�s(i) 	 s(n)�, �(j)

	 �(n)] for all possible movement directions �(j) � 30, 90, . . . ,
330°, and ordinal values s(i) � 1 and 2.
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Figure 1C shows the generalization functions for the addi-
tive and multiplicative models. The free parameters in the
simulations were c, k, 	q, and 	s. The values for this simulation
were c � 0.06, k � 3.5, 	q � 0.15, and 	s � 0.8. The solid line
is b(0, ��) (i.e., generalization to the same ordinal number but
potentially different direction). The dashed line is b(1, ��). In
both models, generalization as a function of direction is bi-
modal, which is a property of the bases (Eq. 7). However, note
that in the additive model, when ordinal distance is 1, the
generalization function is shifted down by a constant value,
whereas in the multiplicative model, the generalization func-
tion is scaled. Therefore, in the multiplicative encoding of
sequence and direction, a gain modulates the generalization
function. This property is not observed in the additive model.

M E T H O D S

Healthy volunteers (n � 30) performed a series of reaching move-
ments to targets at 10 cm while holding the handle of a robotic arm
(Fig. 2A). Targets were presented on an LCD monitor positioned
approximately 50 cm in front of the subject at eye level. A trial was
defined as a reach toward a target. On trial n, a force field was
produced that depended linearly on hand velocity but nonlinearly on
ordinal position of the movement in a 2-movement sequence (i.e.,
whether the movement was odd or even)

f � �	1�n� 0 	13
13 0 �ẋ

In this expression force has units of Newton and velocity has units of
m/s. The direction-dependent forces flipped from a clockwise curl

pattern to a counterclockwise pattern in alternating trials. Movements
were made in 6 directions and arranged in a pattern shown in Fig. 2B.
Targets were arranged as a random walk about the nodes of this
pattern. Therefore, for a given start position, there were at least 2
potential directions of movement.

Task description

The task began with presentation of a green target. This instructed
the subject to reach. After completion of the reach, the next target was
immediately presented in red. This instructed the subject to wait until
the target turned green, and then the movement was performed. The
trial was discarded if movement began before the target turned green.
Upon completion of each reach, feedback was given to indicate
movement success. The target would “explode” if the period of the
movement was 0.5 � 0.05 s. If the movement was either too long or
too short, the target turned blue or red, respectively.

In our main groups of subjects, a pattern was imposed on the
intertrial interval so that movements were temporally but not spatially
organized into pairs: 1–2, 3–4, 5–6, 7–8, and so on. That is, after
completion of an odd-numbered movement, there was a short time
delay �1 before the next target turned green. However, after comple-
tion of an even-numbered movement, there was a longer time delay
�2. The long delay �2 served as a cue that signaled start of the
2-movement sequence. In these groups, the subjects were coached to
associate the movement sequence as pairs of movements. The coach-
ing took the form of observing the experimenter perform movements
in a null field while she sounded out “movement 1,” “movement 2,”
“movement 1,” and so forth. Therefore, the subject had ordinal
information about the movements. However, the direction of each
movement was randomly chosen and could not be predicted.

Training took place in 2 consecutive days and was divided into
target sets. Each set contained 240 trials, divided into 2 subsets of 120
trials. Subjects rested for a minute between the subsets. On Day 1,
training began in a null field (robot in a passive mode) with 240 trials,
and was then followed by 960 trials in the field. The field training
continued on Day 2, where subjects trained in another 960 trials. For
any given target, there was a 1/6 probability of a catch trial. Catch
trials are movements for which the field is temporarily turned off.

Previous work on a similar task (Karniel and Mussa-Ivaldi 2002)
had found that when �1 � �2 (i.e., no temporal cues were present to
provide information about the sequential order of the force fields),
subjects could not learn this task (as measured over a few hundred
training trials). We hypothesized that if the temporal cues were to be
a useful aide in adaptation, their effectiveness might be a function of
their disparity: that is, learning may improve as a function of �2 	 �1.
To test this, we considered 3 conditions (Fig. 2C). In our control task,
termed no-cue group (NC) (n � 10 subjects), the delays were equal
(i.e., �1 � �2). This group was neither coached nor had temporal cues
to identify ordinal structure of the task. Our main group was divided
into 2 subgroups. In the short-delay group (SD) (n � 10), we had �1

� �2. In the long-delay group (LD) (n � 10), we had �1 �� �2. The
values for the intertrial intervals were as follows: �1 for all 3 groups
was 0.5 s; �2 values for the no-cue, short-delay, and long-delay
groups were 0.5, 1.0, and 3.0 s, respectively.

Pilot studies indicated that this was a difficult task that required
many hundreds of trials. To encourage the participants, in addition to
the target explosions we also provided a score that was continuously
displayed at the bottom right of the video monitor. The score R was
computed as

R�n� �
�5 
 R�n	1� � ��t�n� � 0.5��

6

where �t(n) is movement time recorded for trial n. The score was for
the participant’s encouragement and entertainment. Our performance
measures did not consider it.

