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Previous research has demonstrated that the primate CNS has
the ability to learn and store multiple and conflicting visuo-
motor maps. Here we studied the ability of human subjects to
learn to make reaching movements while interacting with one of
two conflicting mechanical environments as produced by a
robotic manipulandum. We demonstrate that two motor maps
may be learned and retained, but only if the training sessions in
the tasks are separated by an interval of ;5 hr. If the interval is
shorter, learning of the second map begins with an internal
model appropriate for the first task and performance in the
second task is significantly impaired. Analysis of the after-
effects suggests that with a short temporal distance, learning of
the second task leads to an unlearning of the internal model for
the first. With the longer temporal distance, learning of the
second task starts with an unbiased internal model, and per-
formance approaches that of naives. Furthermore, the memory

of the consolidated skill lasts for at least 5 months after training.
These results argue for a distinct change in the state of resis-
tance of motor memory (to disruption) within a few hours after
acquisition. We suggest that motor practice results in memo-
ries that have at least two functional components: soon after
completion of practice, one component fades while another is
strengthened. A further experiment suggests that the hypothet-
ical first stage is not merely a gateway to long-term memory,
but also temporary storage for items of information, whether
new or old, for use in the near-term. Our results raise the
possibility that there are distinct neuronal mechanisms for rep-
resentation of the two functional stages of motor memory.
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In novelty stores, one can find an object that appears to be a heavy
brick but is actually constructed of light plastic. When one is asked
to rapidly move the “brick,” the result is a flailing-like arm motion.
This observation suggests that in programming the motor output
to the muscles of the arm, the CNS uses an internal model
(Wolpert et al., 1995b) to predict the mechanical dynamics of the
task (Gottlieb, 1994). In theory, the internal model (IM) is an
association from a desired trajectory for the hand (Wolpert et al.,
1995a) to a pattern of muscle torques (Shadmehr and Mussa-
Ivaldi, 1994). Because, in principle, this map is unique for the
objects that we have learned to interact with, “motor memory”
may be thought to contain, at least in part, a collection of IMs
where visual information serves as an identifying cue that allows
for binding of an appropriate association (Gordon et al., 1993),
i.e., recall.
Because we routinely use our hands to interact with a remark-

ably diverse variety of mechanical systems, the ability to learn and
recall IMs is likely a fundamental property of the motor system.
Indeed, practice of arm movements with a novel mechanical
system leads to formation of an IM for that system. The evidence
for this comes from EMG studies (Milner and Cloutier, 1993;
Gottlieb, 1994; Thoroughman and Shadmehr, 1996), and from
studies that have quantified movement trajectories when the me-

chanical system’s dynamics have been unexpectedly changed
(Sanes, 1986; Lackner and Dizio, 1994; Shadmehr and Mussa-
Ivaldi, 1994; Gandolfo et al., 1996). Once the IM is acquired, it
becomes available for “recall”; performance is significantly im-
proved when tested 24–48 hr later (Shadmehr et al., 1995). In this
report, we show that the improvement in performance persists for
at least 5 months, suggesting the formation of long-term motor
memories.
Although we know little about the processes that culminate in

long-term motor memory formation (Halsband and Freund, 1993;
Salmon and Butters, 1995), a feature of memory across the animal
kingdom is that it continues to develop after practice has stopped
(Seeds et al., 1995). In general, memory appears to progress
functionally from a short-lived fragile form to a long-lasting stable
form (Bailey and Kandel, 1995; DeZazzo and Tully, 1995). Phases
of memory are often distinguished with respect to their sensitivity
to new experiences and susceptibility to interference and injury
(Tully et al., 1994; Hammer and Menzel, 1995). The progression
to long-term memory is referred to as consolidation, and the time
during which information becomes consolidated has been used to
functionally define short-term memory (Fuster, 1995).
Does formation of motor memory progress from a short-term,

fragile form to a long-term, stable form? The distinction is not
merely semantic. Differences in the functional properties of
phases that culminate in long-term memory have suggested that
training sets in motion events that develop in parallel biochemical
pathways (Tully et al., 1994) in possibly distinct anatomical sites
(Rose, 1991; de Belle and Heisenberg, 1994). For example, during
storage of “declarative” information (Squire, 1992), distinct re-
gions of the brain are believed to encode the memory during the
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short-term and long-term stages (Squire et al., 1984a; Alvarez and
Squire, 1994; Guigon and Burnod, 1995; McClelland et al., 1995).
The hippocampus (Zola-Morgan and Squire, 1990; Kim et al.,
1995) and its inputs (Rashidy-Pour et al., 1996) appear to play a
time-limited role in consolidation of declarative memory. Learn-
ing of visuo-motor skills, however, does not appear to depend on
the integrity of medial temporal lobe structures (Corkin, 1968;
Gabrieli et al., 1993). Furthermore, interventions that interfere
with formation of long-term declarative memory appear to spare
retention of visuo-motor skills (Squire et al., 1984b). However,
motor memories are also vulnerable (Lewis et al., 1951; Lewis and
Miles, 1956; Heilman and Gonzalez-Rothi, 1985; Clark et al.,
1994). Our results have suggested recently that retention of a
newly acquired IM could be disrupted when a second IM, anti-
correlated to the first, was learned (Brashers-Krug et al., 1995b).
However, if IM2 was learned beyond a critical time window (;4
hr) after acquisition of IM1, it had little effect on recall of IM1
(Brashers-Krug et al., 1996). In other words, within hours, the
representation of IM1 became gradually less vulnerable to the
“intervention” caused by learning of IM2. Furthermore, the ability
to learn IM2 became progressively better with temporal distance
from IM1 (Brashers-Krug et al., 1996). That is, subjects had an
easier time learning IM2 when 4 hr had passed since learning IM1.
This is surprising; if learning of IM2 involves some form of
unlearning of IM1, then one would expect from the initial labile
form of IM1 that it should be easier to learn IM2 when the
temporal interval between the two training sessions is short. The
opposite was observed. To understand this paradox, we report on
further experiments that use the concept of after-effects to quan-
tify the effect of time on representation of a recently acquired
motor skill.

