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0.1 The artificial adaptive controller

Making movements with the adaptive controller

In our task, a subject holds the handle of a robotic arm and makes movements in the horizontal
plane to reach visually presented targets. The paradigm involves a four-link system described
in Fig. 1A of the paper, where two of the links are formed by the subject’s arm and the other
two are formed by the robotic arm. The physics of this coupled system can be expressed as
follows:

{

Ir(p)p̈ + Gr(p, ṗ)ṗ = E(p, ṗ) + JT
r (p)Fhandle

Is(q)q̈ + Gs(q, q̇)q̇ = C(q, q̇,q∗(t)) − JT
s (q)Fhandle

(S1)

Where r is robot, s is subject, p is robot joint angles, q is subject joint angles, I is an inertial
matrix, G is a coriolis-centripetal matrix, and E and C are forces actively generated by the
robot and subject respectively. Fhandle is a coupling term that represents the force that the
robot and subject apply to each other. The active subject torques, called the controller, are
governed by both the actual position and velocity and the desired trajectory q∗(t). The desired
trajectories we used were minimum-jerk for displacements of 10cm of 0.5s (Flash and Hogan,
1985).

Previous simulations (Shadmehr and Brashers-Krug, 1997) suggest that for 0.5s reaching
movements, human hand trajectories can be reasonably accounted for by a controller with a
feed forward internal model of the task’s dynamics and a simple feedback mechanism to stabilize
the limb:

C = Îs(q
∗) q̈∗ + Ĝs(q

∗, q̇∗)q̇∗ + ĴT
s (q∗)F̂handle − K (q − q∗) − R (q̇ − q̇∗)

where K and R are empirical estimates of a typical subject’s joint stiffness (while at posture)
and viscosity matrices. A hat (ût ) indicates a controller estimate rather than an actual value.
We assume that the controller represents the robot’s imposed forces in hand-centered rather
than joint coordinates. This is only to simplify presentation, and we show in section 0.6 that
this simplification does not affect our conclusions.

F̂handle combines an estimate of the robot’s passive inertial properties F̂robot arm with an
estimate of the active torques imposed by the robot F̂field. (We will generally write F̂ for F̂field.)
These forces are also additive:

F̂handle = F̂robot arm + F̂
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Because all of our subjects practiced for approximately 600 movements in the null field before
making any fielded movements, we assume that the controller has an accurate internal model
of the inertial properties of the its own arm as well as the robot arm.

Eq. S1 was numerically integrated with a time step of 1 ms to produce human-like move-
ments.

Learning with basis functions in the adaptive controller

To adapt to the force field, our controller must approximate the force field’s map from velocity
to force. Because the controller is primarily feed forward, the approximate map must use desired
velocity and not actual velocity, so F̂(ẋ∗) ≈ F(ẋ) after learning. To build this map, we rely on
the the theory of basis functions (Poggio, Fahle, and Edelman, 1992; Sanner and Kosha, 1999).
We assume that the space of velocities is encoded using a collection of basis elements gj each
of which has a receptive field covering a specific piece of the space. (The shape of the basis
elements and the tiling we used is specified in the Methods.) We also associate a force vector
wj with each basis element. The estimate of force for the internal model is then (repeating
Eq. 2 from the paper)

g = [g1(ẋ), . . . , gm(ẋ)]T

W =

[

wx1 . . . wxm

wy1 . . . wym

]

F̂(ẋ) = Wg(ẋ) (S2)

The internal model will need to adapt so that the estimate F̂(ẋ∗) can approximate the actual
force field F(ẋ). We assume that adaptation is through changes in the force vectors, wij ,
associated with each basis element, and that the receptive field g is fixed. It is also possible
to consider other forms of adaptation (such as modifying the receptive field while leaving the
force vectors fixed), but analysis of the other options is much less simple. We further assume
that during a movement, no changes occur in wij . All changes are confined to the period after
the movement has ended and before the next movement has started.

