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Theoretical and psychophysical studies have suggested that
humans learn to make reaching movements in novel dynamic
environments by building specific internal models (IMs). Here
we have found electromyographic correlates of internal model
formation. We recorded EMG from four muscles as subjects
learned to move a manipulandum that created systematic
forces (a “force field”). We also simulated a biomechanical
controller, which generated movements based on an adaptive
IM of the inverse dynamics of the human arm and the manipu-
landum. The simulation defined two metrics of muscle activa-
tion. The first metric measured the component of the EMG of
each muscle that counteracted the force field. We found that
early in training, the field-appropriate EMG was driven by an
error feedback signal. As subjects practiced, the peak of the
field-appropriate EMG shifted temporally to earlier in the move-
ment, becoming a feedforward command. The gradual tempo-
ral shift suggests that the CNS may use the delayed error–

feedback response, which was likely to have been generated
through spinal reflex circuits, as a template to learn a predictive
feedforward response. The second metric quantified formation
of the IM through changes in the directional bias of each
muscle’s spatial EMG function, i.e., EMG as a function of
movement direction. As subjects practiced, co-activation de-
creased, and the directional bias of each muscle’s EMG func-
tion gradually rotated by an amount that was specific to the
field being learned. This demonstrates that formation of an IM
can be represented through rotations in the spatial tuning of
muscle EMG functions. Combined with other recent work link-
ing spatial tunings of EMG and motor cortical cells, these
results suggest that rotations in motor cortical tuning functions
could underlie representation of internal models in the CNS.
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People learn to move novel objects along desired trajectories, in
any direction, by simply practicing the task a few times. This
adaptation is remarkable because of the computational complex-
ity inherent to learning dynamics (Atkeson, 1989). Adaptation of
a neural internal model (IM), transforming desired trajectories of
the hand into appropriate muscle activations, likely underlies this
ability (Jordan, 1995; Wolpert et al., 1995). Aftereffects, errors
that people make when learned dynamics are unexpectedly
changed, suggest that IMs are built gradually with practice (Shad-
mehr and Mussa-Ivaldi, 1994), that learning one IM can interfere
with the learning of a second IM (Brashers-Krug et al., 1996), and
that the interference fades over the course of hours (Shadmehr
and Brashers-Krug, 1997). The evidence for the formation of
IMs, however, comes mainly from psychophysics. A measure of
neural output, such as electromyography (EMG), could provide
insight into the neural basis of the formation of IMs.

Previous work has reported EMG changes during learning of
single-joint movements with different loads (Corcos et al., 1993;
Gottlieb, 1994). When subjects make elbow movements against an
unexpected load, EMG patterns up until 200 msec into the
movement remain unchanged compared with unperturbed trials

(Gottlieb, 1996). This delayed response to the perturbation re-
flects the latency of short- and long-loop reflexes that use propri-
oceptive information to produce an error–feedback action (Mars-
den et al., 1978). Once subjects practice with the novel load, EMG
differs from unperturbed trials from the beginning of movement
(Gottlieb, 1994). This change in the movement-initiating EMG
reflects the adaptation of descending control commands. In com-
putational studies, the changes in descending commands are
attributable to adaptation of an IM (Wada and Kawato, 1993;
Miall and Wolpert, 1996; Barto et al., 1998; Bhushan and Shad-
mehr, 1999). An elegant idea is that adaptation may be driven by
error–feedback motor responses generated by reflex circuits (Ka-
wato et al., 1987; Stroeve, 1997). In other words, the delayed,
reflex-based error feedback might serve as a “blueprint” for how
the CNS needs to change descending commands. To test this
idea, the computational concept of an IM for multijoint move-
ments needs to be described in a way that its formation could be
quantitatively tested by changes in EMG. Here we asked whether
changes in EMG correlate with the formation of an IM, and
whether the error–feedback response drives this learning.

We measured EMG as subjects learned to reach while grasping
a manipulandum, which created novel forces. We used a biome-
chanical model to transform EMG into a composite trace, corre-
sponding to activation that specifically compensated for the im-
posed field. We found that with training, activation of the
appropriate musculature gradually shifted from a delayed error–
feedback response to a predictive feedforward response. To quan-
tify how these changes corresponded to the formation of an IM,
we analyzed the directional tuning functions of movement-
initiating EMG. These spatial functions relate EMG to move-
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ment direction in hand-centered coordinates (Flanders and
Soechting, 1990; Sergio and Kalaska, 1998). Previous reports have
demonstrated that reaching movements or isometric force pro-
duction generate EMGs with broadly tuned directional biases
(Flanders and Soechting, 1990; Flanders, 1991; Karst and Hasan,
1991). Our modeling revealed that learning of an IM should result
in specific rotations of muscles’ tuning curves. We found that with
practice, the directional patterns of activation gradually rotated;
the final magnitude of the rotations corresponded well with the
predicted change. Temporal features and angular orientation are
invariant to the overall magnitude of the EMG; therefore, across
subjects and across recording sessions, despite removal and reap-
plication of surface electrodes, our metrics robustly quantified the
formation of internal models.

Portions of this work have been presented previously in ab-
stract form (Thoroughman and Shadmehr, 1998).

MATERIALS AND METHODS
Experimental apparatus. Twenty-four right-handed subjects (12 women
and 12 men), students in the Johns Hopkins School of Medicine, pro-
vided written consent to participate in this study. With their right hand,
subjects grasped the end effector (handle) of a 2 df manipulandum
mounted in the horizontal plane (Shadmehr and Brashers-Krug, 1997).
Subjects sat in front of the manipulandum, with the right arm supported
by a sling. Sensors on the manipulandum accurately measured joint
position and velocity (details provided by Shadmehr and Brashers-Krug,
1997). Two motors, mounted on the base of the manipulandum, could
independently produce torque on the proximal and distal joints of the
robotic arm. A computer monitor mounted above the manipulandum
displayed a cursor representing hand position and boxes representing
targets. Using pediatric cardiac electrodes, EMG was recorded from four
muscles: biceps, triceps lateralis/ longus, anterior deltoid, and posterior
deltoid. Before the application of the electrodes, the skin was cleaned and
abraded using a preparation gel (NuPrep; Weaver, Aurora, CO). EMG
signals were amplified by Grass (Quincy, MA) AC amplifiers (model
8A5) with 60 Hz notch filters. The amplified signal was bandpass-filtered
(17–530 Hz), processed through a root-mean-square circuit with a 25
msec integration window (De Luca, 1997), and digitized. Hand position,
hand velocity, and processed EMG were recorded at 100 Hz. The
processed and digitized EMG formed the signals analyzed below.

Experimental protocol. Subjects made 10 cm point-to-point movements
toward 8 mm square targets represented by boxes on the computer
monitor. Subjects made movements in four directions (0, 45, 90, and
135°) away from the center of the work space and four directions (180,
225, 270, and 315°) back to the center; the order of the outward directions
was determined pseudorandomly. If subjects completed the movement in
500 6 50 msec, the box “exploded,” and the computer generated a
pleasing sound. If the cursor reached the box too slowly (in $550 msec),
the target filled in blue; if the cursor reached the box too quickly (in #450
msec), the target filled in red. The only instruction provided was to
explode as many targets as possible. We provided no instructions regard-
ing straightness of movements or smoothness of trajectories.

Subjects made reaching movements in two or three different dynamic
environments. One, termed the “null field,” is the condition in which the
torque motors do not create any forces; in the null field the subjects
encounter only the inertial dynamics of the manipulandum. In the second
and third environments, B1 and B2, torque motors produce an additional
force as described by the equation:

FW 5 BẋW, (1)

where FW is the force produced at the end effector by the robot’s motors,
Wẋ is the instantaneous velocity vector of the hand, and B is a viscosity
matrix. In the first environment, the null field, B0 equals [0 0; 0 0]
N z sec z m21. In the second environment, B1 equals [0 13; 213 0]
N z sec z m21; in the third, B2 5 2B1. These “force fields” exert a force
proportional in strength to the instantaneous speed of the hand, in the
direction perpendicular to the instantaneous velocity vector.

Subjects’ training was divided into sets of 192 movements. Each set was
followed by a 3 min rest period. On a first day of training, all 24 subjects
completed three sets of movements in the null field. On a second day, all

subjects completed one set in the null field and then three sets in the
force field B1. Here we report data only from the second day.

After completion of the training in B1, three groups of eight subjects
each completed two sets of movements. One group completed these two
sets in the null field after the standard 3 min rest. A second group trained
in B2 3 min after B1, and a third group trained in B2 6 hr after B1. During
the 6 hr period, EMG electrodes were removed, and subjects left the
laboratory. After their return, electrodes were reapplied on approxi-
mately the same arm positions as the earlier session, as marked by the
earlier abrasion of the skin.

Displacement analysis. To facilitate averaging across movements, all
movement data were temporally aligned on the basis of the movement
onset, which was defined as when the tangential speed first crossed a
threshold (0.03 m/sec). Perpendicular velocity was defined as the com-
ponent of the velocity vector that pointed perpendicular to the line
connecting the initial hand position and target position. Perpendicular
displacement was computed by summing perpendicular velocity over the
first 250 msec of the movement. In each direction we subtracted away the
average perpendicular displacement generated in the null field (first set,
day 2).