MATERIALS AND METHODS
The purpose of our experiment was to reveal functional properties of
processes that lead to formation of long-term motor memory. The motor
task we considered was one in which human subjects learned to make
reaching movements while holding the handle of a robot manipulandum
(Fig. 1). A mathematical model was developed to provide a framework
for the human/robot force interaction.
Experimental setup. Sixty right-handed subjects with no known neuro-

logical history, ranging in age from 19 to 37 years, participated in this
study. The procedures were approved by the Johns Hopkins University
Joint Committee on Clinical Investigation, and all subjects signed an
informed consent form.
Subjects learned to make reaching movements while interacting with a

force producing manipulandum. A schematic and photo of the measure-
ment apparatus are shown in Figure 1. Each subject was seated on a chair
that was bolted onto an adjustable positioning mechanism and instructed
to grip the handle of a robot manipulandum with the right hand. The right
upper-arm was supported in the horizontal plane by a rope attached to
the ceiling.
The Hopkins manipulandum is a two degree of freedom, portable,

lightweight (0.8 kg for the shoulder link and 1.3 kg for the elbow link,
including the force transducer), low-friction (0.02 and 0.06 N•m•sec
viscous friction for shoulder and elbow joints) mechanism built based on
the mechanical design principles of the MIT device (Faye, 1986;
Charnnarong, 1991; Hogan et al., 1992) used in our previous works. Two
low-inertia, DC brushless torque motors (Kollmorgen Corp., model
RBEH-3003) driven by a pair of digital pulse-width-modulated servoam-
plifiers (Kollmorgen, model FAST Drive) were mounted on the base of
the robot and independently delivered torque to the robot’s shoulder and
elbow joints via a parallelogram configuration. Robot’s shoulder and
elbow joint position measurements were made using absolute optical
encoders (Gurley Precision Instruments) with a resolution of 0.00558.
Robot’s shoulder and elbow joint velocity measurements were made
using a system composed of incremental optical encoders, interpolators,
and digital integrators that resulted in a resolution of better than 440,000

counts per revolution. The handle of the robot housed a 6-axis force/
torque transducer (Assurance Technologies, Inc).
Experimental procedures. The experimental task was similar to that

described in our previous reports (Shadmehr and Mussa-Ivaldi, 1994;
Brashers-Krug et al., 1996). Subjects moved the cursor corresponding to
the position of their hand to a target position that would appear at 10 cm
in one of eight directions: four directions starting from the center of the
monitor (08, 458, 908, and 1358) and the four corresponding directions
back to the center from each of those targets (1808, 2258, 2708, and 3158).
Subjects were instructed that there was a timing goal for the task. The
timer started as soon as subjects began their movement and stopped when
they ended their movement at the target. If they reached the target in the
allotted time (500 6 50 msec), the target would make a distinctive sound.
If they reached it too late, the target would turn blue, and if they reached
it too soon, it would turn red. Generally, after 400 targets subjects were
able to move at the required pace. There were no perturbing forces
during these movements and no further analysis was made of this data.
We refer to this situation when the robot motors were inactive as the null
field condition. Visual feedback regarding hand trajectory was provided
throughout the entire experiment.
Subjects returned on a subsequent day and were tested on the null

field. The trajectories recorded during this condition are referred to as
baseline trajectories; they are straight-line movements with “bell-shaped”
linear velocity profiles and represent what we consider to be the desired
trajectory of the biological adaptive control system (after introduction of
perturbing forces, movement kinematics generally converge back to this
trajectory). After measurement of baseline trajectories, a brief period of
rest was provided (2–3 min), after which the subjects were told that the
robot motors would now produce forces on their hand. Subjects were
asked to move the handle (at their own pace and without any targets) and
experience the forces for 10–15 sec, after which we began a target set. A

Figure 1. The robot manipulandum and the experimental setup. The
manipulandum is a very low-friction, planar mechanism powered by two
high-performance torque motors. The subject grips the handle of the
robot. The handle houses a force transducer. The video monitor facing the
subject displays a cursor corresponding to the position of the handle. A
target position is displayed, and the subject makes a reaching movement.
With practice, the subject learns to compensate for the forces produced by
the robot.
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target set consisted of 192 targets, all in a force field, except for 33
randomly chosen targets during which no forces were present. The
latter group allowed us to quantify subjects’ after-effects.
To produce a forcefield, the motors were programmed as a function of

hand velocity, ẋ, and a viscous matrix B. The effective force acting on the
subject’s hand was: f 5 Bẋ, where B was either equal to B1,

B1 5 F 0
213

13
0 G N • m • sec ,

or B2, where B2 5 2B1. The method used for producing such fields has
been described elsewhere (Shadmehr and Mussa-Ivaldi, 1994).
Subjects were assigned into one of six groups. All groups except for

group 1 practiced for three target sets in each of the two fields (group
1 practiced for 3 target sets only in B1). The difference among the
remaining five groups was the temporal distance between the practice
sessions in B1 and B2: this temporal distance was 5 min, 30 min, 2.5 hr,
5.5 hr, or 24 hr.
Group 1 subjects returned 5 months after their initial training and were

again tested briefly in the null field (;20 targets) and then for a target set
in B1. The remaining groups returned 1 week after completion of training
in B2 and were tested in B1. The group that had a temporal distance of 24
hr between B1 and B2 was tested 1–3 d later on B2.
Data analysis. We sampled the manipulandum’s joint angles, joint

velocities, and forces at the handle at a rate of 100 Hz and computed hand
positions and velocities. Trajectories were aligned using a velocity thresh-
old at the onset of movement. The performance measure was the simi-
larity between the hand trajectory in the force field and a “typical”
baseline trajectory (in the null field). This similarity was defined as a
correlation between two time series of hand velocity vectors (Shadmehr
and Mussa-Ivaldi, 1994). A typical baseline trajectory for a subject was
found by correlating each trajectory with all the other trajectories for that
target direction and finding the one with the highest average correlation.
An after-effect is the trajectory that results when a subject is expecting