We use gradient descent to change the force vectors wij . We define a positive definite
functional over the error in predicted force ( F̃(t) = F(t) − F̂(ẋ∗(t)) ):

e =
1

2

∫ T

0
F̃(t)T F̃(t) dt

Where T is the total time of the movement: 500ms in our paradigm. The length of the desired
trajectory is fixed across movements, so the limits of integration are well defined. We also
tested the model using the time of the actual movement rather than the desired trajectory, but
this did not have a significant effect on the results. Using this error functional, we can create
an update rule for the wij

w
(n+1)
ij = w

(n)
ij − η

∂e

∂wij

(Superscript (n) means movement number n.) We can plug in definitions of F̂ (Eq. S2) and F̃

above and carry out the differentiation to find that

w
(n+1)
ij = w

(n)
ij + η

∫ T

t=0
f̃

(n)
i (t)gj(ẋ

∗

k(n)(t)) dt

S2
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ẋ∗

k(n)(t) is the desired velocity in direction k(n), the direction of the nth movement, considered

as a function of time. f̃i is the ith component of vector F̃. It is more convenient to write this
equation in matrix notation:

W (n+1) = W (n) + η

∫ T

t=0
F̃(n)(t)g(ẋ∗

k(n)(t)) dt (S3)

We have found the rule with which the adaptive controller will update its parameters after each
movement. Thus, to generate a sequence of movements, we start with an initial randomized W
matrix, we then integrate Eq. S1 to produce a movement. Then, we plug the F̃ experienced on
that movement into Eq. S3 to update the weights. This is followed by another movement with
the new W , and another update using the new F̃. The whole process is iterated for however
many movements are required.

0.2 The dynamical model

Here we show that despite nonlinear dynamics of the system and the complexities of the artificial
adaptive controller, the trial-by-trial performance of the system can be approximated with linear
dynamics. We begin by writing Eq. S3 as an equation in the internal model’s output, F̂, by
picking an arbitrary point in velocity space ẋa and multiplying both sides by g(ẋa)

F̂(n+1)(ẋa) = F̂(n)(ẋa) + η

∫ T

t=0

[

g(ẋ∗

k(n))
Tg(ẋa)

]

F̃(n)(t) dt

The equation describes how a force error F̃(n)(t) experienced over the trajectory of movement
n in direction k(n) changes the internal model F̂ at some arbitrary point in velocity space, ẋa.
A number of approximations will be used to simplify this equation.

For the force fields used in this paper, magnitude of force is always proportional to speed.
Our first approximation is that, along a straight line in velocity space (constant velocity direc-
tion, such as the desired trajectory) the magnitude of the force error will be also proportional
to the speed. If we use ẋmax for the peak speed, tmax for the time of the peak speed, and ẋk(n)

for the velocity at peak speed on the n-th movement:

F̃(t) ≈
F̃(tmax)

ẋmax
· ẋ(t)

We have slipped in a second approximation: the peak speed is the same and occurs at the same
time from movement to movement. We can now move the constants outside the integral.

F̂(n+1)(ẋa) = F̂(n)(ẋa) + η
F̃(tmax)

ẋmax

∫ T

t=0

[

g(ẋ∗

k(n)(t))
Tg(ẋa)

]

ẋ(t) dt (S4)

The next approximation is based on the fact that speed of reaching movements typically
follows a bell-shaped profile. We replace this bell-shaped function with a triangular function of
slope

a =
ẋmax

T/2

This triangular function peaks midway in the movement (at tmax). Making this change in-
troduces an average deviation from the bell shaped profile of only 0.07 × ẋmax. Under this
approximation, the integral in Eq. S4 can be rewritten as an integral over speed rather than

S3
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time (where a well defined conversion from speed to velocity is possible because the desired
trajectories only visit one velocity at each speed):

F̂(n+1)(ẋa) = F̂(n)(ẋa) +
2ηF̃(tmax)

aẋmax

∫ ẋ=ẋmax

ẋ=0

[

g

(

ẋk(n)

ẋmax
· ẋ

)T

g(ẋa)