EMG normalization. Each subject’s (bandpassed, RMS’d) EMG traces
were normalized based on movement-initiating EMG recorded during
the initial null field set. For each muscle m and in each direction of
movement, we calculated a scalar activation am by averaging the EMG
trace Am(t) over time interval between 50 msec before and 100 msec after
the onset of movement (capital letters refer to full time series; small
letters refer to scalar measures) and then averaging over all movements
made in that direction during the initial null field set. We constructed an
8 3 1 vector aWm for each muscle, each element representing a single
direction. We then adjusted the scale of each muscle’s EMG trace in each
movement, producing the normalized trace A n, using the equation:

Ak,m
n ~t! 5 50 p

Ak,m~t! 2 min~aW m!

max~aW m! 2 min~aW m!
1 25, (2)

where k is an index of movement number, and m is an index of muscle.
Within each subject, therefore, the EMG values recorded during all
movements (in the null field and in force fields) were normalized using
the same linear transformation. This transformation facilitated compar-
isons of activation across subjects but preserved the training-induced
changes of every subject’s EMG.

Polar analysis. We used a form of data analysis termed polar analysis
to evaluate changes in EMG. We began the analysis by computing the
movement-initiating activation for each subject, binned within each di-
rection across eight movements. We then multiplied each scalar by the
unit vector pointing in the direction of movement, so that these vectors,
when plotted together, display am as radii pointing in the direction of
movement corresponding to that activity. These polar plots summarized
the function mapping target direction into initial EMG activity.

To determine the directional bias of each activation function, in each
movement bin we added the eight am vectors together to form one
resultant vector. This resultant vector had the same direction and is
proportional in magnitude to the mean of the eight vectors (if a unit mass
would have been placed on the end point of each vector, the mean of the
vectors would have been the center of mass of the collection of points).
By calculating the orientation of this resultant vector, we detected
changes in the angular dependence of am as subjects learned dynamic
environments.

Computational modeling: structure of the model. The purpose of the
computational modeling was to predict the change in the pattern of joint
torques that should result if an adaptive control system learned to
completely compensate for the dynamics of the force field. To calculate
the changes in joint torques attributable to adaptation, we simulated the
dynamics of the four-link system of Figure 1 through the following
coupled differential equations:

Ir~pW !pẄ 1 Gr~pW , pẆ !pẆ 5 M~pẆ ! 1 Jr
TFW ; (3)

Is~qW !qẄ 1 Gs~qW , qẆ ! qẆ 5 CW ~qW , qẆ , qW*~t!! 2 Js
TFW , (4)

where I and G were inertial and coriolis/centripetal matrix functions, M
was the torque field produced by the robot’s motors, i.e., the environ-
ment, FW was the force vector measured at the handle of the robot, CW was

8574 J. Neurosci., October 1, 1999, 19(19):8573–8588 Thoroughman and Shadmehr • EMG Correlates of Motor Learning



the adaptive controller implemented by the motor system of the subject,
qW*(t) was the reference trajectory planned by the motor control system of
the subject, Jr was the Jacobian matrix describing the differential trans-
formation of coordinates from end point to joints, qW and pW were column
vectors representing joint positions of the subjects and the robot (Figure
1), and the subscripts s and r denoted subject or robot matrices of
parameters.

The robot’s passive mechanical dynamics, Ir and Gr, as well as a typical
subject’s passive dynamics of the arm, Is and Gs, were previously esti-
mated (Shadmehr and Brashers-Krug, 1997). A key design question is
with respect to the function C. Simulations have previously suggested
that a reasonable lumped model of the subject’s biomechanical controller
in the case of these targeted movements is as follows (Shadmehr and
Brashers-Krug, 1997):

CW 5 Î s~qW*! qW * 1 Gs~qW*, qẆ*!qẆ* 2 M̂~qẆ*! 2 K~qW 2 qW*! 2 V~qẆ 2 qẆ*!.
(5)

K was a linear estimate of the subject’s joint stiffness and was set to a
constant K 5 [15, 6; 6, 16] N z m 21 z rad 21 (Mussa-Ivaldi et al., 1985). V
was a linear estimate of joint viscosity and was set at V 5 [2.25, 0.9; 0.9,
2.4] N z m 21 z sec 21 z rad 21. This controller is dependent on a model of
the subject’s passive dynamics, represented by Îs and Ĝs, and model of the
force field environment, M̂(q̇*). We assumed the desired trajectory,
qW*(t), was a minimum jerk motion of the hand to the target (Flash and
Hogan, 1985) with a period of 0.5 sec. Our previous simulations have
suggested that such a controller produced trajectories in the above
differential equations that reasonably agreed with performance of our
subjects in the field (Shadmehr and Brashers-Krug, 1997).

We simulated Equations 3 and 4 for a configuration of the arm in
which the hand made the first movement starting from x 5 20.1 and y 5
0.45 m, based on the coordinate system shown in Figure 1. This is the
work space for which the EMG data in the current paper were acquired.
The force field produced by the robot was always of the form FW 5 BẋW.
This field can be written in joint coordinates of the robot or the subject,
i.e., the M variable in Equation 3, using simple kinematic transformations
(Shadmehr and Mussa-Ivaldi, 1994). We considered two conditions. In
the first condition, the field produced by the robot was B 5 B0, i.e., the
null field. In the second condition, we had B 5 B1. We performed a
numerical simulation of Equations 3 and 4 for each condition under the
assumption that the controller had a perfect model of the field. Move-
ments were simulated to the same eight directions as in our psychophys-
ical studies.

The torques produced by the controller of Equation 3 on the shoulder
and elbow joints were ts(t, u) and te(t, u), where t is time into the

movement, and u is the target direction. The calculated elbow and
shoulder torques were parceled into muscle force by solving the set of
equations,

tW 5 Jm
T FW (6)

FbFt 5 kbt

FaFp 5 kap ,

where FW [ [Fb , Ft , Fa , Fp]T is a vector of muscle forces, Jm
T is the

transpose of the differential transformation from muscle lengths to joint
angles, i.e., dl/du, the Jacobian representing muscle moment arms, and
kbt and kap are constants of reciprocal activation. The reciprocal activa-
tion constants were derived through analysis of the actual null field EMG
data. From the recorded EMG data, am was calculated for each muscle
for each direction (this represented the average EMG from t 5 250 to
t 5 100 msec into the movement). Next, a resultant vector was calculated
for each muscle. The ratio of the length of the resultant vector to the
mean of the am function for each muscle was calculated. This represented
the strength of the directional bias of each muscle’s EMG. We observed
that selection of reciprocal activation constants kbt and kap determined
the strength of the directional bias of muscle forces in the model (also
calculated over t 5 250 to t 5 100 msec). We adjusted the activation
constants in the model so that it produced muscle forces that matched the
strength of the directional biases measured in the am data. We arrived at
kbt 5 1 3 10 3 N 2 and kap 5 3 3 10 3 N 2.

There is no general consensus regarding the magnitude of muscle
moment arms (i.e., matrix Jm in Eq. 6) for the human arm in the
horizontal plane. Here we considered six different models (Table 1).
Four of the matrices (models A–D) were derived presuming different
levels of effective biarticulation of biceps and triceps: model A presumed
no biarticulation, and models B–D presumed that the moment arms of
biceps and triceps across the shoulder were one-half, the same, and twice
the moment arms of the anterior and posterior deltoids, respectively. The
fifth model (E) was derived from cadaver data (Wood et al., 1989)
recorded with the shoulder adducted and forearm horizontal and extend-
ing forward, and the sixth model (F) was model E transformed through
a rigid body rotation to the horizontal plane of the shoulders.

Computational modeling: predicting rotation of directional bias. For each
moment arm model, the simulation produced a time series of muscle
forces appropriate to make movements in the null field. In each direction
of movement i, we averaged over the first 150 msec of predicted force
production (corresponding to the interval 50 msec before through 100
msec after movement initiation) to determine for each muscle a scalar
variable fm(i). We performed polar analysis (see above) on these scalars
to determine a resultant vector to summarize, in null field movements,
the angular dependence of fm on movement direction. We then per-
formed the same analysis on the forces appropriate to move in the force
field B1. From these two polar analyses we determined, for each muscle,
the difference between the orientations of fm resultant vectors in the null
field and in force field B1.

The results for each model are shown in Table 1. We found that
changing moment arm matrices tended to change the orientation of
preferred directions in both null field and B1 but did not tend to change
the angle between them. All models predicted approximately the same
levels of rotation in the tuning functions of biceps and triceps. For the
anterior and posterior deltoids, predicted rotations were very similar for
all models except that of model D. The results in Table 1 show how much
rotation of the spatial activation function, as represented in hand-
centered coordinates, should occur as a subject learns an internal model
for field B1.