a force field but the robot is producing a null field. After-effects were
analyzed using two indices. The first index was a distance measure that
quantified how far the hand path had deviated from a straight line to the
target. This distance was measured 300 msec into the movement. At this
interval, the aftereffect is near its maximum deviation from a straight line.
The second index was a force measure that quantified the difference
between the force produced by the subject during an after-effect and the
force recorded from the same subject for a typical movement in the
baseline condition. This variable is a time series of force vectors. Because
the force fields were always perpendicular to the direction of target, we
computed the component of the force measure that was perpendicular to
the target. The result was a time dependent scalar force variable.
Mathematical modeling. The purpose of the mathematical modeling

was to predict force and position trajectories that result as an adaptive
controller learns an internal model of the mechanical dynamics produced
by the robot. The adaptive controller was modeled to reasonably estimate
the biomechanical behavior of the human arm. We built on the ideas
introduced in our previous work (Shadmehr and Mussa-Ivaldi, 1994). The
current model takes into account the passive dynamics of the robot
manipulandum as well as the passive dynamics of the subject’s arm. This
allows us to predict fairly accurately the patterns of motion and force
generation in the case where we assume that the subject has learned a
specific internal model of the task.
When we position a force transducer at the interaction point between

the robot and the subject (i.e., the handle), we can write the dynamics of
the four link system in Figure 1 in terms of the following coupled-vector
differential equation:

Ir ~ p! p̈ 1 Gr ~ p, ṗ! ṗ 5 E ~ ṗ ! 1 J r
T F , (1)

Is ~ q ! q̈ 1 Gs ~ q, q̇ ! q̇ 5 C ~ q, q̇, q*~ t ! ! 2 J s
T F , (2)

where I and G are inertial and coriolis/centripetal matrix functions, E is
the torque field produced by the robot’s motors, i.e., the environment, F
is the force measured at the handle of the robot, C is the controller
implemented by the motor system of the subject, q*(t) is the reference
trajectory planned by the motor control system of the subject, J is the
Jacobian matrix describing the differential transformation of coordinates
from endpoint to joints, q and p are column vectors representing joint
positions (e.g., q1 and q2) of the subject and the robot (Fig. 1), and the
subscripts s and r denote subject or robot matrices of parameters,
respectively.

In the null field, (i.e., E 5 0) in Eq. 1, assume that a solution to this
coupled system is q 5 q*(t), i.e., the arm follows the reference trajectory
(typically a straight hand path with a Gaussian tangential velocity profile).
Let us name the controller that accomplishes this task C 5 C0 in Eq. 2.
When the robot motors are producing a force field, i.e., E Þ 0, the arm’s
motion converges back to the reference trajectory if the new controller in
Eq. 2 is C 5 C1 5 C0 2 Js

TJrs
2TÊ, where Ê is an estimate of the force field

environment as learned by the controller. The internal model composed
by the subject is C1 2 C0, i.e., the change in the controller after some
training period.
We have suggested previously that a reasonable lumped model of the

subject’s biomechanical controller in the case of these targetted move-
ments is (Shadmehr and Mussa-Ivaldi, 1994):

C0 5 Îs ~ q* ! q̈* 1 Ĝs ~ q*, q̇* ! q̇* 2 K ~q 2 q* ! 2 V ~ q̇ 2 q̇* ! , (3)

where K and V are linear estimates of the subject’s joint stiffness (at
posture) and viscosity matrices (Mussa-Ivaldi et al., 1985). In this model,
muscle forces produced by the arm are dependent on a feedforward
model of the subject’s passive dynamics (e.g., inertia of the arm) (Gomi
and Kawato, 1996). The controller is stabilized around the desired tra-
jectory q*(t) (presumably a smooth, straight-line motion to the target) by
the stiffness and viscosity of the muscles and the spinal reflex pathways
(Shadmehr et al., 1993).
We used the model of the controller in Eq. 3 coupled with the dynamics

of the manipulandum and a typical subject’s passive dynamics to simulate
performance before and after adaptation. This allowed us to predict the
forces that a subject’s controller should produce if it had acquired an
internal model of the forcefield. Parameter values for the model of the
subject’s arm were the same as that described in our previous report
(Shadmehr and Mussa-Ivaldi, 1994). Parameter values for the robot were
determined by using a derivation of the kinetic energy of the system in
terms of the link lengths, masses, and center of masses of the four bars of
the parallelogram. Despite the 12 unknowns, the mass parameters com-
bine in the inertia matrix and reduce to 3 composite parameters (Slotine
and Li, 1991). These parameters (along with friction and viscous param-
eters, which are comparatively small and were not used here), were
estimated using a system identification technique. We estimated the
inertia matrix of the robot to be:

Ir 5 F a1 a2 cos ~ p2 2 p1!

a2 cos ~ p2 2 p1 ! a3
G ,

with p1 and p2 as Robot’s joint angles (Fig. 1), a1 5 0.46, a2 5 0.34, and
a3 5 0.094 kg/m2, and link lengths of 0.460 and 0.344 m for the upper
arm and forearm of the robot. We estimated the coriolis matrix of the
robot to be:

Gr 5 F 0 2 a2 sin ~ p2 2 p1 ! ṗ2

a2 sin ~ p2 2 p1 ! ṗ1 0
G .

The desired trajectory in the simulations was assumed to be minimum
jerk (Flash and Hogan, 1985) with a period of 0.5 sec.

RESULTS
We report on experiments in which subjects learned to make
reaching movements in two distinct dynamic environments. We
find that the ability of subjects to learn movements in a second
environment, and the ability to recall the skill acquired by prac-
ticing in the first environment, are influenced by the temporal
distance between learning the first and second environments.