]

ẋ dẋ

Since ẋa is an arbitrary point in velocity space, we are free to select it in whatever way is
convenient to us. We choose it to be the peak velocity of the desired trajectory associated with
some movement direction, l. Then, using ẋl for ẋ∗

l (tmax):

F̂(n+1)(ẋl) = F̂(n)(ẋl) +
2ηF̃(tmax)

aẋmax

∫ ẋ=ẋmax

ẋ=0

[

g

(

ẋk(n)

ẋmax
· ẋ

)T

g(ẋl)

]

ẋ dẋ (S5)

We define a function of the two directions, l and k(n):

Bl,k(n) =
2η

aẋmax

∫ x′=ẋmax

x′=0

[

g

(

ẋk(n)

ẋmax
· x′

)T

g(ẋl)

]

x′ dx′

This is the definition of Bl,k given in the text (Eq. 4) with α = 2η
aẋmax

. We can now rewrite

equation S5 in terms of Bl,k (understanding F̃ to be evaluated at tmax)

F̂(n+1)(ẋl) = F̂(n)(ẋl) + Bl,k(n)F̃

This B function captures those aspects of the update rule that depend only on the directions
of movement. Note that the equation should hold true for any choice of target direction, l. We
therefore have a separate equation for each possible l. In all of the experiments reported in the
paper, we have 8 different target directions. Thus, it makes sense instead of F̂(ẋl) to write F̂l

which will be a 2 × 1 vector for each direction of movement.

F̂
(n+1)
l = F̂

(n)
l + Bl,k(n)F̃

(n) l = 1, . . . , 8

which asserts that the force error F̃(n) experienced at peak velocity will change the internal
model F̂l for all possible movement directions, l = 1, . . . , 8. This effect of F̃(n) is modulated by
a generalization function Bl,k. The generalization function describes how errors experienced in
direction k affect the internal model for any other direction l. Because there are 8 directions of
movement, Bl,k is an 8 × 8 matrix.

Our task is to estimate the generalization function B from the movements themselves.

However, while we know both F̂
(n)
l and F̃(n)(t) at every time point for the artificial adaptive

controller, neither can be easily measured from experimental data in real subjects. That means
that F̃(n) would be difficult to assess cleanly in our experiments. An easier variable to mea-
sure would be error in the movement trajectory. We can define movement error, y, as hand
displacement from a desired trajectory at the point of maximum velocity. In the simulation, it
can be shown empirically that for perturbed reaching movements y and F̃ are linearly related
across the 8 directions of movement (Donchin and Shadmehr, 2002). The linear relationship is
captured by a compliance-like 2 × 2 matrix we call D, so that y = DF̃. We now have a system
of nine vector equations:

{

y(n) = D(F(n) − F̂
(n)

k(n))

F̂
(n+1)
l = F̂

(n)
l + Bl,k(n)F̃(n) l = 1, . . . , 8

S4
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We introduce one more new variable, z
(n)

k(n) ≡ DF̂
(n)

k(n) . Intuitively, z can be thought of as the
displacement that would have been experienced during a movement n if the internal model had
not compensated for the expected field. We replace F̂ with D−1z and after some simplifications
we have:

{

y(n) = DF(n) − z
(n)

k(n)

z
(n+1)
l = z

(n)
l + Bl,k(n)y(n) l = 1, · · · , 8

(S6)

This is the dynamical system of the paper’s Eq. 3 that is used throughout the text.

Our sequence of approximations can be justified by showing that this dynamical model is a
good fit to the data generated by the adaptive controller. Performance in each movement was
quantified using hand position error at peak velocity (the vector y). These errors are displayed
for a simulation with Gaussian basis elements of width σ = 0.2 m/s in Supplementary Figure S1
(blue lines, catch trials indicated by circles). The figure displays the x and y components of the
error vector as a function of movement number. In the outer subplots, movements are grouped
according to direction. In the center subplot, the errors for the first 75 movements (in their
actual sequence) are illustrated. The effect of the arm’s anisotropic inertia and compliance,
combined with the effect of the force field, results in different patterns of error in different
directions.