Computational modeling: predicting time series of appropriate activations.
Studies that have recorded EMG during single-joint movements have
reported increases or decreases in the activation of individual muscles
during learning. This analysis is appropriate for tasks with a single
degree of freedom, but here we needed to consider movements with 2 df,
actuated by multiple muscles, moving in several directions. To facilitate
analysis of EMG across directions of movement, we derived an inverse
muscle model, whose parameters were determined by subjects’ EMG in
the null field. The model was validated by predicting EMG patterns in the
force field. These predictions were then used to remap EMG into
composite traces based on their functional relevance.

To determine the muscle activations appropriate for our task, we first
used Equations 3–6 and muscle model C to calculate the time series of
muscle forces necessary to make a minimum jerk reaching movement,

Figure 1. Experimental apparatus. Subjects make reaching movements
while grasping a 2 df manipulandum (robotic arm). The manipulandum
could be programmed to produce a force field.
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Fi,m,n(t), where i indicates movement direction, m muscle, and n force
field (n 5 0 signifies the null field, n 5 1 the force field B1). Next, we
transformed the modeled muscle force Fi,m,n(t) into appropriate muscle
activations. To estimate the relationship between predicted muscle force
and recorded EMG [Ai,m,n(t)], we found a piecewise linear fit between
the force predictions in the null field and the recorded EMG from our
subjects, using the following analyses. In the null field, for each muscle m
and in each direction, we calculated the average predicted force and
recorded EMG during the agonist period, from 50 msec before through
100 msec after the onset of the movement ( f m

ag and am
ag), and during the

antagonist period, from 200 msec through 300 msec into the movement
( fm

ant and am
ant). We then fit the null field forces across all eight directions

to the recorded null field EMG using the equations:

aW m
ag 5 pm

1 fW m
ag 1 pm

2 (7)

aW m
ant 2 aW m

ag 5 pm
3 ~ fW m

ant 2 fW m
ag! 1 pm

4 ,

where aW and fW are 8 3 1 vectors reflecting recorded EMG and predicted
force in all eight directions, and p are parameters of the fit.

We calculated the parameters to find the least-squared fit of the null
field data and found that the fit was significant for all four muscles, during
both the agonist and antagonist bursts (for all eight fits, r . 0.88; p , 1 3
10 23; the top two plots in Figure 2 show the fits for anterior deltoid in the
null field). To validate the fits, we used the same parameters to transform
fi,m,1, the predicted force for field B1, into predicted EMG. The trans-
formed forces fit the mean EMG recorded from the subjects rather well
[for one of the fits (triceps during the antagonist burst), r 5 0.73; p ,
0.04; for all other fits, r . 0.80; p , 0.015; the bottom two plots in Figure
2 show, for anterior deltoid, the relationship between transformed force
and EMG in the field B1]. The parameters used for the fits are given in
Table 2. This rather simple muscle model, therefore, was validated on
data not used to fit the parameters.

For each movement direction, each muscle, and both dynamic envi-
ronments, we used the parameters p to map predicted force ( f ) into
predicted EMG (e; note that a refers to actual activations) at baseline
attributable to the reciprocal activation (base), during movement initia-
tion (ag, from 250 through 100 msec), and midmovement (ant, 200–300
msec). We then compared these activation scalars to determine, in the
null field, what increases or decreases from baseline were appropriate for
initiating movements. We also determined what increases or decreases
from null field activations were appropriate to counter the novel forces
produced by field B1 midway through the movement (when field-induced
forces were maximal). We summarized these predictions in a three-
dimensional object x(i, m, n):

x~i, m, 0! 5 em, 0
ag ~i! 2 em

base~i! (8)

x~i, m, 1! 5 em, 1
ant ~i! 2 em, 0

ant ~i!.

Figure 2. Data used for building a simple force activation model for the
anterior deltoid and data used for testing the validity of the model. We
fitted the predicted muscle forces (as computed by an inertial model of the
arm and best estimates of moment arms) to subjects’ mean EMG while
moving in the null field during the agonist period (250–100 msec into the
movement) and during the antagonist period (200–300 msec into the
movement; Eq. 7 fits a line to the change in activity between the agonist
and antagonist periods). The simple muscle model, as derived by the data
in the null field (top row), was validated by testing how well it predicted
mean EMG patterns in the force field B1 after subjects had fully adapted
to it. Top plots, The anterior deltoid force predicted by the inertial model
is fitted to the mean EMG recorded from subjects during null field
movements. Each point is data for movement to a given direction. Each
circle is the average normalized EMG recorded during that period in this
muscle from all subjects. The line is the best linear fit (p , 0.001 for each
figure), that represents the muscle model. Bottom plots, Validating the
muscle model. The linear fit from the null field was used to transform
the predicted forces necessary for movements in field B1 to EMG units.
The x-axis is the predicted average EMG in anterior deltoid. The circles
are the mean recorded EMG in all subjects after full adaptation. The solid
line is the muscle model’s predictions. The dotted line is the best possible
linear fit of the validation data.

Table 1. Computational representation of an internal model in terms of expected changes in the angular orientation of the EMG, as represented by
a spatial function in hand centered coordinates, for each muscle

Model
Moment arm matrices (cm)
Jm

T 5 (dl/du)T

Expected rotation in the muscle’s EMG function when field B1 is learned (°)

Biceps Triceps Ant del Post del

A F 4 24 0 0
0 0 4 24 G 226.6 226.5 214.1 213.6

B F 4 24 2 22
0 0 4 24 G 226.6 226.5 213.2 213.0

C F 4 24 4 24
0 0 4 24 G 226.6 226.6 213.7 213.6

D F 4 24 4 24
0 0 2 22 G 226.6 226.6 219.7 220.2

E F 4.58 20.70 2.37 22.74
0 0 4.67 21.48 G 226.6 226.5 213.1 216.6

F F 3.16 26.07 2.20 23.43
0 0 4.84 22.21 G 226.6 226.5 212.7 215.2

Learning of an internal model is predicted to result in a specific rotation in each muscle EMG function. The magnitude of the predicted rotation depends on the muscle
moment arms. Because of a lack of consensus regarding the magnitude of each muscle’s moment arm, we have considered six different models for Jm. In each case, l is a vector
of muscle lengths [biceps, triceps, anterior deltoid (Ant del), and posterior deltoid (Post del)], and u is a vector of joint angles (shoulder and elbow). The consequence of
learning an internal model of field B1 should be a rotation in the resultant vector of each muscle’s EMG functions from that observed in the null field.
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For each movement direction i and force field n, x(i, m, n) for two of
the muscles were positive; the size of these activations predicted the
proportion that each of those muscles participated as an agonist in
making a movement in the null field (for n 5 0) or as an agonist for
resisting the forces of field B1 (for n 5 1). On the other hand, x(i, m, n)
was negative for the remaining two muscles. These negative values
predicted that the two remaining muscles produced a force opposite that
of the imposed field and should be inhibited. We constructed 1 3 4 vector
operators v,

vi,n,1~m! 5 H x~i, m, n! if x~i, m, n! . 0
0 otherwise (9)

vi,n,2~m! 5 H 2x~i, m, n! if x~i, m, n! , 0
0 otherwise,

to identify functional agonists (1) and antagonists (2) in a given force
field. The magnitude of each vector v was normalized to 1. The vector
values are shown in Table 3 for the null field and for field B1.

Each vector operator predicts, in the four-dimensional space of muscle
activation, in what direction activation should increase or decrease (at
the peak of activity) to effectively make movements in a given field. To
give an example, consider a movement toward a target at 90°. In the null
field (n 5 0), the vector operator v90,0,1 predicts that to initiate an
accurate movement, the triceps and anterior deltoid should be activated
above their baseline levels. Furthermore, if one considered the triceps
and anterior deltoid activations to form an (x, y) plane, the model
predicts that the average activity over the agonist period would point in
the direction of the unit vector (0.859, 0.513). To move in the field B1
toward 90°, v90,1,1 predicts that biceps and anterior deltoid should be
activated more strongly than in the null field. Midway through the
movement (200–300 msec into the movement), the unit vector pointing
in the direction of the most appropriate increase in activation would
equal (0.869, 0.495).

Using model predictions to remap subjects’ EMG. We used the vector
operators (Table 3) to remap EMG recorded from the four muscles into
composite traces, T:

Ti,n,6~t! 5 vW i,n,6 z AW i~t!, (10)

where AW i(t) [ [Ab, i(t), At, i(t), Aa, i(t), Ap, i(t)] is a concatenation of EMG
from the four muscles in a movement toward direction i. For example, the
composite trace Ti,1,1 reveals, at each time point, the projection of
the four-dimensional EMG vector (one dimension for each muscle) onto
the direction of activation that performs work against the force field B1.
Whereas the original EMG traces were strongly direction-dependent, the
composite traces reveal the direction-independent muscular activity that
compensates for a given field. The composite traces therefore can be
compared and averaged across directions to understand adaptation of
neural output across the work space.

The transformation in Equation 10 remapped the full time series of
EMG traces using the predicted optimal activation over specific time
intervals (the average over the agonist period for null field data, over
midmovement for the increase appropriate for field B1). These remap-
pings retained the natural temporal structure of the EMG traces for each
muscle; the activation in each trace at each time point was weighed
equally. When the remapping of the increase appropriate for B1 was
instead determined by predictions during other time intervals, the direc-
tion of appropriate activation changed very little over the range from 50
msec before through 300 msec after the onset of movement (averaged
across directions of movement, change in unit vector direction #15°).
The unit vectors v1,1 in Table 3, therefore, accurately reflect the pre-
dicted direction of increased activity throughout the movement.