Learning control of a novel dynamic system
A typical subject’s hand trajectory in the null field is shown in
Figure 2A. Without the disturbing forces, subjects could readily
make rapid and accurate movements to the targets. As previously
noted (Flash, 1987), these movements were approximately in a
straight line with a symmetric tangential velocity profile. However,
once a field was introduced, movements became highly distorted.
An example of the imposed force field and the resulting move-
ments are shown in Figure 2, B and C. The force field (named B1
in Materials and Methods) pushed the hand in a direction per-
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pendicular to the direction of the target. The magnitude of the
imposed force was a linear, increasing function of hand velocity.
The resulting motion of the hand had a characteristic “hooking”
pattern. In previous simulations, we observed similar patterns of
motion when we assumed a biomechanical controller of the form
detailed in Eq. 3 (Shadmehr and Mussa-Ivaldi, 1994). Note that
our model controller produces a pattern of torques based on
expectations of the dynamics of the task and is stabilized by the
stiffness of the arm about the desired trajectory. This had led us to
suggest that the hooks are not indicative of a second, corrective
movement, but are attributable to the interaction between the
stiffness and inertial characteristics of the subject’s arm and the
imposed force field.
With practice, the hooks diminish and the hand trajectory in the

field (Fig. 2D) becomes similar to that observed in the null field
(Fig. 2A). Force measured at the interaction point of the robot
and the subject suggest that, with practice, subjects learn to
produce forces perpendicular to the direction of the target as the
hand moves toward the target (Fig. 2E). These forces essentially
cancel the imposed force field, allowing the hand to move along
the desired trajectory. In principle, two biomechanical mecha-
nisms may be responsible for this adaptation. By increasing stiff-
ness of the arm, i.e., global muscular co-contraction, the subject
can cancel most perturbing forces regardless of their direction.

Alternatively, the subject may learn to activate muscles so that in
addition to the forces necessary to move the hand toward the
target, perpendicular forces are generated to compensate for the
expected dynamics of the force field. Only in the later scenario
would we expect that a sudden removal of the force field should
result in after-effects. Typical after-effects are shown in Figure 2F.
This is an indication that the subject is learning to command a
novel pattern of muscle forces in order to reach a target location.
In the language of control theory, the subject is learning an IM
that predicts a pattern of forces for a desired trajectory.
The after-effects give us a window through which we can exam-

ine the content of the IM. Normally, when moving in a null field,
the amount of force that is produced by the subject perpendicular
to the direction of target is rather small (Fig. 3A; this amount is
nonzero because the inertia of the manipulandum and the arm is
not isotropic). To make a straight-line movement in the field, the
subject needs to produce significantly larger perpendicular forces.
An example of forces produced by the trained subject is shown in
Figure 3B. If this change in force production is achieved through
learning of an internal model, then through simulation we can
predict the pattern of forces that will result if we unexpectedly
remove the force field. When the biomechanical controller has
incorporated an IM of the field of Figure 2B, the change in the
output of the system (force at the interaction point as compared

Figure 2. A, Hand path of a typical subject in the null field (the points in all hand paths are 10 msec apart). B, An example of a force field produced
by the robot. The field is a linear function of hand velocity, and the x- and y-coordinates refer to that of Figure 1. C, Hand path of an untrained subject
in the field. D, Hand path after 300 movements in the field. The trajectory in the field converges to the trajectory observed in the null field. E, Forces
produced by a typical trained subject to counter the effect of the force field as a function of hand position for each movement. These forces are the
projection of the forces measured at the interaction point between the subject and robot onto a direction perpendicular to the direction of target. F, While
training in the field, random targets are presented with null field conditions. The results are after-effects.
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to before adaptation conditions) is predicted to be a distinct
pattern of counter-clockwise forces (Fig. 3C). These forces will be
largest for targets at 908 and 2708 and smallest for targets at 08 and
1808. The reason for this nonuniform pattern is the anisotropic
behavior of the stiffness of the arm (Mussa-Ivaldi et al., 1985;
Shadmehr et al., 1993). This stiffness has the largest influence on
stabilizing the hand on movements to 08 and 1808 and the smallest
influence on movement to 908 and 2708. Indeed, we found that
after practice (300 targets), the motor output of subjects (e.g., Fig.
3D–F) had changed by roughly the same pattern and magnitude
as our simulation had predicted. This suggests that subjects were
incorporating an IM of the novel dynamics in programming their
motor output. We note, however, that the simulation was in
agreement with the recorded forces only for the initial 200–250
msec into the movement. Beyond this, it is possible that long-loop
reflexes (which are not modeled) or voluntary action begins to
significantly influence the pattern of force generation.

Long-term motor memories
Learning of an IM allows the subject to move his/her hand along
a desired trajectory. We assumed that the desired trajectory for
each subject was their pattern of motion in the null field (baseline
trajectories, as in Fig. 2A). Our performance index was a corre-
lation between a subject’s typical movement before imposition of
the field with movements in the field (Shadmehr and Mussa-
Ivaldi, 1994). Figure 4A shows the change in this index as a
function of practice in all subjects. It is apparent that the majority

of the improvement is occurring in the first 150 movements (the
first target set).
Does practice lead to long-term storage of the acquired

internal model? We have shown previously that there is a
significant improvement in the performance index when sub-
jects are tested 24 hr after they are trained in a given field
(Brashers-Krug et al., 1995b). Here we trained subjects on field
B1 (n 5 18) and had them return at 24 hr to be tested on either
the same field that they were trained in previously (control
group, n 5 10) or on a novel field B2 (n 5 8). Subjects in the
control group also returned 5 months later and were tested on
the same field in which they were trained. Results are shown in
Figure 4, B and C: performance in the trained field was signif-
icantly higher when probed at 24 hr (Fig. 4B; F(1,9) 5 17.99,
p , 0.005) and continued to be significantly higher at 5 months
after the initial practice ( p , 0.005; Fig. 4C). In comparison,
performances of subjects that trained on B1 and were tested 24
hr later on B2 were not significantly different than the levels
achieved by the naive subjects on B2 (F(1,7) 5 3.2, p . 0.1). This
suggests that the improvement in performance of the control
group was not attributable to general familiarity with the ex-
periment, but learning of an IM specific to the presented force
field. This learning resulted in a long-term memory of the IM.
To determine whether subjects who practiced in two different

fields (B1 and B2, training sessions for the fields separated by 24
hr) formed long-term representations of both fields, we had sub-