We took the entire sequence of errors (192 movements) and fitted them to the dynamical
system of Eq. S6. We then used the parameters of the fit to iterate Eq. S6 and produce a
predicted sequence, ŷ(n). In Fig. S1, this predicted sequence is shown in red while the measured
sequence is shown in blue. The r2 of the fit between model and data for the entire 192 target
sequence is 0.920. The fit is remarkable because the simulation consisted of a set of non-linear
differential equations that described limb dynamics and adaptation. However, the resulting
sequence of errors were fit to a simple set of equations (Eq. S6), which contained essentially
12 unknown parameters (8 in B and 4 in D). The high degree of fit suggests that the simple
equations compactly described the trial-to-trial pattern of movement errors in this adaptive
system.

Fig. S2 compares the quality of fit for simulations with wide basis functions (σ = 0.3 m/s)
to a simulation with narrower basis functions (σ = 0.1 m/s). For each simulation, the sequence
of errors y were fit to the dynamical system, parameters B and D were found, and ŷ was
estimated. This figure displays y and ŷ by projecting these vectors onto the parallel direction
(a line connecting start point to target of each movement) and the perpendicular to it. This is a
more natural representation than the x and y components. As before, catch trials are indicated
with circles. Fig. S2A and C show the fit for all movements. The r2 of the fits were 0.981 and
0.967.

0.3 Comparing the model to Thoroughman and Shadmehr (2000)

Here we list the differences between the dynamical model we reached by derivation (Eq. S6
in this document and Eq. 3 in the text) and the dynamical model used by Thoroughman and
Shadmehr (2000) (their Eq. 4).

1. In the current model error and force are measured as vectors. In the Thoroughman and
Shadmehr (2000) approach, error was measured as a scalar that indicated perpendicular
displacement. In the scalar representation, error was generalized so that it was always
perpendicular to the direction of motion. That is, it rotated around the circle with the
direction of movement. In the current representation, the error vector for any given

S5
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direction is only scaled when it is generalized to any other direction. The two approaches
make different experimental predictions that we can test. In the results section we show
that generalization is best represented as scaling of a vector error.

An additional advantage of using vectors is that they permit us to generalize the theory
to force fields other than the curl field. In the current paper, we use assistive and resistive
fields that produce errors parallel to the direction of movement. A scalar representation
of error would be insufficient for analyzing generalization in these fields.

2. The old model is in a canonical form. The updated value of the hidden state is an
arbitrary linear combination of the old state and the newly experienced forces. In Eq. S6,
the update rule is not arbitrary and, even more important, it is the error experienced in
the current movement that drives the update and not the force.

3. Thoroughman and Shadmehr (2000) actually fit their Eq. 4 to the data separately for
each direction of movement. This prevents a true trial-by-trial evaluation of the hidden
state, and creates a danger of over-fitting. Since our model is derived explicitly from the
behavior of an adapting internal model, it naturally describes the trial-by-trial evolution
of that internal model.

4. Since our model explains performance across different directions, it contains a single 2×2
parameter, D, that captures the biomechanical contribution to variations in performance.
There is no equivalent parameter in the previous model.

5. Since the previous model was fit separately for each direction, the value of the previous
force was actually a vector of values for forces experienced in the different directions be-
tween every two movements in the direction that was being fit. Let’s call these movement
n and m. This elements of this vector were always either -1, 1 or 0. The value for direction
k was -1 if there was a fielded trial in direction k between movements n and m. The value
was 1 if there was a catch trial in direction k between movements n and m. The value
was 0 if there were no movements in direction k between movements n and m. If there
was more than one movement in direction k between movements n and m, only the last
one was considered. This algorithm is quite different from the direct role played by the
force in the new model.