The composite trace Ti,1,1 summarized EMG activity that we esti-

mated as effectively countering the forces of field B1. This trace was
averaged across directions and binned over 64 movements (three bins per
target set of 192 movements). The averaged and binned traces were then
fit with fourth-order polynomials. Of primary interest was the question of
how this function evolved as subjects practiced in the force field. A major
component of this change was an apparent shift in the peak of the
function. Bootstrapping techniques (see below) were used to estimate
95% confidence intervals of timing of the peak.

Wasted contraction: a measure of co-contraction. Previous studies have
measured “co-contraction” through the addition of the EMG traces of
opposing muscles (Milner and Cloutier, 1993). If the activation of a
single muscle increases, however, the sum of activation of this muscle and
its antagonist would increase. The co-contraction metric would then
increase, even though only one muscle’s activation increased. To avoid
this ambiguity, we used a new measure termed “wasted contraction,”
which used the remapped composite traces to determine the amount of
contraction that is cancelled by the opposing groups and therefore does
not lead to effective force production.

For each subject, we first remapped the (previously scaled) EMG of
each movement into composite traces (Eq. 10). At each sampling point,
we then determined, in each agonist–antagonist pair of composite traces,

Table 2. Values of fitted parameters p in Equation 7

Parameter Biceps Triceps Ant del Post del

p 1 (nu/N) 1.58 1.70 0.66 0.85
p 2 (nu) 20.10 20.14 0.015 20.034
p 3 (nu/N) 0.75 0.71 0.43 0.60
p 4 (nu) 0.036 0.022 0.024 0.045

nu, Normalized units of EMG.

Table 3. Values of the vector operator v, as defined in Equation 9

Predicted force
direction Direction (°) Biceps Triceps Ant del Post del

Null field, 0 0 0.536 0 0.845

excited (0,1) 45 0 0.971 0 0.241

90 0 0.859 0.513 0

135 0 0.070 0.998 0

180 0.604 0 0.797 0

225 0.975 0 0.222 0

270 0.813 0 0 0.583

315 0.063 0 0 0.998

Null field, 0 0.669 0 0.744 0

inhibited (0,2) 45 0.965 0 0.265 0

90 0.761 0 0 0.649

135 0.080 0 0 0.997

180 0 0.605 0 0.796

225 0 0.944 0 0.331

270 0 0.876 0.482 0

315 0 0.135 0.991 0

Difference 0 0 0.921 0.389 0

between null and B1, 45 0 0.182 0.983 0

excited (1,1) 90 0.869 0 0.495 0

135 0.997 0 0.074 0

180 0.937 0 0 0.350

225 0.396 0 0 0.919

270 0 0.819 0 0.574

315 0 0.9991 0.042 0

Difference 0 0.863 0 0 0.505

between null and B1, 45 0.027 0 0 0.9996

inhibited (1,2) 90 0 0.825 0 0.565

135 0 0.988 0 0.154

180 0 0.947 0.322 0

225 0 0.563 0.826 0

270 0.814 0 0.581 0

315 0.9995 0 0 0.031
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which trace was smaller. Because this activation was cancelled by the
larger, opposing activation, the time series of this smaller activity was
termed wasted contraction. This amount was then subtracted from the
larger trace, creating a time series of “effective contraction.” The wasted
contractions were averaged across force directions (n [ 0, 1 from above),
averaged across movement direction, and binned over 32 movements (six
bins per set). Each subject’s wasted contraction was then scaled by the
maximum effective contraction measured over bins in the null field and
in B1. The wasted contraction traces were then averaged across subjects.
This average wasted contraction was fit with a fourth-order polynomial;
the maximum of this polynomial was calculated and compared during
different stages of training. The 95% confidence intervals for the change
in maximum wasted contraction were calculated by bootstrapping (see
below).

Calculation of force produced by the human controller. We also used the
structure and parameters of our model of the human–robot interaction to
estimate the amount of force subjects create during movements. Using
Equations 3 and 4 and using our estimates of the human and robot
dynamical parameters, we transformed individual subjects’ hand position
and velocity into estimated torque produced by the subjects’ muscles (the
acceleration terms in these equations were estimated by filtering the
velocity data through a second-order Savitsky–Golay filter). We then
multiplied this torque by J s

2T, the transposed inverse of the subject’s hand
Jacobian, to determine the force produced at the hand attributable to
joint torques. We remapped the forces produced in each direction of
movement into the components parallel and perpendicular to the target
direction. We averaged across directions and across subjects, fit each
force trace with a fourth-order polynomial, and determined the timing of
the maximum of each trace. Confidence intervals were determined by
bootstrapping.

Bootstrapping. Confidence intervals for the rotation of EMG resultant
vectors, the timing of the first peak of the B1-appropriate EMG trace, and
the maximum level of wasted contraction were determined by using
bootstrapping (Fisher, 1993; Welsh, 1996). The original pool of data from
24 subjects was resampled, with replacement, 1000 times to create 1000
new sets of 24 data points (for rotation) or 24 time series (of EMG). Each
resampled set was averaged; for time series, each series was fitted with a
fourth-order polynomial, and then the first peak (for B1-appropriate
EMG and forces) or the maximum (for wasted contraction) was calcu-
lated from this fit. The resulting set of 1000 statistics was sorted by rank;
the 95% confidence interval was determined by the 26th and 975th
elements of this vector.

RESULTS
EMG correlates of learning: a single direction
of movement
Let us initially consider movements made toward a single direc-
tion. When subjects made movements in the null field at 135°,
their EMG traces (Fig. 3, gray lines) revealed that the anterior
deltoid was active early to initiate the movement, whereas triceps
and posterior deltoid were active later to brake the movement.

Early in training in force field B1, when subjects attempted to
make movements toward 135° they generated inaccurate hand
paths that diverged from the target direction (Fig. 3, top trajecto-
ry). Midway through a typical movement, the activity in biceps
(Fig. 3, thin black line) increased; the hand path was then cor-
rected toward the target. The timing of the increased biceps
activation suggested that this muscle was activated in response to
the robot forces that extended the elbow during the reach. The
increased activation of biceps was possibly an error–feedback
response mediated via a stretch reflex mechanism. In contrast to
these field-induced changes in the biceps, the time series of
activations for anterior and posterior deltoids in the force field
closely resembled the activations recorded in these muscles in the
null field.

As subjects trained in field B1, the movements became
straighter (Fig. 3). The EMG from these improved movements
featured larger biceps activity very early, preceding the move-
ment itself (Fig. 3, thick black line). The biceps then became less
active later in the movement, during the same period in which it
was active when subjects first trained in B1. Therefore, a major
component of the adaptation process was a modification of the
EMG patterns necessary to initiate the movement.

To summarize the changes in early EMG in movements toward
135°, we averaged EMG over the time interval from 50 msec
before to 100 msec after the onset of movement. This scalar
measure of activation was termed am. Figure 4 shows the evolu-

Figure 3. Hand paths and EMG recorded during movements. Left, Hand paths of a typical subject in her first and last (72nd) movements toward a target
at 135° in the force field B1. The first movement is significantly perturbed from the straight line trajectory. With practice, movements become straight
again. Dots are at 10 msec intervals. The arrow indicates 250 msec into the movement. This is the position at which we measured perpendicular
displacement from a straight line. Remaining plots, Processed EMG (normalized units) in the null field (all 24 movements toward 135°, gray line), during
initial stages of training in the force field (first 8 movements toward 135°, thin black line), and late in training in the force field (last 8 movements, thick
black line). Movement begins at t 5 0. Each EMG trace represents data averaged across all 24 subjects. The vertical dotted lines delimit the 150 msec
interval over which EMG is averaged to calculate the scalar variable am , representing time-averaged agonist burst EMG.
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tion of am as subjects moved in the null field and then trained in
B1. The figure also displays perpendicular displacement, a mea-
sure of movement error that is computed 250 msec into the
movement. These data show that as subjects trained in B1, the
curvature of the movements became significantly smaller (p , 5 3
1028), am in biceps significantly increased (p , 1 3 1024), and am

in triceps significantly decreased (p , 0.002) compared with their
null field activation. Neither anterior nor posterior deltoid acti-
vation significantly changed with training in B1 (anterior, p .
0.15; posterior, p . 0.35).

In summary, the changes in EMG traces measured in move-
ments toward 135° suggested that when subjects were first ex-
posed to B1, they generated additional muscle activations late in
the movement to correct for movement curvature. With further
training, subjects learned to generate this added activation early
in the movement, predicting rather than responding to the force
field.