Figure 3. The component of the interaction force perpendicular to the direction of motion plotted as a function of time along straight-line paths to the
targets. A, Interaction forces while moving in a null field. B, Interaction forces of a trained subject while moving in a field. C, Results for a simulation
in which the controller of Eq. 3 had learned an IM of the force field and, unexpectedly, the field was removed, i.e., force predicted for the after-effects
in the case that the controller had learned a perfect model of the field. Forces are plotted for the first 250 msec of movement. D–F, Forces recorded from
three typical subjects during their after-effects (first 250 msec of movement). The motor output of subjects changed by roughly the same pattern and
magnitude as the simulation had predicted. The vectors in all paths are 10 msec apart.
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jects (n 5 6) tested on field B1 at an interval of 2 weeks and field
B2 at 3 weeks beyond completion of training. With respect to the
performance during training, there was a significant improvement
in performance during the recall sessions: mean performance
index 6 95% confidence interval 5 0.89 6 0.007 vs 0.92 6 0.007
for field B1 during training and recall (F(1,5) 5 16.81 p , 0.01),
rejecting the null hypothesis that there is no improvement in
performance during recall of B1 as compared to initial training,

and 0.87 6 0.008 versus 0.900 6 0.008 for field B2 during training
and recall (F(1,5) 5 40.63 p , 0.002), rejecting the null hypothesis
that there is no improvement in performance during recall of B2
as compared to initial training. Therefore, when the training
sessions were separated by 24 hr, subjects retained the IMs for
both fields B1 and B2.

Time course of consolidation
The idea that memories undergo a process of consolidation relies
strongly on the observation that there are periods after acquisition
of information during which the representation of the recently
acquired material is fragile. With time, the representation be-
comes less susceptible to an intervention. For example, post-
training treatments such as electric shocks (Squire et al., 1975),
removal of key anatomical sites (Kim et al., 1995), or protein
synthesis inhibition (Tully et al., 1994) retard this progression and
often result in loss of the recently acquired information (Squire et
al., 1981). These interventions, however, have little effect on recall
once a window of time has passed since acquisition.
We tested for the stability of the acquired IM of field B1 as a

function of temporal distance to training in field B2. Subjects
trained in field B1, and then trained in B2 at 5 min (n 5 9), 30 min
(n5 6), 2.5 hr (n5 7), 5.5 hr (n5 10), or 24 hr (n5 8). They then
returned 1 week later and were tested in field B1. Figure 5A shows
the change in performance in B1 during the recall session as
compared to the initial learning for two groups: the group that
learned B2 5 min after B1, and the group that learned B2 5.5 hr
after B1. Whereas the 5 min group shows no recall of B1 (mean
performance not significantly different in recall vs initial learning,
paired t test, p . 0.4), the 5.5 hr group shows significant recall
(paired t test, p , 0.02). The data for all groups are summarized
in Figure 5B. There is a significant effect of time on retention of
B1 (F(49,44) 5 2.46, p , 0.05). If B2 is practiced 5–30 min after B1,
we find no evidence for recall of B1. Recall becomes significant at
5.5 hr but approaches the level of recall observed in the control
group only at 24 hr.
The time interval at which learning of field B2 does not impair

recall of B1 is similar to what we had observed previously in a
different group of 70 subjects (Brashers-Krug et al., 1996). In our
previous work, this interval was estimated at 4 hr. Here, we find
significant recall at 5.5 hr. There are two differences in the
protocol of the current study and the previous work: (1) in the
current setup, the subjects practiced 3 times longer on field B1
before being exposed to B2, and (2) in the current study recall was
measured 1 week after original training rather than at 24 hr (as in
our previous work). The increased training on B1 was chosen in
the current protocol to ensure that the performance plateaued
before B2 was introduced (Fig. 4A). Recall was tested at 1 week
rather than at 24 hr to ensure against any anterograde interfering
effects that might be present after learning of B2. This testing of
recall at 1 week is important because of a phenomenon called
“release from inhibition”: it has been observed that in learning
associations between pairs of words, learning to associate A with
B followed by association of A with C leads to poor recall of A–B
when tested at a short interval (hours after training) but leads to
good recall at longer intervals (1 week; as compared to a group
that only learned A–B) (Koppenaal, 1963). Therefore, it is possi-
ble that our previous observation regarding the poor recall of field
B1 (Brashers-Krug et al., 1996) might be attributable to a lingering
anterograde interference from B2 (see Fig. 8). The current study
was designed with this concern in mind. The results of Figure 5

Figure 4. Performance during initial training in a force field and subse-
quent tests of recall. Performance index is a correlation between the hand
trajectory in the force field and the hand trajectory in the null field
(baseline trajectories, as in Fig. 2A). A, Mean performance 6 95%
confidence intervals for all subjects (n 5 60). For each subject, groups of
eight consecutive movements are binned together (there were 8 different
directions of movement, and target directions were presented in random
order). B, Initial performance in a field and performance 24 hr later. All
lines are mean performance 6 95% confidence intervals. Thin line, Per-
formance of naive subjects (n 5 18) in field B1. Thick black line, Perfor-
mance of a subset of these subjects (n 5 8) in a novel field, B2, measured
24 hr after training in B1. Thick gray line, Performance of the remaining
subjects at 24 hr on field B1. C, Summary performance scores 6 95%
confidence intervals for the two groups of subjects. Gray line represents
subjects that were tested on the field in which they were trained. Black line
represents subjects that at 24 hr were tested on a novel field.
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show that recall of B1, as measured a week after original learning,
is significantly influenced by the time at which B2 was learned.
Although the time of learning of B2 influences the recall of B1, the