FIG. 2. Experiment setup. A: participants held the handle of a robot and
reached to a series of targets displayed on a vertical monitor. B: targets,
presented one at a time, were arranged in a diamond and were 10 cm apart. A
velocity-dependent field imposed forces on the hand that were perpendicular to
the direction of motion. Direction of forces depended on both the numerical
order of the movement and the direction of movement. C: participants were
divided into 3 groups (no-cue NC, short-delay SD, and long-delay LD). In the
LD and SD groups, the relatively longer delay between specific movements
served as the cue that the sequence was restarting.
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Performance measures

We focused on the errors that were caused by the force field and the
errors that were produced in catch trials. For each movement we
computed hand position at maximum hand velocity and found its
distance from a straight line to the target. The result was labeled as
PD, hand displacement perpendicular to the direction of target (PD).
With learning, PD in field trials should decrease, whereas PD in catch
trials should increase. Furthermore, the direction of PD in catch trials
should be a function of the field appropriate for that trial. For example,
for a given target direction, catch trial PDs measured on odd-num-
bered trials should be in the opposite direction of PDs for even-
numbered catch trials. We labeled average PD in odd field trials as
PDfo, in even field trials as PDco, in odd catch trials as PDco, and in
even catch trials as PDco. Because errors in both field and catch trials
are important indicators of adaptation, we used a learning index (LI)
that considered relative changes in these values (Criscimagna-Hem-
minger et al. 2003). We used the following equations to calculate an
LI for odd- and even-numbered movements, as well as an overall
learning index

LIo �
PDco

�PDco� � �PDfo�

LIe �
PDce

�PDce� � �PDfe�

LI �
PDco � PDce

�PDco � PDce� � �PDfo � PDfe�
(8)

As the training begins, PDc is close to zero, so LIo and LIe are near
zero. With training, LIo and LIe should converge toward 1 and 	1.
The combined value, LI, should increase toward 1.

System identification procedure

We fit the system in Eq. 5 to runs of 240 trials of y(n). In our initial
analysis, y(n) was generated by averaging the data across subjects for
each movement. However, we also fit the model to y(n) generated by
each subject. We report the resulting generalization function for both
approaches.

For our 2 main groups, where movements consisted of 6 directions
and 2 ordinal numbers within the sequence, Eq. 4 produced a gener-
alization function b with 12 parameters. For the control group (NC),
where no information about sequencing was available, a 6-parameter
generalization function was sufficient but we continued to use the
12-parameter model as a sanity check, expecting that sequence infor-
mation should be irrelevant for the b in the NC group.

The only observable quantities are y(n) (i.e., hand position at
maximum velocity recorded for trial n) and f(n), the force produced by
the robot at maximum velocity. For each run of 240 trials, the
unknown parameters are: a, b, D, F̂(1), and Y*, where a is a scalar
quantity and represents trial-to-trial memory loss in the system; b is
the generalization function and contains 12 unknown parameters; D is
the gain of online feedback during each trial and contains 4 unknown
parameters; and F̂(1) is the internal model’s field of forces at the very
first trial (i.e., initial condition of the dynamical system). Because
there are 12 states (6 directions and 2 ordinal numbers), F̂(1) contains
12 vectors, each a 2 � 1, for a total of 24 parameters. Y* is the
reference trajectory for each movement. Because there are 10 different
kinds of movements (Fig. 2B), Y* has 10 vectors each representing the
reference position (a 2 � 1 vector) for each movement. Therefore, the
total number of unknown parameters is 61. However, it is not
necessary to estimate F̂(1). Rather, F̂(1) for a given set is simply F̂(240)

for the previous set. In case of the first field set, F̂(240) comes from the
previous null set and for the null set F̂(1) is simply zero. This reduced
the number of unknown parameters in the system to 37.

To estimate these parameters, we minimized the sum of squared
errors between the model and the data

� �
1

2 �
i

�y�n� � ŷ�n��T�y�n� � ŷ�n��

To minimize this cost, we used a version of Newton’s method for
gradient descent. For each model parameter, we evaluated the deriv-
atives of the cost function with respect to that parameter. For example,
we updated the current estimate of a by amount �a

�a � � �d2�

da2		1d�

da

To help compute the derivatives, we “unfolded” the recursive Eq. 5
and wrote it as follows

ŷ�n� � Df �n� � L�n�Y* � DK�n���n	1�fh
�n	1� � DK�n� 


i�n	1

1

A�i�F̂ �1�

A�n� � aI � BK�n�TK�n�

��n	1� � �
A�n	1�A�n	2�· · ·A�2�BK�1�T

A�n	1�A�n	2�· · ·A�3�BK�2�T

···
A�n	1�BK�n	2�T

BK�n	1�T
�

T

fh
�n	1� � � f �1� f �2� · · · f �n	1� �T

where I is an identity matrix and T is the transpose operator.

Measuring the goodness of fit

Once system parameters were estimated, Eq. 5 was evaluated by
providing it a sequence of inputs f (n). The output of the system was a
sequence ŷ(n). Therefore, the model was evaluated in an autonomous
mode without access to the measured data y(n). To evaluate goodness
of fit we followed a procedure for testing significance of nonlinear
models (Glantz and Slinker 2001). We computed the sum of squares
explained by the model over the sequence of trials

ssmod � �
i�1

240

�ŷ �i� � L�i�Y� �T �ŷ�i� � L�i�Y� �

where Y� is a 20 � 1 vector that contains the mean of hand positions
(over that set of trials) for each of the 10 types of movement (Fig. 2B).
The total sum of square was

sstot � �
i�1

240

�y�i� � L�i�Y� �T�y�i� � L�i�Y� �

The difference is the residual variation of the measurement about the
model (i.e., ssres � sstot 	 ssmod). Standard error of the model is

sey�f � � ssres

n � p
� �msres

where n is the number of trials, p is the number of model parameters,
and msres is the mean of squared variations about the model. An
F-statistic was calculated by the ratio

F �
msmod

msres

where msmod � (sstot 	 ssres)/p. For this F-statistic, the degrees of
freedom in the numerator and denominator are p and n 	 p. We also
report coefficient of determination r2 � 1 	 ssres/sstot.
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The number of parameters in any model has a strong influence on
the goodness of fit. As the size increases, the model will fit the data
better. To balance this improved fit versus risk of overfitting, we used
the Akaike information criterion (AIC) to estimate how the size of the
model affected the fit (Akaike 1974). If there are m unknown param-
eters and N trials, then

AIC � ln ��n
�y�n� � ŷ�n��2

N
� 2

m

N

As the number of parameters in the model increases, the second term
increases; as the fit improves, the first term decreases. If AIC in-
creased after a model was enlarged, then the model may be overfitting
the data.