0.4 Summary of assumptions and limitations

Our theoretical development is driven by a number of assumptions, some of which are innacurate
or simply wrong. Its application is also limited by a number of approximation that go into the
development of Eq. S6. While some of these assumptions and limitations are addressed in the
discussion, we felt it was important to provide a more complete treatment.

1. We have assumed that the internal model is evaluated in a feed forward manner and
depends on a desired trajectory. However, evidence suggests that sensory feedback does
influence input to the internal model. This influence appears significant beyond 350
ms into a reaching movement (Bhushan and Shadmehr, 1999). We have limited our
analysis to the early part of the movement where the role of feedback is more limited.
Along the same lines, while evidence indicates that the motor system may use a desired
trajectory (specified using kinematic variables) (Wolpert, Ghahramani, and Jordan, 1995),
this evidence is not strong and other possibilities have been considered (Polit and Bizzi,
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1978; Haruno, Wolpert, and Kawato, 2001; Todorov and Jordan, 2002). We consider the
desired trajectory a convenient and simple assumption, but no more than a guess.

2. In our simulations, the learning rate, as well as the stiffness and viscosity of the arm, are
fixed. This assumption greatly simplified our derivation of a dynamical model, leading
to a constant generalization function and a constant compliance matrix. However, it is
possible that some or all of these variables change as people adapt. This would lead to a
poor fit of Eq. 3 to the human data. As we show, the fit to the data is good, suggesting
that, in our task, these changes are relatively minor. However, our experience with this
task does suggest that there are small changes in stiffness of the arm during training
and those changes occur over the very first 32 movements (Thoroughman and Shadmehr,
1999).

3. We fix the basis elements (gi) and only adapt the force vectors associated with each basis
(wxy,i). We did this for two reasons. The first is that it simplified our derivation. The
second is that adapting the basis elements produces uneven groupings of similar force
vectors and segregation of basis elements with different force vectors. More sophisticated
approaches would address this problem, and there are at least two possibilities. One
would adapt all three parameters of the basis elements (the center, the width, and the
force vector). Another would start with a small number of basis elements and allow
for limited movement of their centers, adding new basis elements as needed (Schaal and
Atkeson, 1998). These possibilities will be considered in future research.

0.5 Fitting the model to data

In order to characterize the parameters in Eq. S6 (the generalization function B and the com-
pliance matrix D), we record a sequence of N movements towards target directions k(n), n =
1, . . . , N in a random order. Each movement is associated with a certain force F(n) and a
certain error y(n) measured at maximum velocity for that movement. We then try to find the

best set of parameters B and, D and initial conditions (z
(1)
k , k = 1, . . . , 8) that when inserted

into the dynamics described in Eq. S6, reproduces the recorded data. That is, when we find
these parameters and run the dynamical system in Eq. S6, we want the sequence of outputs,
ŷ(n), to match the actual sequence of errors, y(n), that we measured. This can be framed as a

least-squares minimization problem with B, D and z
(1)
k as the unknown parameters minimizing:

N
∑

n=1

‖ŷ(n) − y(n)‖2.

This is a non-linear optimization problem, and to solve it we used the optimization toolbox of
Matlab Release 12.1 (Mathworks, Natick, MA). However, optimizing these parameters requires
repeated iterated evaluations of Eq. 3 in order to produce sequences of estimated errors, ŷ(n),
that could be compared with y(n) and could be quite slow, especially when we evaluated boot-
strap statistics (see below). We were also concerned with the possibility of local minima, given
the highly non-linear nature of the data. We thought that if we could find an approximate
solution to seed the optimization routines, we would solve both of these problems. We found a
way of using linear techniques to reach an approximate solution to the problem and we present
it below.