link to consolidation would be strengthened if there was evidence
that learning of B2 within close temporal proximity of learning B1
results in an unlearning of the IM for B1. The computational model
for this kind of forgetting has termed the phenomenon “catastrophic
interference” (Sutton, 1986). In this computational model of mem-
ory, forgetting occurs because the memories that represent the in-
ternal model of field B1 (associating a desired trajectory to a specific
pattern of muscle torques) are used for learning B2 (Shadmehr et al.,
1995). Because the two fields are anticorrelated, learning of B2 would
lead to a loss of memory for B1 (e.g., massive changes in the weights
of the network or patterns of activity). A prediction of this compu-
tational model is that at close temporal proximity, learning of B2
takes place with an instantiated IM of B1, rather than a “tabula rasa.”
The after-effects give us a unique window into the contents of

the IM being used to learn a field. For example, in a naive subject
that is just beginning a target set in B2, there are no after-effects.
It is with practice that after-effects develop. We quantified the size
of an after-effect by measuring the distance that the trajectory

deviated from a straight-line path to the target. This distance was
measured at 300 msec into the movement. The sign of this vector
was positive if the after-effect was a counter-clockwise deviation
from the straight line (appropriate for an IM of B1, as in Fig. 2F),
and negative if it was a clockwise deviation. Figure 6 shows the
progression of after-effect development for a group of naive
subjects on field B2 (the control group). This figure also shows the
development of after-effects for the group of subjects that prac-
ticed in B2 at 5 min after completion of practice in B1. In the 5 min
group, subjects begin learning B2 with an IM appropriate for B1.
The rates of change in the after-effects are not different among the
groups: the top four lines in Figure 6 are approximately parallel.
The main difference between the four groups is the starting point.
With temporal distance, the starting point gradually shifts toward
that of the naives so, at 5.5 hr, there are no significant after-effects
as learning of B2 initiates. In other words, whereas in the 5 min
group learning of B2 starts with an IM of B1, in the 5.5 hr group,
the IM is close to a “tabula rasa.”
Another way to quantify the contents of the IM that the subject

is using to learn a given field is to measure the interaction forces
between the subject and the robot. As Figure 3 demonstrates, in
a given subject one can compare the interaction forces recorded
during baseline movements (i.e., in a null field before introduction
of the forces) with those during after-effects. The difference is an
estimate of the change in the motor output of the subject, which
is presumably attributable to adaptation. In our model of the
biomechanical control system (Eq. 3), this variable is an estimate
of the output of the subject’s IM. As we noted earlier, our
measure of this change will very likely be an underestimation of
the true learning because the stiffness properties of the arm will
reduce the size of the after-effects. However, one can measure this

Figure 5. Performance during the test of recall for B1 as a function of
temporal distance between learning of B1 and B2. B1 was tested for recall
1 week after B1 and B2 were learned. A, Mean 6 SE improvement in
performance for two groups of subjects. Thin line is for the group (n 5 9)
that practiced in B2 at 5 min after completion of practice in B1. Thick line
is for the group (n 5 10) that practiced in B2 at 5.5 hr after B1. B, The
ability to recall B1 is significantly dependent on temporal distance between
B1 and B2. Each bar is the mean 6 95% confidence interval of change in
performance as measured for a target set during the recall test versus
during initial practice.

Figure 6. Size and direction of after-effects as subjects learn field B2 at
different time intervals after practicing in B1. Size is determined as the
distance from a straight line (from the previous to the next target) at 300
msec into the movement. Direction is positive for an after-effect appro-
priate for field B1 (i.e., counter-clockwise, as in Fig. 2) and negative for an
after-effect appropriate for field B2. Plotted are the means and 95%
confidence intervals. Each point represents the average after-effect for a
group of subjects at a given movement number (bin size is 4). Because the
size of after-effects depends on direction of target (e.g., Fig. 2F), the
change for a given curve is not expected to be monotonic. However, the
sequence of targets for all subjects is the same. Therefore, after-effects at
a movement number may be directly compared among the different
groups. The figure shows that at 5 min after learning B1, subjects begin
learning B2 with after-effects that are in the direction of B1. Control
subjects who never learned B1 begin learning B2 with no after-effects, i.e.,
unbiased. With temporal distance between training sessions, initial after-
effects begin to resemble those of the control group.
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variable and, assuming that arm stiffness is roughly equal among
the subjects of all the different groups (Mussa-Ivaldi et al., 1985;
Shadmehr et al., 1993), compare its time course.
We computed an estimate of the output of the IM for the

subjects in all groups during the after-effects of the first 80 targets
in fields B1 and B2. The sign of the output was set positive if the
force vector was pointing counter-clockwise from a straight line to
the target (appropriate for an IM of field B1, as in Fig. 3D–F) and
negative if it was clockwise (appropriate for B2). The result is
shown in Figure 7. Lines 1 and 7 show the output of the IM for the
naive subjects in fields B1 and B2, respectively. These lines give us
an estimate of what an unbiased IM will output after it has been
trained with movements to 80 targets. The remaining lines are all
measured while subjects were learning B2 and are differentiated
based on the temporal distance to learning B1. In the 5 min group,
the IM used to learn B2 is still mainly composed of B1. This
evidence supports our contention that learning B2 in close tem-
poral proximity to B1 takes place with an instantiated IM of B1.
With temporal distance, subjects learn B2 with an IM that can
better estimate B2 after a given number of movements. This
predicts that performance should be better in B2 as a function of
temporal distance to B1. Results shown in Figure 8 demonstrate
that this is indeed the case: performance in B2 is significantly
worse than in B1 when temporal distance is 5 min (Fig. 8A). With
time, the ability to learn the second field gradually improves (Fig.
8B; F(39,35) 5 4.155, p , 0.01).
The data on after-effect development (Fig. 6) suggest that the

rate of learning an IM of B2 was similar across the different
groups; the difference was the initial bias from which the learning
began: in computational terms, a first approximation would sug-
gest that the IM used to learn B2 had weights that were strongly
initialized toward those appropriate for representation of B1.
With temporal distance, learning of B2 began with weights less