R E S U L T S

We found that the no-cue (NC) group did not adapt to the
sequence of force fields, whereas the short (SD) and long delay
(LD) groups both adapted. The state-space analysis of the data
showed that the contextual cue (i.e., movement order) modu-
lated directional tuning of the generalization function. This
modulation was significantly larger in the LD group as com-
pared to the SD group.

Psychophysical results

Figure 3 shows representative trajectories in catch and field
trials early and late in training from a single subject in each
group. As the training in the field began, the robot produced a
counterclockwise field on odd trials, and a clockwise field on
even trials. Early in training (trials 1–120), there were large
errors in field trials but little or no errors in catch trials. Near
the end of training (trials 1,800–1,920), the subject in the NC
group showed only a slight improvement on field trials and no
consistent errors in catch trials. The lack of errors in catch trials
is our most reliable indicator that there were little or no
changes in the ability of this subject to predict the forces on a
given trial.

Figure 3 also shows data for typical subjects in the SD and
LD groups. Training in these subjects resulted in improved
performance, and the improvement was somewhat larger in the
LD group. Late in training the catch trials showed errors that
were different for odd and even trials. That is, if an upward
movement was odd numbered in the sequence, the error in a
catch trial was opposite to the error observed for the same
odd-numbered movement in a field trial. The direction of error
in the catch trial reversed when the upward movement hap-
pened to be even numbered. Therefore, in the cued group,
subjects learned to partially predict forces that depended on
both direction of movement and the order of that movement in
the sequence.

Figure 4A displays average performance measures for each
group. All groups reached to the same sequence of targets and
except for the null set in day 1, target sequence was identical
in days 1 and 2. Perpendicular displacement (PD) at max
velocity was calculated for each trial for each subject and then
averaged within the target set and then across subjects. In the
NC group, training produced significant changes in the field
trials. The average change from set 1 to set 8 for odd trials was
�1.3 mm (P � 0.01) and for even trials was �2.9 mm (P �
0.001). Therefore, performance improved in the even field
trials but worsened in the odd field trials. By the end of training

(set 8), errors in catch trials were not significantly different
from zero (odd trials, P � 0.47; even trial, P � 0.06) but the
specific sequence of targets in each set appeared to be respon-
sible for some of the variability in the catch trials. To account
for this, we compared within-subject change in catch trials
from day 1 to day 2 for each target set. We found that although
there was a small change in catch trial errors (�0.6 mm for odd
trials, P � 0.07; �0.96 mm for even trials, P � 0.06), the
direction of change was not opposite of the field trials. Con-
sequently, in the NC group the learning indices for the odd and
even movements (LIo and LIe), as well as the total learning
index LI, remained near zero.

In the SD group there was a general reduction in errors in
field trials and a clear tendency for errors in catch trials to be
opposite the field trials. In the field trials, average changes from
set 1 to set 8 for odd trials was 	2.1 mm (P � 0.005) and for
even trials was �2.4 mm (P � 0.001). Therefore with training,
performance improved in both the even and odd field trials. By
set 8, errors in odd catch trials were on average 	4.9 mm
(significantly different from zero, P � 0.001), and for even
catch trials �2.1 mm (significantly different from zero, P �
0.01). With respect to the catch trial errors in set 1 by set 8 odd
catch trials had changed by 	3.1 mm (P � 0.001) and even
catch trials had changed by �3.8 mm (P � 0.001). Conse-

FIG. 3. Performance of 3 typical subjects, one from each group. Only the
movements made at 90° and 270° are shown. Arrows indicate movement
direction. Odd-numbered movements are displayed in black; even-numbered
movements are displayed in gray. Plots show the average hand trajectories in
field and catch trials in a target set. A: trajectories in the null set before start of
field training. B: catch trials and field trials in the first set of training. C: catch
trials and field trials in the last set of training. Although in the no-cue group
catch trials did not differentiate between odd and even movements, the
individuals in the SD and LD groups had catch trials that were opposite to the
field trials and specific to the ordinal number of the movement.
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quently, LIo became positive, LIe became negative, and the
total learning index LI became consistently positive.

In the LD group, field trials changed from set 1 to set 8 for
odd trials by 	3.95 mm (P � 0.001) and for even trials by
�3.4 mm (P � 0.001). This improvement in performance
(errors in set 8 vs. set 1) was somewhat larger than that seen in
the SD group, although the change was only marginally sig-
nificant (odd trials, P � 0.006; even trials, P � 0.05). By set
8, errors in odd catch trials were on average 	6.5 mm (sig-
nificantly different from zero, P � 0.001), and for even catch
trials �1.9 mm (significantly different from zero, P � 0.001).
With respect to the catch trial in set 1, by set 8 odd catch trials

had changed by 	4.7 mm (P � 0.001) and even catch trials
had changed by �3.3 mm (P � 0.001).

To compare performance between groups, we estimated an
average learning index for each subject for each day of training
(Fig. 4B), and then performed a 2-way ANOVA (main effects
of time and group) and found a significant difference between
the groups (P � 0.01). Both SD and LD groups had signifi-
cantly larger learning indices (LI) than the NC group on days
1 and 2 (all cases P � 0.001). However, although there was a
trend for the LD group to have a larger learning index than the
SD group, this trend was not significant (day 1, P � 0.20; day
2, P � 0.09).