EMG correlates of learning across all directions
of movement
To quantify the correlation between changes in EMG and the
formation of an internal model, we wanted to extend our analysis
from a single direction to many directions of movement. This
extension is hampered by the fact that each muscle makes differ-
ent contributions to movements in different directions. We cir-
cumvented this obstacle by using the predictions of our simulated
controller. We considered the time pattern of EMG in the mus-
cles for a given movement as a path in a four-dimensional space,
each axis representing a muscle. Our model also predicted paths
in this space: one path for moving in a null field and one for
moving in a force field. The difference between these two pre-
dicted paths indicated activity in that space which should be
increased, peaking midway through the movement, to move ac-
curately in B1. In each movement direction, the increased activity

projected into a single component of muscle activity (Eq. 9, Table
3; see Materials and Methods). The discovery of appropriate
activations allowed us to project the EMG recorded from each
subject, during each movement in the field B1, into functionally
appropriate composite traces (Eq. 10).

We used this approach to map the four EMG traces into four
composite traces. One of the resulting traces quantified the com-
ponent of activations that was most appropriate for moving in the
null field; another one quantified the component that most ap-
propriately resisted the additional forces created by field B1.
These were termed the null field and B1-appropriate EMG traces.
This transformation remapped the EMG from directionally de-
pendent individual muscles to directionally independent compos-
ite traces, permitting the comparison and averaging of these
traces across directions.

We calculated the null field- and B1-appropriate EMG traces
during the first null field set and the third set in field B1, respec-
tively. The resulting traces were averaged over all movement
directions and all subjects to arrive at a single trace. The results
are shown in Figure 5 (solid lines). The left plot (Fig. 5A) shows
the average null field-appropriate EMG trace produced by sub-
jects as they reached in the null field. The peak of this trace was
at 213.3 msec, i.e., before the start of the movement [95%
confidence interval of the mean (CIM), (217.5, 28.2) msec]. In
comparison, the average force that was produced by the subjects
(Fig. 5A, dotted line) had its peak 68.4 msec into the movement
[95% CIM, (66.1, 70.6) msec].

The composite EMG trace shown in Figure 5A represents the
component of activation appropriate for moving the hand toward
a target, i.e., the agonist burst of activity. A second composite
EMG trace (data not shown) produces force in the direction
opposite the movement direction. This composite trace (defined
by v0,2 in Table 3) peaked 231 msec into the movement [95%

Figure 4. Perpendicular displacement (top) and subjects’ am (time-averaged agonist burst EMG) during movements toward 135°. Subjects completed one
set of movements in the well learned null field environment and then three sets in the force field B1. Perpendicular displacement is measured 250 msec
into the movement, averaged across directions and subjects; these data reflect change from average perpendicular displacement in null field movements.
x-axis tick marks indicate breaks between sets of movements. Each point includes data from eight movements (3 data points per set). Error bars reflect
95% confidence intervals of the mean.
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CIM, (222, 240) msec]. This peak of activity generated the burst
of force in the negative direction in Figure 5A, which reached a
minimum (a maximum in the negative force direction) 316 msec
into the movement [95% CIM, (313, 319) msec]. As expected, the
temporal profile of the force trace was essentially a delayed
version of the transformed EMG traces.

This close correspondence was maintained when we compared
the B1-appropriate EMG with the pattern of forces that subjects
had produced perpendicular to the direction of target during the
training. Fig. 5B shows the B1-appropriate EMG and the corre-
sponding forces, both averaged across subjects during the last set
of training in the force field. With training, subjects had learned
to alter their EMG early into the movement [Fig. 5B, peak of the
solid line at 78 msec; 95% CIM, (67, 91) msec] so that the muscles
produced a bell-shaped force pattern perpendicular to the direc-
tion of the target, effectively canceling the force field.

The relationship between the composite EMG traces and the
subject-generated forces confirms the aptness of the transforma-
tion of EMG into composite traces. The vector operators in Table
3, created from the predicted activations of the biomechanical
model, have elicited the components of EMG appropriate for
moving in the null field and resisting the additional force pro-
duced by field B1. We will now examine the component appro-
priate for field B1 throughout the training in the force field, to
determine how the neural activation of the appropriate muscula-
ture evolves with learning.

Within subjects, we averaged the B1-appropriate EMG across
directions and across bins of 64 movements (three bins per set,
nine bins spanning training in B1). The mean trace for each
subject for each bin was averaged across subjects. The resulting
traces are shown in Figure 6. Because the imposed force field was
a function of hand velocity, and hand velocity was generally
unimodal, we expected the EMG that effectively countered this
force to be also unimodal. Indeed, we found that the B1-
appropriate EMG was always unimodal. Furthermore, because

the response to the imposed force field could initially be only
through a delayed error feedback system (e.g., through spinal
reflexes), we expected the initial B1-appropriate EMG to lag the
imposed forces. This was also observed.

With practice in the force field, the peak of the B1-appropriate
EMG trace shifted to occur earlier into the movement. To esti-
mate the peak location of each EMG trace, the data were fitted to
a fourth-order polynomial. We found that when subjects started
to train in B1, the peak of the B1-appropriate EMG occurred 246
msec into the movement [95% CIM, (215, 274) msec]. This peak
arrived 48 msec after the peak of the force created by the force
field B1; the peak of the robot-imposed force coincided with the
peak tangential velocity of the hand and on average occurred at
195 msec into the movement throughout training in B1. By the
end of the third set of training in B1, subjects had modified their
motor commands such that the peak of the B1-appropriate EMG
occurred just 67 msec into the movement [95% CIM, (48, 86)
msec; in t test of time shift, p , 1 3 1024]. Therefore, when
subjects first encountered B1, they activated the appropriate mus-
cles midway through the movement. The timing of this activation,
coupled with the marked curvature of these movements, sug-
gested that subjects activated these muscles through an error–
driven feedback mechanism. With training in B1, subjects learned
to activate appropriate muscles earlier in the movement, in the
period during which control was purely feedforward.

The changes in timing of the B1-appropriate EMG activity
revealed that subjects adapted their neuromotor output through-
out all three sets of movements (Figure 6, bottom). This measure
was much more sensitive than the kinematic measure of perpen-
dicular displacement, which showed no learning during the sec-
ond or third sets (compare Figure 8).

With training, subjects generated B1-appropriate EMG earlier
in the movement. During the 3 min break between sets, however,
the subjects partially unlearned this adaptation and began the
next set with activation of B1-appropriate muscles shifted later

Figure 5. Subjects’ composite EMG traces (solid lines) and forces (dotted lines). A, The solid line is the null field-appropriate EMG averaged over all
subjects and all movements in the initial null field set (192 movements). The dotted line is the average force in the direction of the target actually produced
during the same movements. B, The solid line is the B1-appropriate EMG trace, averaged over all subjects and over all movements during the final set
of training in force field B1. The dotted line is the average force produced perpendicular to the direction of target during the same movements. Forces
in both plots were calculated from subject trajectories, using the model structure outlined in Equations 3 and 4. For the time series of EMG and force,
maximum range of 95% confidence intervals of EMG and force were as follows: null field-appropriate EMG, 65.3 units; parallel force, 60.28 N;
B1-appropriate EMG, 66.2 units; perpendicular force, 60.13 N.
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than at the end of the previous set (Figure 6, bottom). In between
the second and third sets of training in B1, this shift forward in
time, i.e., the “forgetting,” was significant (mean shift, 31 msec;
p , 0.05). The shift of the B1-appropriate activation backward in
time during the second and third sets and forward in time during
breaks between sets indicate that the timing of this component of
activation is a valid metric of learning that reveals more about the
state of the adaptation than do kinematic measures alone.

Rotation of angular dependence of forces:
simulation results
These results suggested that subjects initially responded to B1 by
generating appropriate EMG quite late in the movement, perhaps
because of an error–feedback mechanism, but with training they
learned to activate the same muscles earlier in the movement.
This transition suggested that reactive responses early in training
effected proactive behavior late in training. We then focused our
attention on the subjects’ initial, purely feedforward, responses to
the task: how do humans generate movement-initiating muscle
activations based on the visual cue of a target, a desired end point
of a movement? How does this neural computation, mapping
stimulus to motor neuronal activation, change with learning?

To guide our investigation of feedforward muscle activation, we
revisited the predicted forces generated by our ideal controller.
We summarized each muscle’s force production in both the null
field and in B1 by averaging over the first 150 msec of the time
series of force to create a scalar fm. We used polar analysis (see
Materials and Methods) to visualize the angular dependence of
fm (Figure 7, top). We then calculated resultant vectors (radial
vectors in Figure 7, top), which indicate the directions of maximal
force production and summarize the dependence of force on the
direction of movement. Because we predicted muscle activations
using a linear transformation of muscle force, the same polar
analysis reveals the predicted directional bias of the muscle
activations.

The simulation results revealed that by learning to compensate
for B1, the resultant vector of each muscle should rotate by a
specific amount (Fig. 7, top). We found that the degree of rotation
was similar over a wide range of moment arm models (Table 1)
and remained constant over all levels of co-contraction. (For
model C, the directions of the resultant vectors were biceps,
2130.7° for null and 2157.3° for B1; triceps, 49.3° and 22.7°;
anterior deltoid, 150.0° and 136.3°; posterior deltoid, 229.6° and
243.2°.) In learning B1, the simulation predicted that the result-
ant vectors should rotate clockwise by 26.6° for biceps and triceps
and 13–20° for anterior and posterior deltoid, depending on the
moment arm model used (Table 1). These observations suggested
that humans might calculate a function mapping desired end
point location to initial a-motor neuronal output, and that when
subjects learn to move in B1, the activation function rotates to
produce appropriate muscle forces to accurately initiate
movements.