biased toward B1, approaching the “tabula rasa” of the naives in
the control group. In other words, with time, there was a fading of
an aspect of representation of B1. However, we know that long-
term memory of B1 did not fade with time (at least within a few
months; Fig. 4C), suggesting that this fading component is not
related to long-term memory of B1. In Figure 9 we combined the
data on retrograde and anterograde effects of learning the two
fields and show the two hypothesized aspects of memory for
learning an IM for B1. The fading component has data points that
are biases of the IM used to learn field B2. The rising component
has data points that are the memories of B1 that were retained
after learning of B2. This represents a hypothesized time course
for formation of long-term memory of B1.
The fading component of the memory of recently learned B1 is

presumably the reason why subjects at 5.5 hr can readily learn B2.
To determine whether there is a relationship between this fading
component and the consolidation process for formation of long-
term memory of B1, we performed one last experiment. We
recruited a new group of subjects (n 5 10) and trained them in B1
(3 target sets) on day 1 and had them return on day 2. On day 2,
subjects were given a target set in B1, and then they practiced in
three target sets in B2. When performance in B2 was compared to
performance in B1 (as recorded 24 hr earlier), we found a signif-
icant reduction in performance (F(1,9) 5 34.85, p , 0.001, a
comparison of performance in the first target set). Furthermore,
the mean change in performance, 20.058, was not significantly
different than the change in performance observed when subjects’
only exposure to B1 was 5 min before B2 (the mean change for this

Figure 7. A measure of forces recorded at the interaction point between
subjects and robot as a function of time into an after-effect. Each line is an
average change in the interaction force during after-effects (n 5 5) to
targets at 2708 and 2258 for the first 80 movements in a given force field
with respect to those recorded from the same group of subjects in the
baseline conditions. This representation of the interaction force is the
same as the measure shown in Figure 3D–F, with the difference that time
is explicitly represented and the sign of the force is positive for a counter-
clockwise vector and negative otherwise. Line 1 represents mean 6 95%
confidence interval of the force produced by naive subjects that learned
field B1. Line 7 represents mean 6 95% confidence interval for naive
subjects that learned field B2. Lines 2–6 are the forces produced by
subjects that were learning B2 at 5 min, 30 min, 2.5 hr, 5.5 hr, or 24 hr after
learning B1, respectively. Figure 8. Performance of subjects in field B2 as a function of time since

learning B1. A, When B2 is introduced 5 min after completion of training
in B1, performance is worse than that recorded from B1. Plotted are
mean 6 SE of correlations. B, Performance in B2 is significantly depen-
dent on temporal distance between B1 and B2. Each bar is the mean 6
95% confidence interval of change in performance as measured for the
initial target set in B1 and B2.
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group was 20.0725, as shown in Fig. 8). Therefore, the ability to
learn a new field was not related to when B1 was originally learned
but, rather, when it was last practiced.
Although learning of B2 is affected by the recently instantiated

B1, if B1 was originally learned 24 hr ago, then its long-term
memory should not be affected by learning of B2. We tested for
recall of B1 on day 3. The subjects showed significantly improved
performance compared to initial training (F(1,9) 5 8.757, p ,
0.02). Mean improvement in this group (10.0316) was not signif-
icantly different than the improvement that we had seen in our
control subjects (10.034, shown in Fig. 5). The long-term memory
of B1 was intact even though B2 was learned immediately after B1
was performed. This suggests a functional independence for the
two hypothesized stages of motor memory.

DISCUSSION
The ability of the central nervous system to learn and store
multiple and conflicting visuomotor maps has been demonstrated
in both monkeys and man (Flook and McGonigle, 1977;
McGonigle and Flook, 1978; Welch et al., 1993; Cunningham and
Welch, 1994). For example, it has been shown that the CNS can
learn and retain two conflicting visuomotor maps associated with
left and right displacing prisms (McGonigle and Flook, 1978) and
two different gains associated with the vestibulo-ocular reflex
(Baker et al., 1987; Shelhamer et al., 1992; Tiliket et al., 1993).
Here we demonstrated that two conflicting motor skills (what we
have termed internal models) may also be learned and retained,
but only if the training sessions in the two tasks are separated by
a critical time interval of ;4-5 hr. This time interval is in agree-
ment with the data on the prism studies: in monkeys, adaptation
was obtained only when alternate maps were presented far apart
in time (24 hr) (Flook and McGonigle, 1977). In humans, after a
single training session with a given prism, learning of a second
visuomotor map (with a second prism) at close temporal proximity
(10 sec) was significantly inhibited compared to naives, and a test
of recall with the first prism at 3 d later showed no evidence of
improvement (McGonigle and Flook, 1978).
In this study, we suggested that there is a critical time interval

required for learning and retention of two distinct IMs. Our
results show that recall of IM1 is affected by the temporal distance
to learning of IM2. However, recall is the culmination of a chain
of processes (e.g., perception of the task, integration of proprio-
ceptive information, activation of motor memory, and action), and
poor performance in a test of recall may not imply that the motor
memory component has been affected (Bower et al., 1994); there
is evidence that retrograde amnesia is sometimes not the result of
consolidation failure (Miller and Marlin, 1984). This argument is
based on two reports: (1) when reminder trials involving appara-
tus or other cues were presented during the retention interval
after administration of an amnesic agent, retrograde amnesia was
reduced (Lewis et al., 1968; Quartermain et al., 1970), and (2)
performance improved when the experimenter provided cues
regarding the correct response during test of recall (Postman and
Stark, 1969; Bower and Mann, 1992).
This line of thinking suggests that poor recall may be attribut-