Goodness of model fits

We averaged hand positions (at maximum velocity) across
subjects within a group and arrived at a 240-element series of
hand positions y(n) for each set. Figure 5A shows the 2 com-
ponents of the vector y(n) for the LD group in the last target set
(blank lines). We fit Eq. 5 to these trials. Figure 5A displays the
model’s fit ŷ(n) (gray lines). Among all the sets, this was one of
the worst fits (Fig. 5B): the model accounted for 72.9% of the
variance in the data [F(37,203) � 14.8, P � 0.0001]. On
average the model accounted for 82.4% of variance in the NC
group, 75.5% of the variance in the SD group, and 76% of the
variance in the LD group.

We cross-validated each fit by testing it on the subsequent
target set. We fixed all parameters of the model and set F̂(1) for
the test set to be equal to the estimate for the last movement in
the previous set. We found that, on average, the r2 values
declined by 6.8%. The decline was largest in the LD group
(8.7%) and smallest in the NC group (4.3%). In all cases the fit
remained highly significant (P � 0.001).

We analyzed the sequence of ŷ(n) produced by the model
using the same procedure that we used to compute PD and
learning indices in Fig. 4. The plots in Fig. 6 show output of the
model in terms of PD in field and catch trials and learning
indices. The solid lines are the measured data from subjects
(same data as in Fig. 4) and the dotted lines are computed from
the model. In field trials, the model tracked the measured data
so closely that the dotted and solid lines are exactly on top of
each other. In catch trials, the model tracked the data well but
appeared to slightly underestimate the size of the catch trials in
the SD and LD groups. This produced slightly smaller learning
indices for the model versus the measured data.

The generalization function

Figure 7A plots the generalization function estimated by the
model for each set and each group. In the NC group, the model
allowed for the generalization function b to have 12 degrees of
freedom (DoF). The result of the fit was a b value that was
consistently positive and often tuned to angular distance, but
was insensitive to ordinal position of movements, i.e., b(0,
��) � b(1, ��). Average b across the sets is plotted in Fig. 7B.
The peak of b is near 0.14, which implies that the internal
model’s estimate of force f̂ for any given direction of move-
ment changed by 14% of error experienced in that direction.
The function is bimodal, which means that error experienced in
a given direction affected the opposite direction of movement
nearly as much as the same direction of movement. Therefore,

FIG. 4. Average performance in each group. A: PD is the perpendicular
distance of the hand position at maximum velocity with respect to a straight
line to the target. Sequence of targets was random, but identical between
groups and identical in days 1 and 2. In set 0, all trials were in the null field.
To compute the performance in field and catch trials, we computed average PD
for each subject for each target set (240 trials) and then averaged across
subjects. PD plot for field and catch trials represents mean � SE. LI is a
learning index (Eq. 8), which was calculated separately for odd and even
movements and then recalculated for all movements for each subject in each
set. LI data points are mean � SD. B: average LI for each day of training for
the subjects in each group (mean � SD).
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in the NC group, error in a given movement produced a
consistent adaptation that was reflected as a change in the
subsequent movement. However, because the generalization
function could not differentiate between the movements in the
sequence, the result was trial-by-trial adaptation but no net
learning.

It is easy to imagine that the brain might stop responding to
the errors in situations where performance does not improve
with training. If so, then in the NC group the generalization
function should go to zero. The data in Fig. 7A suggest that this
was not the case. Even in the last set errors in a given trial
influenced performance on the subsequent trial.

In the NC group, the insensitivity of the generalization
function to movement order suggested that a 12 DoF b was
unnecessary. Figure 7B shows the average generalization func-

tion when b had only 6 DoF. To quantify the effect of the
number of parameters in b with respect to goodness of fit, we
used the Akaike information criterion, which indicated that a
12-parameter model was an overfitting of the NC group but not
the SD and LD groups. In the NC group, AIC increased from
7.49 to 7.57 when the number of hidden states increased from
6 to 12. This increase indicated that the cost of increasing the
number of parameters was not balanced by an improvement in
fitting the data. However, in the SD and LD groups, AIC
decreased from 7.48 to 7.40 and 7.59 to 7.13, respectively,
when the number of hidden states was increased from 6 to 12.
This agrees with the intuition that sensitivity to movement
order is necessary to account for the performance in the SD and
LD groups.

However, the plots in Fig. 7A for the SD and LD groups
suggest that that, whereas b is directionally tuned, b(0, ��) is
very similar to b(1, ��). The level of similarity between these
2 functions is a measure of the interference between 2 move-
ments of the sequence. Across-set average of the generalization
functions is plotted in Fig. 7B. Because b(0, ��) and b(1, ��)
are very similar, the brain is generalizing the errors across the

FIG. 6. Model’s output ŷ(n) is displayed in a format identical to that of Fig.
4. Model’s output is plotted with the dashed lines, whereas the measured data
(same as in Fig. 4) is plotted with solid lines. For the PD measure in field trials,
the dotted and dashed lines are exactly on top of each other.

FIG. 5. An example of the fit of the model to across-subject averaged
sequence of hand positions during one set (240 trials). A: plot shows the
sequence of hand positions y(n) in the LD group (averaged across subjects)
during the last set of training (set 8). Because y(n) is a 2 � 1 vector, its
x- and y-components are plotted separately. Equation 5 was fit to the data set
containing a sequence of 240 input–output vectors {f (n), y(n)}. Once the model
parameters were estimated, the resulting dynamical system was provided a
sequence of inputs f (n), resulting in a sequence of output ŷ(n). B: goodness of
fit of the model. Sets 1–4 were performed on day 1 and the remaining sets were
performed on day 2. For each set, the fit as quantified with an F-statistic (see
METHODS) is significant at P � 0.0001.
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movements almost irrespective of their numerical order in the
sequence. This explains why the task is so hard to learn.