4

to a fourth-order polynomial. The best estimate of the peak and its change
with training is marked by the line that crosses the EMG traces from top
to bottom. In the bottom figure, the timing of the peak of the EMG traces
is plotted versus movement number. The dotted lines connecting data
points represent the 3 min breaks between sets. Error bars reflect 95%
confidence intervals of the mean (across all 24 subjects), as determined by
bootstrapping. The dotted horizontal line represents the timing of the peak
of the force created by the force field.

Figure 6. The composite EMG trace appropriate for field B1 shifts with
training. Top, Binned and averaged increase in the B1-appropriate EMG
trace. Each trace is averaged over 64 movements and over all 24 subjects.
The progression of plots from top to bottom shows EMG traces from early
to late in training. The dashed lines in the top and bottom axes represent
the magnitude of the force created by the viscous field B1, which remained
consistent throughout training in B1. Although early in training the peak
of the field-appropriate EMG lagged the imposed force, with training it
preceded the imposed force. The timing of the peak was estimated by a fit
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Rotation of angular dependence of EMG with
training in B1

Armed with the result that the simulated controller’s muscle
activation resultant vectors rotated between the null field and B1,
we analyzed the EMG generated at the beginning of movements
in both the well-learned null field and in B1. Just as in our analysis
of movements made toward 135°, we averaged each EMG trace
over the period from 50 msec before through 100 msec after the
beginning of the movement to create the scalar am. We then
averaged these scalars over bins of eight movements within direc-
tions and then averaged across all subjects. We compared am

generated at three stages of training: at the end of the set in the
null field, at the beginning of the first set of training in B1, and at
the end of the third set of training in B1. The results are shown in
Fig. 7, bottom row.

In the null field (Fig. 7, gray lines), each muscle was strongly
activated in certain “preferred” directions and much less acti-
vated in the opposing directions. This directional bias to the
activation function was summarized by using polar analysis to
construct a resultant vector for each muscle. The resultant vectors
pointed toward the direction (for biceps, 2130°; triceps, 50°;
anterior deltoid, 127°; posterior deltoid, 217°) of maximal activ-
ity presuming a sinusoidal fit of the data.

During the first 64 movements in field B1 (Fig. 7, thin black
lines), subjects began to generate movement-initiating muscle
activations that differed from those generated in the null field.
The resultant vectors of the am rotated clockwise from the direc-
tions recorded in the null field. Through the end of training in

field B1, the resultant vectors summarizing am continued to rotate
in a clockwise direction (Fig. 7, bottom). To quantify this adap-
tation across subjects, we began by determining the orientation of
individual subjects’ resultant vectors during null field and B1

training. We rotated each subject’s activation functions so that
the mean null field resultant vectors pointed toward 0°. We then
calculated the mean and 95% confidence intervals of the orien-
tations of the am vectors during training in the null field and B1.
The results are shown in Figure 8.

As subjects made reaching movements in the null field, the
orientation of the EMG resultant vectors remained constant, and
the curvature of movements remained small. In the first bin of 64
movements in B1, subjects’ movements were markedly curved,
with mean perpendicular displacement, averaged across direc-
tions, of 0.65 cm [Figure 8; 95% CIM, (0.55, 0.75) cm]. By the end
of the third set of training, subjects learned to make much
straighter movements [mean perpendicular displacement, 20.03
cm; 95% CIM, (20.13, 0.07) cm; in t test of curvature reduction,
p , 1 3 1028]. The am resultant vectors revealed that subjects
began to adapt their initial muscle activations in the first 2 min of
training. In the first bin of 64 movements in B1, the orientations
of the vectors summarizing all four muscles had significantly
rotated from the average null field orientations (p , 0.002 for
anterior deltoid; p , 1 3 1025 for other muscles). Although these
movements were still markedly curved, subjects had begun to
adapt their neuromotor output.

As subjects continued to train in B1, the orientation of the am

resultant vectors continued to rotate farther away from the null

Figure 7. Rotations in muscle-tuning curves as predicted from a computational model that assumes adaptation of an IM and tuning curves as recorded
from subjects’ EMG. Top, Movement-initiating muscle forces as predicted by the model for movements in the null field ( gray) and in B1 (black). Polar
plots display predicted movement-initiating force (fm ) for each direction of movement. The radii of the scale circles (centered at the origin of each plot)
are 20 N. The thick vector represents a tuning curve’s resultant vector (preferred direction). The model predicts that the resultant vector should rotate
between the null field and B1. The bars below each plot reveal the rescaling of the data (using Eq. 7 and the parameters in Table 2) into predicted muscle
activations, in normalized units (nu) of EMG. Bottom, Tuning functions representing subjects’ movement initiating EMG (am ) during training in null
field ( gray lines), early force field (thin black lines), and late force field (thick black lines). Thick lines are resultant vectors (preferred directions). The
error bars around individual data points reflect 95% confidence intervals of the mean activation.
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field orientation. By the end of the third set of training in B1, the
final directions of the am resultant vectors were significantly
different from the orientations early in training in B1 (p , 0.05 for
anterior deltoid; p , 2 3 1025 for other muscles). The magni-
tudes of rotation of the am resultant vectors over the three sets of
training in B1 were 233.7° for biceps, 228.0° for triceps, 219.1°
for anterior deltoid, and 215.6° for posterior deltoid. These
observed values were similar to the predictions made by the
simulated controller: within 7° for the flexors and within 2° for the
extensors. This result demonstrates a technique whereby a com-
putational model predicts the change that should occur in the
activations of muscles if the brain is learning an internal model
specific to a force field. The results show that the evolution of the
changes in muscle activations early into the movement are rea-
sonably close to the model’s predictions.

Activation function rotation is specific to the
force field
We have suggested that subjects learned to rotate their initial
muscle activations to accurately reach in the novel force field B1.
An alternate interpretation of our above data would be that the
observed rotation was a function of either an increased familiarity
with the task itself, regardless of the force field, or that the
observed changes were a function of fatigue. To test these alter-
nate hypotheses, we presented one group of eight subjects with
the null field after having just completed B1 training.

When subjects were returned to the null field (Fig. 9), their
hand trajectories were initially curved, in the direction opposite
the error initially generated in B1 [mean perpendicular displace-
ment, 20.57 cm; 95% CIM, (20.71, 20.43)]; this curvature re-
veals aftereffects lasting minutes after training in B1. After two
sets (350 movements) of training, however, the trajectories again
resembled the straight movements made in that day’s first null
field set [mean perpendicular displacement, 0.02 cm; 95% CIM,
(20.04, 0.08)].

As subjects made straighter movements, they generated
movement-initiating muscle activations that reverted back to their
original dependence on the direction of the target. Over the last
two sets of training in the null field, the orientation of the am

resultant vectors all rotated counterclockwise, back to the initial
null field directions [amount of rotation: mean (95% CIM) of the
amount of rotation: biceps, 26.8° (14.2°, 40.6°); triceps, 23.6°
(16.8°, 29.3°); anterior deltoid, 12.3° (4.7°, 19.1°); posterior del-
toid, 17.7° (15.1°, 20.4°); for all four muscles, p , 0.002]. The
average resultant vectors in the last set of movements pointed in
directions statistically indistinguishable from the vectors summa-
rizing the am generated in the day’s first null field set (for all four
muscles, p . 0.35).

The return of the orientation of the am resultant vectors to the
original direction indicated that the rotation observed when sub-
jects learned B1 was not attributable to an increasing familiarity
with the general task or to fatigue but reflected a force field-
specific change in the neural command sent to the muscles.

Activation function rotation during training in B2

We have suggested that the subjects may have learned to make
movements in B1 by rotating the function mapping desired end
point to early muscle activation. To determine whether a different
rotation of this activation function could underlie learning of
other dynamic environments, we trained two groups of eight
subjects each in B2, a force field anticorrelated to B1. One group
of eight subjects completed two sets in B2 3 min after the three
sets in B1; the other group of eight subjects took a 6 hr break
between the two force fields. In each of the subjects in these
groups, we measured the am generated for each movement,
binned the data across eight movements, and constructed result-
ant vectors. We then determined the orientation of these vectors
compared with each subject’s initial null field orientation.

The 6 hr group had their electrodes removed after the first
training session and reapplied for the second training session.

Figure 8. Lef t, Perpendicular displacement of the hand 250 msec into the movement, averaged across movement directions, during movements in null
field and force field B1. Remaining plots, Rotation of am resultant vectors during movements in force field B1 with respect to null field. Each point contains
data from 64 movements. Each point is mean and 95% confidence interval (across subjects). Dotted lines represent 3 min breaks in training.
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Because the preferred direction of EMG is independent of the
total signal strength, the resultant vector orientations calculated
from the two sessions are directly comparable.