Let us write the sequence of changes that take place in the hidden state, zk(n) , from the

S7
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beginning of the set until we reach the errors made on movement n (in direction k(n)):

z
(2)

k(n) − z
(1)

k(n) = Bk(n),k(1)y
(1)

z
(3)

k(n) − z
(2)

k(n) = Bk(n),k(2)y
(2)

...

z
(n)

k(n) − z
(n−1)

k(n) = Bk(n),k(n−1)y
(n−1)

When we add all of the above equations we have:

z
(n)

k(n) − z
(1)

k(n) =

n−1
∑

p=1

Bk(n),k(p)y
(p)

Which can be rearranged to be a linear equation for the hidden internal state

z
(n)

k(n) =
n−1
∑

p=1

Bk(n),k(p)y
(p) + z

(1)

k(n)

Substituting z from the first equation in Eq. S6 into above we have:

DF(n) − y(n) =
n+m−1
∑

p=1

Bk(n),k(p)y
(p) + z

(1)

k(n)

We can combine two equations with this form: one describing movement n and one describ-
ing movement n + m. After rearranging terms, we get

y(n) − y(n+m) =

n+m−1
∑

p=1

Bk(n+m),k(p)y
(p) −

n−1
∑

p=1

Bk(n),k(p)y
(p) + z

(1)

k(n+m) − z
(1)

k(n) + D(F(n) −F(n+m))

(S7)
Eq. S7 is useful to us because it provides us with a linear relationship between our behavioral
measurements k,y,F and the unknown parameters B, D, and z(1). Each pair of movements can
provide one vector equation as shown in Eq. S7 (or equivalently, two scalar equations). Thus,
if there are N total movements in a target set, we could get N(N − 1) equations. However,
practically, we found that we get equivalent results keeping only 8N linear equations. We kept
only the equations for movements n and n + m for which there was no movement in direction
k(n+m) between them. That is, we combined each movement with the next movement in every
other direction (including the direction of that movement). Thus, we had a linear system with
8N equations and 28 parameters. We used the solution of this system as the seed for our
non-linear optimization routines.

0.6 Using a joint-angle representation

In our simulation, the internal model mapped hand velocity to force. One alternative is a
transformation from joint angular velocities to joint torques. We built a simulation that had an
internal model that used this transformation. As shown in Fig. S3, this simulation produced
results that are quite similar to the ones produced by the Cartesian representation, suggest-
ing that, within the context of our small workspace, the coordinate system of representation
does not make a large difference. This is a result of the fact that for small movements, the
transformation from joint velocity to hand velocity is well described by a constant Jacobian
matrix.

S8
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0.7 Changing the desired trajectory

Our estimate of error assumes that subjects are trying to bring their trajectories in line with a
‘desired trajectory.’ This is consistent with much current thinking in motor control. However,
we were interested in testing the consequences for our model if this assumption is violated.
When we assumed that the desired trajectory was fixed, we used the null field training sets to
assess the desired trajectory. If the desired trajectory has changed, this would no longer be
appropriate. Instead, we estimated the desired trajectory from the movements at the end of
each set. This allows for development of the desired trajectory over the course of three sets,
but assumes that the movements near the end of each set reflect the intended trajectory by
that time. That is, we assumed that by the end of a set, the time average of the hidden state
changes has become constant:

〈∆zl〉 = 0 = 〈Bl,ly〉

where the change in hidden state of the system is:

∆z
(n)
l = z

(n+1)
l − z

(n)
l

and for the sake of this discussion we only consider the central value of the generalization
function. The time-averaged error y can be separated into catch trials and field trials (with
pfield and pcatch being the probability of a field trial and catch trial):

〈Bl,ly〉 = 0 = Bl,l (pfield〈yfield〉 + pcatch〈ycatch〉)

Since we are trying to find the appropriate reference point for the error, let us rewrite the error
in terms of the actual location of the hand at peak velocity, ya, and the desired trajectory at
peak velocity, yd: y = ya − yd. Then the above equation becomes

0 = pfield (〈ya,field〉 − yd) + pcatch (〈ya,catch〉 − yd)

Which can be simplified to

yd = pfield〈ya,field〉 + pcatch〈ya,catch〉 (S8)

pfield and pcatch were estimated simply by counting the total number of field and catch trials
performed by the subjects. ya was estimated by averaging the movements in the last 1/3 of the
data set. Catch trials and field trials were averaged separately. Thus, in estimating the desired
trajectory, we did not increase the number of parameters in the model.