In the SD and LD groups, the only significant within-group
difference between b(0, ��) and b(1, ��) is at �� � 0° (P �
0.01 for both groups). At this angular distance, movement of a
given ordinal number had a significantly larger effect on the
contents of the internal model for that same movement number
than for the subsequent movement. This implies that contextual
information about the movement affected the directional tuning
of each basis only along its preferred direction.

In our hypothesis, we formulated 3 theoretical scenarios in
which a system might learn to compute a function that depends

on direction of movement and context. In the multiplicative
model and in the mixture of experts, the ordinal number
multiplicatively influences the directional tuning of the bases.
Both scenarios predict that the difference between b(0, ��) and
b(1, ��) should be largest at �� � 0°. This prediction is in
agreement with our data. In an additive model, this difference
should be equal for all angular differences. Therefore, the data
in Fig. 7B clearly reject the additive model. However, the
results are not entirely consistent with a multiplicative model.
Because b is bimodal, the multiplicative hypothesis predicts a
nonzero difference between the generalization functions both
at �� � 0° and at �� � 180° (the 2 main peaks of the

FIG 7.Generalization function b(�s, ��): an estimate of the proportion of error experienced in a given movement that affects any other movement, as a function
of the distance between the states of the 2 movements. Distance in terms of ordinal number is noted by �s. Distance in terms of movement direction is noted
by ��. There are 6 distances in direction space and 2 distances in ordinal space, producing 12 degrees of freedom (DoF) in the generalization function. Results
in A–C are from model fits to the across-subject averaged sequence y(n) (as in Fig. 6). Results in D–E are from model fits to y(n) of individual subjects. A: b(�s,
��) (mean � SD, bootstrapped) is plotted for each target set and each group. B: average b over the course of the experiment for each group (mean � SD). NC
group was analyzed with both a 12 DoF model and a 6 DoF model. In the 12 DoF model, the lines for the b(0, ��) and b(1, ��) are on top of each other.
**indicates significant (P � 0.01) modulation of the generalization function at 0°. C: within-group effect of contextual cue on the generalization function at 0°,
measured within each set. Error bars are SD. *P � 0.05, **P � 0.01. D: within-subject estimate of b(�s, ��). Generalization function was estimated for each
subject in each set and then averaged across sets and then averaged across subjects (plotted as mean � SE). E: within-subject effect of the contextual cue on
the generalization function at 0° (mean � SD). *P � 0.05, **P � 0.01.
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generalization function). We observed a significant nonzero
difference only at �� � 0°.

Figure 7C plots the within-group quantity b(0, ��) 	 b(1,
��) at �� � 0°. The measure is marginally larger in LD versus
SD (P � 0.045), but much larger in SD versus NC (P � 0.001).
The small difference between the LD and SD groups is con-
sistent with the small performance differences in the 2 groups
(Fig. 4). This suggests that the contextual cue in both LD and
SD groups increased output of the bases at the preferred
direction of movement. However, in the LD group the increase
was marginally larger.

When we compare the generalization functions between
groups, we do not find that b(1, ��) in the LD or SD groups is
smaller than b(0, ��) in the NC group. Therefore, availability
of the contextual cue did not result in a reduction of general-
ization between incompatible movements. This would have
been a reasonable way to learn the task. Rather, the contextual
cue preferably increased generalization between compatible
movements. Therefore, the presence of the contextual cue (in
comparison to its absence or irrelevance) appeared to produce
increased activity among some of the bases without greatly
affecting the remaining bases.

These results were arrived at by fitting the model to the
across-subject averaged time series of hand positions. We also
fit the model to the time series produced by each subject in
each set. The fits produced 8 estimates of b for each subject
(one for each set). We averaged these 8 estimates to produce a
mean b for each subject and plotted the across-subject distri-
bution (mean � SE) in Fig. 7D. The NC group again showed
no difference between b(0, ��) and b(1, ��), whereas the SD
and LD groups showed modulation at �� � 0°. The within-
subject modulation b(0, ��) 	 b(1, ��) at �� � 0° is plotted
in Fig. 7E. This gain was significantly larger in the LD group
versus the SD group (P � 0.01), and significantly larger in the
SD group versus the NC group (P � 0.001).

In the NC group, model fits to individual subjects produced
an average b that was somewhat flatter (less directionally
tuned) than that observed in the fits to the mean of across-
subject time series (Fig. 7D vs. B). The reason for this is
unclear to us but we note that, in general, our ability to fit data
from single subjects was poor. Average r2 values for single-
subject fits were 0.44. Although this is still a highly significant
fit [F(37,203) � 4.54, P � 0.001], it explains only half of the
variance that the model could account for when the times series
was an across-subject average.

Gain of online feedback and other model parameters

Other than generalization, there were 4 parameters in the
model: a, D, Y*, and F̂(1). Here we report on the values of these
parameters when the model was fit to individual subjects. The
parameter a represented trial-to-trial changes in F̂ that could
not be accounted for by error in the previous trial. For example,
if there was memory decay in the system from trial to trial, then
a should be �1. We found that in all groups and all sets, a was
extremely close to 1: in the NC group, a � 1.00 � 0.002
(mean � SD); in the SD group, a � 0.99 � 0.011; in the LD
group a � 0.99 � 0.009. Therefore, we could not observe any
decay in the state transitions.