able to inaccessibility of stored information, rather than its loss,
and that with time or appropriate cues, information that once was
inaccessible might become available (Koppenaal, 1963; Squire et
al., 1981). Although we cannot rule out this possibility, there are
four pieces of data from our study that argue for the idea that
representation of a motor skill does undergo profound functional
changes within a short window of time after acquisition.
(1) If subjects are presented with B2 shortly after learning B1, they
learn B2 with an IM appropriate for B1. The contents of the IM
being used to learn B2 (as inferred from the after-effects) suggests
an unlearning of B1. With temporal distance, the learning of B2
begins with an IM that approaches the tabula rasa of the naives.
(2) Recall of IM1 as measured 1 week after original learning
shows a significant dependence on when IM2 was acquired. This
period of 7 d was chosen because it is significantly longer (;7
times) than the interval at which we detected an anterograde
interference from IM1 onto IM2.
(3) Making movements in a force field provides continuous haptic,
proprioceptive, and visual feedback to the subject regarding the
nature of the forces present in the field. Yet when fields are
learned in close temporal proximity, there is no evidence for recall
as measured in a target set that included 192 movements.
(4) Recall of IM1 is not affected when it was learned 24 hr before
learning IM2, even though subjects performed movements in B1
moments before learning B2.
Taken as a whole, the above evidence, in our view, argues for a

distinct change in the state of resistance of motor memory within
a few hours after acquisition. Because the vulnerability to an
intervention and the ability to learn a second task depend on time
since acquisition, it is possible that the neuronal basis of motor
memory changes after acquisition.
A number of mechanisms have been proposed to underlie mem-

ory formation in the central nervous system. These include long-
lasting changes in synaptic efficacy (Bliss and Collingridge, 1993) and
reverberation of activity in a collection of excitatory neurons (Hebb,
1949; Zipser et al., 1993). Hebb (1949) was the first to suggest a
neural basis for the time dependent success of retrograde amnesic
agents. In his framework, memories are stored for a period of time in
a labile form of neuronal firing patterns generated through reverber-
ating circuits. The firing pattern persists after completion of practice
and leads to a more gradual development of synaptic plasticity,
mediating long-term memory. A prominent example of synaptic
plasticity is long-term potentiation (LTP). It has been shown that
after inducing LTP, certain low-frequency stimuli can depotentiate
the synapse (Fujii et al., 1991), effectively reducing the synapse’s

Figure 9. The data from Figures 5 and 8 have been combined to produce
two hypothetical stages in formation of long-term motor memory. The
data points that constitute the decaying stage are the amount of antero-
grade interference that was recorded (as a percentage of that recorded at
5 min) as subjects attempted learning of a second field at different times.
The data points that constitute the rising curve are a measure of memory
retained from the first field after learning of a second field at different
times.
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efficacy to near baseline levels. These stimuli, however, are only
effective if they are given within a small time window after potenti-
ation of the synapse: 20 min after induction of LTP, the low-
frequency stimuli depotentiate the synapse by 70%, whereas at 100
min, the depotentiation is only at 30%. There is a wealth of evidence
for LTP (Asanuma and Keller, 1991; Kimura et al., 1994) and LTD
(Castro-Alamancos et al., 1995) in the motor areas of the cortex and
the cerebellum.
A first-approximation model of learning might begin with

Hebb’s ideas regarding the initial representation of memory as a
labile form of neuronal firing patterns, and synaptic plasticity as
the means for representing long-term memory. These two types of
representations may form the neuronal basis of the two hypoth-
esized stages of motor memory in Figure 9; according to this
model, practice leads to recruitment of activity in neuronal cir-
cuits and establishes a reverbrating pattern as the training comes
to an end. This pattern gradually decays, but it serves as the
teacher for a slower but more resistant form of memory storage
(Alvarez and Squire, 1994), e.g., synaptic plasticity. We would
expect that the initial stage to have a finite life and decay after
completion of motor practice in task 1. If task 2 is attempted while
the neuronal firing pattern is present, there will be interference;
learning of task 2 will begin with a pattern appropriate for task 1,
and performance will be impaired compared to naives. If time is
allowed to pass after learning of task 1, changes in synaptic
efficacy gain stability and serve as a more permanent representa-
tion of the motor memory for task 1. It is important to note that
a model of memory that relies only on synaptic plasticity (e.g.,
LTP) would have trouble explaining our data: because the
changes induced in synaptic efficacy are most fragile soon after
they are established, it should be easy to learn IM2 soon after
learning IM1. However, we find that the opposite is true. The
utility of a two-stage learning system has been elaborated recently
in a formal computational model (McClelland et al., 1995).
Our last experiment shed some light on the role of the hypoth-

esized initial stage. We noted that learning of IM2 was impaired if
movements were performed in B1 just before B2, i.e., this impair-
ment was just as severe for the case where IM1 was just acquired
versus the case where IM1 was acquired 24 hr ago but was just
recalled. It seems likely, therefore, that the hypothetical initial
stage is not merely a gateway to long-term memory but also, at
least in part, a temporary storage area for items of information,
whether new or old, for use in the near-term. This is the descrip-
tion that has been used to define “working memory” (Fuster,
1995). A major function of this kind of memory is to hold infor-
mation and update current information on a real-time basis
(Goldman-Rakic, 1994).
It is possible that the neuronal basis of the hypothetical initial

stage is mediated by regions distinct from that of the second stage,
i.e., there may be a time-limited role associated with certain
regions of the brain in maintaining motor memory (Mishkin et al.,
1984). It has been argued that brain regions active during acqui-
sition of motor memory are not necessarily the same as regions
that will eventually store the memory (Pavlides et al., 1993). For
example, although the cortico-cortical projections from the so-
matosensory to the motor cortex play an important role in learn-
ing new motor skills, they may not be required for execution of
existing motor skills (Aizawa et al., 1991). In humans, there is now
mounting evidence from functional imaging studies of motor
learning that indicate distinct motor areas are active during initial
learning versus subsequent recall trials of a motor task (Grafton et
al., 1994; Karni et al., 1995; Kawashima et al., 1995). It will be

important to ask whether changes in centers of neuronal activity
correlate with functional changes in the stability of the recently
acquired memory (Brashers-Krug et al., 1995a; Shadmehr and
Holcomb, 1996). However, in all likelihood, classification of mo-
tor memory into only two discrete phases will turn out to be naive,
because it has been argued that formation of stable memory is
analogous to a developmental process in which extracellular sig-
nals initiate cascades of events, gradually modifying neuronal
representation on a time scale of seconds to years (Dudai, 1989).
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