0.8 Bootstrapping the parameters

We used standard bootstrap techniques (Efron and Tibshirani, 1993) to determine confidence
limits for our parameters. In any particular experiment, we used 200 resamplings (called boot-
strap samples) of the subjects. Each bootstrap sample included a random collection of the
subjects selected with replacement, so each subject could appear once, more than once, or no
times at all in a any given bootstrap sample. The number of subjects in each bootstrap sample
was equal to the number of subjects in the original sample. For each bootstrap sample, we now
performed our analysis just as we had on the original data. Perpendicular displacements were
averaged across the subjects (appropriately weighted if they appeared more than once) in the
bootstrap sample, and the dynamical model of Eq. S6 was fit to this sequence of perpendicular
displacements. The parameters generated by making this fit are called bootstrap estimates of
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the original parameter, and we had 200 bootstrap estimates for both B and D. The distri-
bution of these parameters was used to generate confidence limits by sorting the values and
taking the 5th and 195th values to be the low and high bounds for our 95% confidence limits.
In presentation, we also used the standard deviation of this distribution as an estimate of the
standard error of the parameter (S.E.).

0.9 Randomization test for r
2

We used a test similar to the bootstrap called the randomization test (Manly, 1997) to test
the significance of our r2 parameters. First, we generated a null distribution of r2. A null
distribution obeys the null hypothesis that the parameters have no explanatory power, and can
be used to assess the statistical significance for rejecting the null hypothesis. Under the null
hypothesis that B and D have no explanatory power, the sequence y(n) for movements in a
given direction is just as likely as any other permutation of that sequence. Thus, to generate the
null distribution we generated random permutations (called randomizations) of y(n) associated
with each direction of movement separately, leaving the sequence of target directions and forces
fixed. For each randomization, we again fit the dynamical model of Eq. S6 and used the fit
to generate values for r2, r2

B and r2
D. Thus, we had a distribution of values for each of these

statistics in a situation very similar to our experimental situation but where we knew that the
sequence of errors was indeed random. Thus, our statistical hypothesis is that the r2, r2

B, and
r2
D in our actual data was greater than 95% or 99% of the r2 generated by randomization.

We tested the significance of our r2 by comparing them to the 190th or 198th value in the
distribution of randomized r2 that we produced.
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Figure S1: We simulated movement in a clockwise curl-field governed by an adaptive controller. 192
movements were performed in a random sequence of directions. The controller learned an internal model
of the field using Gaussian bases of width σ = 0.2. X and Y of the movement error vector (blue lines)
was computed as the displacement from the unperturbed trajectory at peak velocity. Catch trials are
indicated by circles. The sequence of errors were fit to Eq. S6 as described in the Supplementary Material.
The resulting parameters of the fit, B and D, were used to reconstruct the error sequence (red lines).
The r2 of the fit between model and data for the entire 192 target sequence was 0.995.
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Figure S2: A comparison of movement errors for an adaptive controller that learned with narrow bases
σ = 0.1 (A and B), or wide bases σ = 0.3 m/s (C and D). The controller trained on 192 movements in
a random sequence of directions in the clockwise curl field. The error vector plotted here is decomposed
into perpendicular and parallel displacements. In all plots, the blue lines are the errors generated by the
adaptive controller and the red lines are the estimates of Eq. S6. Catch trials are indicated by circles.
A and C: Errors for the entire sequence of movements. B and D: Errors for movements to 180◦. Note
the monotonic character of the data and fit in B and the non-monotonic character of the data and fit
in D.
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Figure S3: Results from a simulation in which the internal model represented the field as a transfor-
mation from joint angles to torques, rather than from Cartesian velocity to forces. A) The behavior of
the simulation, and the fit, seem similar to those generated by the Cartesian representation. B) It is
possible by varying the width of the representation to generate generalization functions that are very
similar to the ones generated by the Cartesian representation. σ is in rad / sec.
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