The D matrix represented the inverse of the gain of an online
feedback control system that corrected errors during a move-

ment. In Fig. 8A, the between-subject averaged D matrix in
each set is plotted by multiplying it by a unit vector as it rotated
about a circle. The shape of the matrix is very similar to the
compliance of the arm (Mussa-Ivaldi et al. 1985). We exam-
ined the main effect of group and set number on the orientation
and size of D. Matrix size (determinant) was not different
among the groups [F(2,23) � 0.15, P � 0.8]. With training, the
determinant tended to become smaller [F(7,23) � 0.44, P �
0.03], which implies that the gain of the online feedback
system appeared to increase. The D matrix was oriented at a
mean angle of 18.3, 29.2, and 14.5° for the NC, SD, and LD
groups, respectively [F(2,23) � 15.4, P � 0.01]. Training did
not produce a significant change in this orientation [F(7,23) �
0.09, P � 0.8]. Post hoc analysis of orientations did not find a
significant difference between the NC and the LD groups
[F(1,15) � 2.16, P � 0.2], although the SD group had a D with
an orientation significantly different from that of the other
groups.

The vectors in Y* represent the reference points for each
movement type, i.e., the location at maximum velocity planned
for that movement. This interpretation makes sense because
when y(n) 	 L(n) Y* is zero, there is zero error in that trial and
no changes take place in the internal model. The gray dots in
Fig. 8B are the between-subject averaged Y* for each of the 10
movements in the task in each target set. The black dot in Fig.
8B is the average hand position at maximum velocity in the
null set. In general, movements in the null field were not
straight, but tended to reside inside the diamond shape. In the
field sets, Y* remained close to the reference location in the
null set. Therefore, the planned trajectories were generally not
along a straight line to the target and the nonstraight pattern
was consistent between groups.

The vector F̂(1) represents the initial condition of the internal
model (i.e., expected force) at the start of the target set (trial 1).
Because the internal model has 12 hidden states (6 directions of
movement and 2 ordinal numbers), there is a force predicted
for each one of these states. We did not fit F̂(1) explicitly but set
it equal to the estimate provided from the final movement in the
preceding target set. Figure 8C plots F̂(1) for set 1 in each
movement direction for each group. For each direction there
are 2 vectors. The gray and black vectors represent the com-
ponents of F̂(1) expected for an odd- and an even-numbered
trial, respectively. At the onset of training, the gray and black
vectors are generally small and point to the same direction in
all groups. By the start of the final set of training (Fig. 8D), F̂(1)

values in the SD and LD groups point nearly perpendicular to
each direction of movement. In these 2 groups F̂(1) is clockwise
for even trials and counterclockwise for odd trials, i.e., oppo-
site the force field produced by the robot in these trials (Fig. 2B).
By contrast, F̂(1) shows no obvious pattern for the NC group.

Estimating the effects of model assumptions
and simplifications

For the purpose of computing a generalization function, we
collapsed the 10 movements that were actually produced into 6
movement directions as if they were performed from a single
start location. This assumption produces 2 sources of error in
fitting the model to the data. First, limb compliance is a
function of hand position (Mussa-Ivaldi et al. 1985). The
assumption of a constant compliance is a violation of this
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observation. Second, the generalization function may be
smaller when the 2 movements have different origins as com-
pared to when they have the same origin. Hwang et al. (2003)
demonstrated that generalization as a function of direction was
modulated with a gain that depended on hand position.

To quantify the effects of these sources of error on our
model, we performed a set of simulations. We began with a
model of the human arm biomechanics with position-depen-
dent stiffness and inertial parameters (Shadmehr and Mussa-
Ivaldi 1994), coupled to the dynamics of our robot arm. We
added to this model a mechanism of adaptation by basis
functions. The bases encoded both limb position and velocity

(in joint coordinates). The encoding of limb velocity was with
bimodal Gaussians (Donchin et al. 2003) that were modulated
linearly (as in a gain field) with changes in limb position
(Hwang et al 2003). We then performed 2 simulations. In one
simulation, the 10-cm movements were along the diamond
pattern, i.e., movements to the same direction could start from
different start positions (as in the current experiment). In
another simulation, all movements were from the same start
location at the center. In both simulations, there were 6 possi-
ble directions of movement. The idea was to determine to what
extent our assumptions regarding position-invariant generali-
zation and compliance degraded our ability to fit the data.

FIG. 8. Estimates of model parameters D, Y*, and F̂ (1) computed from fits to individual subjects and then averaged across groups. A: D matrix, representing
inverse of the gain of the online error feedback system (i.e., arm compliance). To plot the matrix, we multiplied it by a unit vector that moved about a circle.
Darkest line represents the first set of training and the lightest gray line represents the final set. Area of the ellipse tends to become smaller, indicating an increased
gain. B: Y*, representing the reference points or “planned trajectory” for each movement. Diamond represents the spatial location of the targets and the arrows
indicate the direction of travel for each movement (as in Fig. 2B). Black dot for each movement represents the mean hand location at max velocity in the null
trials. Gray dots represent Y* estimated during each of the 8 sets of field trials. C: F̂ (1), representing the initial condition of the internal model (i.e., expected
force) at the first trial of the first force field training set (set 1). D: F̂ (1) at the first trial of the last training set (set 8).
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In the simulation, 6 sets of 192 movements were performed in
a field that randomly changed from null, to a clockwise curl, to a
counterclockwise curl field, producing a performance comparable
to that of the no-cue group. In the first 3 sets, all movements began
from the center. In the remaining 3 sets, movements had origins
that fell on a diamond pattern, identical to our experiment. Values
of r2 for the fits declined from 0.843 to 0.825. That is, the model
could account for about 2% less of the variance in the data in the
diamond pattern versus in the common-origin pattern. Therefore,
the 2 assumptions clearly influenced the fit in a negative way.
However, the effect did not appear to be very large. Indeed, this
level of fit is quite consistent with the model’s performance on
actual data (Fig. 5B).