In the first 64 movements in B2, both groups of subjects made
markedly curved movements [Fig. 10; across both groups, mean of
perpendicular displacement, 21.64 cm; 95% CIM, (21.45,
21.84) cm]. After two sets of training, both groups of subjects
made much straighter movements [mean, 20.23 cm, 95% CIM,
(20.12, 20.34) cm]. The 3 min group, however, generated move-
ments that were more curved than did the 6 hr group. A two-way
ANOVA (two groups 3 six bins) revealed that the group factor is
significant (F(1,84) 5 40.82; p , 1 3 1028) and that in all but the
last bin of movements, the larger amount of curvature in the 3
min group is significant (p , 0.05, Tukey test). The 3 min group
initially had more difficulty than the 6 hr group in making accu-
rate movements; this difference remained statistically significant
through 10 min of training in B2.

As both groups of subjects reduced the curvature of their
movements, subjects rotated their activation functions back to
and beyond the orientations appropriate for the null field. By the
second set of training in B2, all four am resultant vectors pointed
in directions that were rotated clockwise from the activity appro-
priate for B1; three of the four vectors pointed in directions
significantly more clockwise than the directions appropriate for
the null field [orientation of am vectors in the second set of B2,
mean (95% CIM): biceps, 11.8° (6.2°, 17.3°); p , 1 3 1024;

triceps, 16.9° (11.4°, 22.2°); p , 1 3 1024; anterior deltoid, 4.1°
(29.9°, 16.3°); p . 0.5; posterior deltoid, 22.2° (17.3°, 26.8°); p ,
1 3 1024].

Although both groups produced muscle activations that rotated
from the null field activity, the initial responses of the 3 min group
were less adapted to B2 than were the initial responses of the 6 hr
group. The orientations of the am resultant vectors were com-
pared over the three bins spanning the first set of training in B2

(Fig. 10, open circles represent the 3 min group am , filled circles
represent the 6 hr group am). We performed a two-way ANOVA
(two groups 3 three bins) on the am vector orientations of biceps,
triceps, and posterior deltoid. The orientations of the am vectors
of the 3 min group had rotated significantly less than did the 6 hr
group (for biceps, F(1,42) 5 5.3; p , 0.03; for triceps and posterior
deltoid, F(1,42) 5 5.2; p , 0.03).

In the second set of training in B2 (i.e., after 192 movements),
the 3 min group continued to lag behind the 6 hr group in their
adaptation of their activation of their posterior deltoid. A second
round of two-way ANOVA on the am resultant vectors revealed
that the posterior deltoid activation of the 3 min group was
significantly closer to the orientation of the null field activation
(F(1,42) 5 11.25; p , 0.002). By the second set of training in B2,
the two groups had begun to generate activations of biceps and
triceps whose resultant vectors pointed in similar directions (for
biceps, F(1,42) 5 0.02; for triceps, F(1,42) 5 0.43; for both, p . 0.5).
Although both groups learned equally well how to appropriately

Figure 9. Perpendicular displacement of the hand and rotation of am resultant vectors in subjects who, after training in B1, trained in the null field 3
min later. Each point contains data from 64 movements. The first three data points are from the third set of movements in B1. Error bars reflect 95%
confidence intervals of the mean (across subjects).
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control the biceps and triceps, subjects in the 3 min group con-
tinued to have added difficulty controlling their posterior deltoid
appropriately.

Even though the two groups train the same amount in both
force fields, the subjects with 3 min separating the two fields had
more difficulty generating muscle activations appropriate to B2.
The lagging of the 3 min group suggests that the counterclock-
wise rotation of the activation function, that is, the internal model
appropriate for B1, had lingered in these subjects and had ham-
pered their ability to adapt to B2.

Anterior deltoid activation functions in the null field,
B1, and B2

Compared with each group’s orientation in the null field, the 3
min and the 6 hr groups have different rotations of their anterior
deltoid activation functions in the last set of training in B1 (Fig.
10). The difference between the two groups stems not from
differing orientations in B1 but from differing initial orientations
of anterior deltoid activation functions during the null field (Fig.
11). Across the 24 subjects in all three groups, the variability of
individual subject’s activation function orientation in the null
field was almost three times larger for anterior than for posterior
deltoid (size of 95% confidence intervals of the mean: biceps,
15.0°; triceps, 14.3°; anterior deltoid, 18.7°; posterior deltoid,
6.4°). Although the two groups of subjects had the same amount

of training in the null field, the two groups generated anterior
deltoid effective fields that pointed in different directions (3 min
group mean, 113.7°; 6 hr group mean, 133.8°; in two-way
ANOVA, two groups 3 three bins of movements in null field set,
F(1,42) 5 6.69; p , 0.02). The differences in activations led to
different movement profiles in the null field (in comparing mean
perpendicular velocity traces in movements made toward 135°
and 180°, mean correlation between groups, r 5 0.04). Once the
two groups were well trained in B1, the anterior deltoid activation
functions then pointed in similar directions (3 min group mean,
96.9°; 6 hr group mean, 100.0°; F(1,42) 5 0.04; p . 0.8), and the
movement profiles of the two groups converged (135° and 180°
perpendicular velocity correlation between groups, r 5 0.87).

When the two groups trained in their first sets of movements in
B2, the mean of the orientations of the 3 min group’s anterior
deltoid activation functions rotated less toward the counterclock-
wise direction than did the activation functions of the 6 hr group,
but the difference between the groups is marginally significant (3
min group mean, 104.8°; 6 hr group mean, 125.4°; F(1,42) 5 4.02;
p , 0.055). These results suggest that despite the high subject-to-
subject variation in anterior deltoid activation function orienta-
tion in the null field, the actual orientations of the anterior deltoid
activation functions remained a good measure of internal model
building during the learning of novel dynamics.

Figure 10. Perpendicular displacement and rotation of am resultant vectors in subjects who, after training in B1, trained in B2 3 minutes (E) or 6 hr (F)
later. Each point contains data from 64 movements. Error bars reflect 95% confidence intervals of the mean (across subjects). The first three data points
are from the third set of movements in B1.
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Reduction of wasted contraction during practice in
null field and in B1

It has been shown that as subjects learn to move their wrist
against novel forces, they decrease the coincident activation of
flexors and extensors, thereby decreasing the stiffness of the joint
(Milner and Cloutier, 1993). To quantify how co-contraction of
muscles changed during learning of multijoint reaching move-
ments, we defined a measure of wasted contraction. We parti-
tioned subjects’ EMG into composite traces using the simulation’s
predictions of appropriate muscle activations in the null field and
field B1 (Table 3). For each movement, we used these coefficients
to partition the four muscle traces into four direction-
independent composite traces. Among these four composite
traces, two pairs of traces produced forces that opposed each
other. In each opposing pair, at each moment in time, the weaker
of the two composite activations was cancelled by the stronger.
We compared these activations to determine, in each movement,
time series of wasted contraction and effective contraction.

The level of wasted contraction decreased with practice, both
during training in the null field and during learning of B1 (Fig.
12). We averaged the time series of wasted and effective contrac-
tions in each subject across bins of 32 movements, scaled the
wasted contraction as a percentage of maximum effective con-
traction, and then averaged these scaled wasted contractions
across subjects. The peak of wasted contraction occurred ;200
msec into the movement for all bins spanning both fields. The
magnitude of the peak of wasted contraction was reduced by
one-third over the course of a training set in both the null field
(from 43 to 29%; p , 0.005) and the first set in B1 (from 54 to
35%; p , 0.005). Subjects did not decrease their wasted contrac-
tion over training in the second or third sets in B1 (p . 0.5).

During training in the null field, subjects also decreased their
wasted contraction generated during the beginning of the move-
ment, the interval over which the am above was calculated (aver-
age level in first bin of null, 24.5%; in last bin of null, 18.3%; p ,
0.03). The mean level of early wasted contraction also changed in
the first set of B1 but not significantly (p . 0.2).

Whether the robot produced a viscous force field, the maxi-
mum levels of wasted contraction occurred consistently at the
midway point of the movement. Subjects reduced their peak
wasted contraction when they first learned the novel force field B1,
but also, previously, when they again familiarized themselves with
the well learned null field. This suggested that subjects may use
wasted contraction to increase stiffness both when first regaining
familiarity moving in previously learned environments and when
first learning novel environments.

DISCUSSION
Subjects learned to reach in a novel viscous force field. The
convergence of movements onto previous (desired) trajectories,
and the existence of aftereffects when learned forces are re-
moved, have suggested that the adaptation of an internal model
underlies this learning (Shadmehr and Mussa-Ivaldi, 1994; Shad-
mehr and Brashers-Krug, 1997). The internal model hypothesis
posits that the CNS effectively computes inverse dynamics, trans-
forming desired trajectories into appropriate muscle activations.
Here we used a simulation to predict that formation of the IM
should accompany specific rotations in the directional bias of
muscle activation functions. We found that the actual rotation of
subjects’ spatial EMG tuning curves closely matched the predic-
tions. The simulation also allowed us to estimate the component
of muscle activation functions that produced a force that coun-
tered those in the force field. Using this transformation, we found
that early in training EMG changes were driven primarily by a
delayed error–feedback response. This feedback response may
have formed the template for the eventual learned feedforward
response.