D I S C U S S I O N

In this experiment the serial order of a movement, as well as
its trajectory, determined the forces on the hand. This is an
example of a situation where contextual cues that are neither
proprioceptive nor visual inform the motor systems as to how
to program the motor commands. We found that, if given
information about serial order, subjects slowly adapted to the
force patterns. They learned to produce motor commands that
were specific to both the movements’ direction and order. We
used a system identification approach to track trial-by-trial
performance and to estimate a generalization function. The
generalization function showed the effect of error in one
movement on the subsequent movement as a function of their
distance in state space. State space was defined as movement
direction and serial order within the sequence. The generaliza-
tion pattern suggested that the bases that computed the internal
model had activity fields that were sensitive to both ordinal
number and direction, but that the contextual cue acted as a
weak modulating factor on directional sensitivity.

Effect of withholding the contextual cue

We observed little or no learning of the force fields in the
no-cue (NC) group where no temporal cues were available to
identify an odd or even movement. The results show that the
repeating patterns of error and force are not sufficient for the
brain to learn the sequence-dependent field. An explicit cue
may be necessary. This lack of adaptation without an explicit
cue confirms earlier observations (Karniel and Mussa-Ivaldi
2002, 2003). However, one of our key findings is that, although
the errors did not converge in this group of subjects, the
generalization function was consistently nonzero, implying
that subjects continued to respond to the errors in a given trial
by altering their motor commands in the subsequent trial. Thus
trial-to-trial adaptation continued to take place despite the fact
that errors did not converge.

This result, and similar results from Scheidt and colleagues
(2001), may have implications for brain imaging paradigms
where a random trial is offered as a condition for which no
learning is thought to occur. The state–space model suggests
that despite behavioral measures that show no consistent im-
provements in performance, the brain continues to adapt to
errors much the same way as in a nonrandom task.

Coding of a contextual cue

With the availability of serial order information, subjects
learned to produce motor commands that were sensitive to both

movement direction and serial order. A number of recent
studies have found that certain cues can be effective in training
subjects to produce different motor commands for the same
direction of movement (Krouchev and Kalaska 2003; Osu et
al., 2004; Wada et al. 2003). How might the contextual cue and
movement direction be encoded by the neural system that
learns to represent the internal model? If neural activity fields
acted as bases with which the map (s, �)3 f̂ was approximated
(where s is a contextual cue and � is target direction), then
encoding will be related to generalization; thus our objective
was to quantify how the information about serial order affected
patterns of generalization.

We found that the generalization function was largest at
directional distance of 0° but had a smaller second peak at
180°. This implies that the bases are directionally tuned but the
tuning is possibly bimodal. This kind of tuning is consistent
with activity of some Purkinje cells in the cerebellum (Coltz et
al. 1999). However, to learn the task, the bases must also be
sensitive to the ordinal number of the movement. We found
that movement order modulated generalization at 0° but not
significantly at other angular distances. To account for this
effect, we began with the assumption that the information
about movement order was coded as a Gaussian with a center
located at a preferred movement number within the sequence.
The choice of a Gaussian arose from the observations of
Georgopoulos and colleagues regarding the discharge of M1
cells in a task where the animal kept track of potential reach
targets as they appeared in a sequence (Carpenter et al. 1999).
They found that during the delay period, cells preferred a
specific target number within a sequence independent of target
location; that is, the neuronal responses were phasic and
specific to the preferred target number. The choice of a Gauss-
ian is also attributed to observations of Clower and Alexander
(1998), where neurons in SMA discharged maximally for a
particular target when it appeared at a particular ordinal num-
ber within a sequence.

How might this coding of movement number be combined with
directional tuning? Using a model, we contrasted generalization of
bases that incorporated the effect of movement order and direc-
tional tuning with either an additive or a multiplicative interaction.
The generalization patterns in our subjects were clearly inconsis-
tent with the additive model. The multiplicative model predicted
that the largest modulation should occur at 0°, which agreed with
our data. The multiplicative model also predicted that there should
be a smaller but significant modulation at the second peak of the
generalization function (i.e., at 180°). We did not observe this in
the data. The discrepancy between prediction and observation
may be explained by a number of factors; one is the possibility
that the bimodality of the generalization function is not an inher-
ent property of a single basis. Rather, the bimodal generalization
may reflect the contribution of 2 distinct bases, only one of which
is modulated by contextual cues. For example, in the computation
of an internal model, the state of the arm may be encoded in both
visual and proprioceptive coordinates with separate bases (Hwang
et al. Soc Neurosci Abstr 822.17, 2003). Multiplicative interaction
with one but not the other would produce a generalization pattern
similar to the data presented here.

A key characteristic of multiplicative interaction is a change
in the depth of tuning. For example, in the posterior parietal
cortex there is preliminary evidence that cells that encode a
reach plan (i.e., target location with respect to fixation) have a
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receptive field that is modulated multiplicatively with reward
expectancy (Corneil et al. 2003). It is possible that multiplica-
tive modulation of activity fields is a common mechanism by
which information from disparate systems is combined by
neurons that take part in computing a transformation (Pouget
and Sejnowski 1997). A recent model has found that simulated
neurons that multiplicatively code contextual and noncontex-
tual information can allow a single network to switch behavior
to respond to changing environmental demands (Salinas 2004).
This kind of coding of diverse sources of information is a
plausible method with which a single network of neurons can
effectively store multiple, context-specific internal models.

In contrast to using multiplicative coding within a single
network, an alternate approach is to assume existence of
multiple modules, called a MOSAIC, which is a collection of
competing internal models (Wolpert and Kawato 1998). In
MOSAIC, internal models are controllers that receive the goal
(or desired trajectory) of the movement. Each controller pre-
dicts a different motor command, and a switching mechanism
assigns likelihood of success to each potential command.
Contextual cues are priors that influence the probability of
selection of these weights. MOSAIC predicts that neurons that
form each internal model are themselves not modulated by the
contextual cue. We found that a simple formulation of this
mixture of experts produces the same patterns of generalization
found with multiplicative encoding of a single network; thus
generalization patterns appear to lack the power to differentiate
between these 2 different architectures of adaptation.

Salience of the contextual cue

Our conjecture that ordinal number multiplicatively modu-
lates directional tuning runs into trouble when we consider that
in the long-delay (LD) group, performance was slightly better
than that in the short-delay (SD) group. If one is aware of a
particular movement’s ordinal number within a sequence, why
should the temporal delay between the 2 sequences affect
learning? One explanation is that in the short-delay group,
subjects were simply more fatigued because of the closer
proximity of the trials. However, if fatigue has a major role in
this task, then in all groups the generalization function should
gradually decline during the day of training. The data do not
agree with the fatigue hypothesis.

We do not know whether the SD and LD groups could
equally identify the 2 movements in the sequence; we quizzed
them verbally only during the null field training trials. Our
verbal measure suggested equal cognitive awareness, although
this was not documented. However, the generalization function
in the LD group was significantly more modulated by the
contextual cue than in the SD group.

Implicit in the structure of a sequence is its beginning and its
end. In our task, the longer delay interval between the se-
quences was the cue that one sequence had ended and another
was about to begin. Fujii and Graybiel (2003) found that in the
prefrontal cortex of monkeys, neurons had a phasic peak of
activity that signaled the beginning and end of a sequence of
movements. For example, the burst peaked about 250 ms after
the last movement in the sequence (in this case, a saccade),
lasted about 500 ms, and was independent of sequence length,
pace, or reward condition, even when the sequence was only 2

movements long. Separate bursts signaled beginning and com-
pletion of a sequence.

Imagine that such signals are responsible for starting and
resetting a counter that indicates ordinal number of a move-
ment within a sequence. It is possible that in the SD group,
where the delay between termination of one sequence and start
of the next was 1.0 s; neuronal activities that signal the 2 events
interfered temporally, causing an occasional misestimation of
movement number within the sequence. There was less chance
for this temporal overlap when the delay was 3.0 s (LD group).
If we measure the degree of separation of 2 movements in the
sequence by the amount of modulation of the generalization
function, then in the LD group the 2 movements were func-
tionally better separated. In the LD group, errors in one
movement had a smaller interference on the subsequent move-
ment. Given the time course of the prefrontal bursts that
identified start and end of a sequence (Fujii and Graybiel
2003), the hypothesis predicts that there should be no further
gains in performance if the sequence is separated by longer
intervals.

Limitations of the theory

The theory that we developed here is a step toward the goal
of representing learning and memory as the accumulation of
small trial-to-trial changes. The data that we analyzed were
limited to approximately the first 250 ms of movement, a
period when motor commands are thought to be dominated by
a feed-forward internal model that relies little on online feed-
back (i.e., from the current movement). However, our earlier
work (Bhushan and Shadmehr 1999; Wang et al. 2001) and
those of our colleagues (Burdet et al. 2001; Franklin et al.
2003) had found that adaptation in this task involved changes
in both the feed-forward inverse model and a feedback-depen-
dent forward model of dynamics. Indeed, we did observe a
small but significant increase in the gain of the online feedback
system with the progression of training. These changes are
probably better measured in later periods of a trajectory, but
require random perturbation to the limb. Identification of
online mechanisms of control remains an unexplored area for
our theory.

The formulation of the theory was in terms of a deterministic
system and did not consider noise. In particular, the model
assumed that estimates of force were one and the same as
motor commands to the limb. If signal-dependent noise (Harris
and Wolpert 1998) is an important contributor to generation of
motor commands in the range of forces that are typical for
reaching, then estimate of force and its production are not
equal. To account for this, we would need to introduce a noise
term in the output equation. The fact that this term is missing
from our formulation may explain why we could fit the
across-subject averaged time series almost twice as well as the
within-subject time series. Averaging across subjects reduces
the variance of the output noise.

Our measure of distance between 2 ordinal numbers was
symmetric; that is, the effect of movement 1 on movement 1
was assumed to be the same as the effect of movement 2 on
movement 2 (the 2 states were the same). The effect of
movement 1 on movement 2 was assumed the same as the
effect of movement 2 on movement 1 (the 2 states were
different). This resulted in a generalization function that mea-
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sured distance in sequence space as being either 0 or 1. The
rationale for this was to keep the number of unknown param-
eters in the generalization function to a minimum. In a longer
sequence, “same” and “different” will be insufficient measures
of distance between ordinal numbers.

Both adaptation and learning in this task involve more than
what we have modeled. However, the behavior that we ob-
served is largely accounted for by a theory where movements
are attributed to a population coding where cues regarding state
of the limb and context are transformed into a forcelike motor
command. We predict that this transformation is computed
with neurons that are directionally tuned, and the cue associ-
ated with movement order weakly modulates this tuning at the
preferred direction. This hints at a general solution to the
question of how the brain learns multiple internal models.
During adaptation, information from disparate sources may be
combined multiplicatively in every neuron. Attention, reward,
or other cognitive factors serve to highlight specific channels of
information, increasing the gain with which the particular
information modulates directional tuning.
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