In generating reaching movements, the CNS combines two
elements of control: feedforward elements, which generate neural
commands based on information available before the movement
(e.g., desired trajectory); and feedback elements, which generate
neural commands based on delayed visual and proprioceptive

Figure 11. Orientations of anterior deltoid resultant vectors during train-
ing in the null field, B1, and B2. Whereas the previous Figures 8–10
represent the rotation of am resultant vectors with respect to null field
orientations, this figure represents the actual orientation during each
stage of training. The symbols indicate the mean orientations in subjects
who had a 3 min (E) or 6 hr (F) separation between B1 and B2. Error bars
reflect 95% confidence intervals of the mean (across subjects).

Figure 12. Wasted contraction during movements in null field and B1.
These plots show the wasted contraction (as a percent of effective con-
traction), averaged across subjects, as a function of time into each move-
ment. Each line represents a bin of 32 movements. The lef tmost plot
contains traces from null field movements; the next three plots contain
traces from the three sets of training in B1. The numbers inside the plot
label the wasted contraction from the first, second, and third bins of
movements in each set.
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signals received during the movement. In recent computational
models (Jordan, 1995; Miall, 1995; Bhushan and Shadmehr,
1999), it is assumed that feedback control provides an estimate of
error, i.e., the disagreement between the actual and expected (or
desired) sensory signals, and generates a delayed motor response
that attempts to correct that error. Here we found that when
subjects first moved in the field, their field-appropriate EMG was
generated quite late in the movement, after the movement had
significantly diverged from the desired trajectory. The timing of
this activation relative to the perturbing force suggested that the
EMG was generated by error-driven feedback control. During
training, the shape of this field-appropriate EMG remained es-
sentially invariant, but its peak gradually shifted earlier and
earlier into the movement. The temporal shift culminated in a
modification of the EMG pattern very early into the movement,
before proprioceptive or visual information were available. This
modified EMG pattern effectively predicted and canceled the
upcoming pattern of imposed forces. Therefore, improvements in
performance occurred as the CNS gradually incorporated the
error–feedback response of the system into the feedforward com-
mand that initiated the movement.

Previous computational studies (Kawato et al., 1987; Stroeve,
1997) have shown that the motor response generated by an
error–feedback system may be used to learn inverse dynamics of
reaching movements. These studies suggested that a copy of the
error–feedback response may be sent to the brain and then used
to train the IM in a supervised learning paradigm. Our results
support this general framework by showing that learning may
entail an incorporation of the error–feedback response into the
feedforward commands through a gradual temporal shifting
process.

To investigate how gradual changes in the EMG quantitatively
corresponded to IM formation, we investigated how learning an
internal model should change the directional tuning of muscle
activation functions. When humans make unconstrained reaching
movements (or isometrically resist force), initial EMG depends
on direction of movement (or imposed force) (Flanders and
Soechting, 1990; Flanders, 1991; Karst and Hasan, 1991). The
resulting directionally tuned function reveals, across the work
space, how subjects’ internal models transform desired trajectory
into muscle activations. Here we used a simple biomechanical
model, which computed torque based on a dynamic IM of both
the arm and the environment, to predict the shape of the tuning
functions. We focused on the EMG generated between 50 msec
before and 100 msec after the initiation of the movement (am).
This period is likely to be influenced by only the feedforward
component of the descending commands (Miall, 1995; Kudo and
Ohtsuki, 1998), providing us with a window to the formation of
the internal model.

Using this computational approach, we initially predicted the
shape of the directionally tuned muscle activation functions for
null field movements, with no external perturbing forces. We
found that the predicted functions closely matched the measured
EMG functions for the four muscles examined (Fig. 7). We
summarized the directional bias of EMG functions by calculating
the orientation of these functions’ resultant vectors (preferred
directions). The resultant vectors remained stable as well trained
subjects performed reaching movements in the null field. How-
ever, as training began in a force field, the preferred direction of
each muscle’s EMG function began to rotate and eventually
reached an asymptote. The internal model theory had predicted a
specific rotation in each muscle’s EMG function; that prediction

was confirmed. The preferred directions returned to initial con-
ditions when the force field was removed and reversed their
direction of rotation when the direction of imposed forces was
reversed. These results, therefore, signified an experience-
dependent adaptation of the IM. Our methods linked the com-
putational concept of learning an internal model with changes in
the directional tuning of muscle activation functions.

After training in field B1, some subjects trained in the anticor-
related force field B2 either 3 min or 6 hr later. We had reported
before that the 3 min group has much more difficulty in both their
initial response and eventual adaptation to the second field
(Brashers-Krug et al., 1996; Shadmehr and Brashers-Krug, 1997).
Here we found that in field B2, not only are the movements made
by the 3 min group more disturbed than the 6 hr group, but the
preferred directions of biceps, triceps, and posterior deltoid are
oriented in directions more appropriate for B1 (less appropriate
for B2) than the 6 hr group. The lingering rotations of the
preferred directions provide physiological evidence that, 3 min
after training, the internal model appropriate for the field just
learned is still active and biasing the subjects’ ability to learn the
second force field. After 6 hr have passed, the internal model no
longer lingers, and subjects can learn the newest dynamics with
relative ease. The results also demonstrate the robustness of the
methodology in that we could compare changes in muscle activa-
tion functions despite removal and reapplication of surface elec-
trodes in the 6 hr group.

Previous studies that have recorded EMG changes during mo-
tor learning have focused on single-joint movements and have
reported increases or decreases in the magnitudes of EMG traces
to demonstrate changes in neural output (Corcos et al., 1993;
Gottlieb, 1994, 1996). Quantitative comparisons of these changes
in magnitude with the concept of learning of an internal model
are difficult because of the intrinsic variability in the strength of
the signal and the difficulty in relating the absolute magnitude of
EMG and generation of force. In contrast, the methods used here
focus on the directional and temporal nature of the data for
multijoint movements. The directional bias and the timing of the
muscle activations are independent of the overall signal strength;
this independence facilitates the analysis of adaptation across
subjects and the quantitative comparison of EMG and computa-
tional models.

The orientation of muscle activation functions are reminiscent
of the preferred direction of primary motor cortical neurons
(Georgopoulos et al., 1982, 1986) in that both summarize the
dependence of neuronal activity on the direction of movement. In
the motor cortex, the preferred direction of some cells changes
when movements are made in different postures (Sergio and
Kalaska, 1997; Scott and Kalaska, 1997). A recent study has
shown that the rotation of preferred direction of some cells was
similar to the rotation of the directional bias of muscle activation
functions (Sergio and Kalaska, 1997). Therefore, the rotation in
the muscle activation functions that occurs with learning of an
internal model might echo a similar change in the preferred
direction of certain cortical cells. Indeed, preliminary results
(Benda et al., 1997; Li et al., 1998) suggest that the tuning of select
cells in a monkey’s primary motor cortex rotates when the animal
learns a force field similar to the one used here.

Previous work has also shown that in making single-joint move-
ments, subjects tend to reduce the level of co-contraction of
flexors and extensors as they learn to move a novel load (Milner
and Cloutier, 1993). Here we quantified co-contraction because
subjects could respond to novel dynamics by simply stiffening the
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limb through co-contraction, rendering the arm less vulnerable to
perturbations (Hogan, 1984). Therefore, one might predict that
during learning of a novel task, co-activation levels should start
high but decline as the internal model is acquired. Here we found
that co-contraction levels (termed wasted contraction to denote
the EMG that was directly cancelled by opposing activation) did
significantly increase from null field to when subjects were ini-
tially exposed to the force field. With learning in the force field,
the co-contraction levels declined rapidly during the initial 96
movements but remained stable with further training. The same
reduction in wasted contraction, however, was also observed when
subjects moved in that day’s first set in the null field, a well-
learned dynamic environment. These results suggest that the
CNS increases the limb’s stiffness to reduce the effect of “unmod-
eled dynamics” early in the learning process and reduces limb
stiffness as dynamics are learned. The increased wasted contrac-
tion in the null field extends this idea to well learned dynamics;
higher stiffness may facilitate the recollection of an internal model
that is appropriate but stored in long-term memory.

Linking IM formation to rotation of the muscle-tuning func-
tions raises two interesting possibilities regarding the computa-
tional organization of the internal model. First, we had previously
reported that learning of a force field at a given arm configuration
resulted in generalization at a new arm configuration (Shadmehr
and Mussa-Ivaldi, 1994). Because learning a field at a given arm
configuration results in a rotation of the muscle-tuning functions,
it is possible that the magnitude of rotation is conserved when the
arm must make movements at a new configuration. This would
result in generalization of the force field in joint coordinates.
Second, we have observed that certain force fields are much
easier to learn than others. Because learning of each field is
coupled to a specific rotation in the muscle-tuning functions, it is
possible that the degree of difficulty in learning a field relates to
how much each tuning function needs to rotate to represent that
field. Further research is needed to examine whether the link
between internal models and muscle tuning functions can be used
to understand representation of IMs by the CNS.
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