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Abstract

In generating motor commands, the brain seems to rely on internal models that predict

physical dynamics of the limb and the external world. How does the brain compute an internal

model? Which neural structures are involved? We consider a task where a force field is applied

to the hand, altering the physical dynamics of reaching. Behavioral measures suggest that as

the brain adapts to the field, it maps desired sensory states of the arm into estimates of force. If

this neural computation is performed via a population code, i.e., via a set of bases, then activ-

ity fields of the bases dictate a generalization function that uses errors experienced in a given

state to influence performance in any other state. The patterns of generalization suggest that

the bases have activity fields that are directionally tuned, but directional tuning may be bi-

modal. Limb positions as well as contextual cues multiplicatively modulate the gain of tuning.

These properties are consistent with the activity fields of cells in the motor cortex and the

cerebellum. We suggest that activity fields of cells in these motor regions dictate the way we

represent internal models of limb dynamics.
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1. Introduction

Our arm has inertial dynamics that describe a complex relationship between mo-

tion and forces. In order to reliably produce even the simplest movements, for exam-

ple, flexion of the elbow, the brain must activate not only elbow flexors, but also
shoulder flexors that counter the shoulder extension torque that is produced by

the acceleration of the elbow. The importance of these interaction forces was quite

apparent when engineers were trying to control motion of robots (Hollerbach &

Flash, 1982). Yet the principle is the same for control of biological limbs, as has been

recently confirmed in EMG recordings from the human arm (Gribble & Ostry,

1999). This has led to the idea that contrary to earlier hypotheses (Flash, 1987); pas-

sive properties of muscles are not enough to compensate for the complex physics of

our limbs. Rather, with every movement, the brain must predict the specific force
requirements of the task.

To illustrate this idea, suppose we ask a volunteer to pick up an opaque carton of

milk that appears full but has been drained empty. The visual appearance of the bot-

tle retrieves an internal model that predicts the forces that are necessary to lift the

bottle. The brain overestimates the mass of the carton by only about a pound (the

weight of the missing milk), yet the motor commands that are constructed based

on this prediction make the arm dramatically veer off-course. The on-line error cor-

recting mechanisms inherent in the length–tension properties of the muscles and the
spinal and supra-spinal reflexes reduce the effects of the prediction error. However,

the fact that small, unexpected changes in limb dynamics produce large errors sug-

gests that first, the gains associated with the on-line error correcting pathways are

typically small, and second, motor commands are largely constructed based on pre-

dictions about the dynamics of the task.

The accuracy of internal models is particularly important for control of our arm

because our hands evolved in large part to support manipulation – holding an object

changes dynamics of reaching. Furthermore, because our arm is connected to a
potentially moving trunk, interaction torques due to motion of the trunk or rotation

of the body will also change dynamics of reaching (Lackner & Dizio, 1994). The neu-

ral system that predicts force properties of reaching would have to be able to accom-

modate this variability and adapt.

But how does the brain compute internal models of dynamics? To approach this

question, consider how the error in the lifting of the empty milk carton might influ-

ence a subsequent movement with the same carton. Suppose that on the subsequent

trial, we ask the volunteer to slide the carton to the right. In effect, we are asking the
brain to generalize its experience in the lifting movement to a movement 90� away.
Intuitively, if we assume that the internal model is composed via a set of elements,

then the pattern of generalization should have something to do with the sensitivity

of the elements to movement direction. If the elements are about as sensitive to an

upward movement as to a movement at 90�, then the error that was experienced

for the upward lift should generalize. If on the other hand one group of elements

are activated for lifting and another group are activated for the 90� movement, then

there should be little generalization.
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Here I review the theoretical framework that has been employed to express these

ideas and consider the experimental results regarding patterns of generalization.

I argue that the generalization patterns represent a fundamental signature of the neu-

ral system that computes internal models.
2. Internal models of limb dynamics associate sensory states of the arm to forces

To study the properties of the neural system with which the brain learns to predict

forces, we use a paradigm (Fig. 1) where arm dynamics is systematically changed

through imposition of forces by a robotic manipulandum (Shadmehr & Mussa-

Ivaldi, 1994). The subject is provided with a target and asked to reach while holding

the handle of the robot. When the robot’s motors are disengaged (null field condi-
tion), movements are straight (Fig. 1A). The forces in the field typically depend

on the velocity of the hand (Fig. 1B). When the field is applied, movements are per-

turbed (Fig. 1C). With practice, hand trajectories become nearly straight. The brain’s

ability to modify motor commands and predict the novel forces is revealed in catch

trials where there is a sudden removal of the forces. Very early in training, the hand’s

trajectory in the catch trial is a straight path to the target. With further training in

the field, as trajectories in field trials become straight, trajectories in catch trials

(Fig. 1E) become approximately a mirror image of the early, field trials (Fig. 1C).
Fig. 1. Experimental setup and typical data. (A) Subjects hold the handle of a robot and reach to a target.

The plot shows hand trajectory (dots are 10 ms apart) for typical movements to eight targets in the null

field, i.e., robot motors disengaged. (B) Typical force fields produced by the robot. Forces are plotted as a

function of hand velocity. (C) Average hand trajectories (±SD) for movements during the initial trials in

the saddle force field. (D) Simulation results for reaches in the saddle force field. (E) Hand trajectories dur-

ing catch trials in the saddle field. (F) Simulation results for catch trials in saddle field. Redrawn from

Shadmehr and Brashers-Krug (1997).
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The trajectories in these catch trials are after effects of adaptation of the internal

model.

Improvement in performance occurs because training results in a change in the

motor commands. One possibility is that movements improve because subjects co-

contract antagonist muscle groups. This motor strategy effectively increases the gain
of the error correcting feedback system. However, in catch trials, this kind of adap-

tation would not produce any after effects.

An alternate hypothesis is that the composition of motor commands by the brain

relies on a neural system that for any given movement, predicts the motor commands

that are necessary to counter the forces that will be imposed by the robot. One way to

do this is to imagine a tape that is played out as a function of time as the limb moves

toward a target. This tape may be an average record of forces that were sensed in the

previous movements in that direction. Mathematically, the inputs to this system are
direction and time and the output is force. To test this idea, Conditt, Gandolfo, and

Mussa-Ivaldi (1997) trained subjects to reach to a small number of targets in a force

field and then asked them to draw a circle in the same field. They reasoned that if what

was learned was like a tape recording of the forces encountered in reaching to each

target, then the neural system that had been trained to predict forces in short, straight

reaching movements should contribute little to longer, circular movements. However,

they found that performance was quite good in circular movements when the field was

on and, importantly, the subjects showed after effects when the field was off.
This suggested that the neural system did not predict forces explicitly as a function

of time. Rather, during the reaching trials the neural system had learned to associate

the sensory states of the hand – its position and velocity – to forces. The temporal

order in which those states were visited (i.e., the temporal component of the trajec-

tory) was apparently immaterial. What was important was the region of the state

space – the hand’s velocity at a given position – that the reaching movements had

visited and the forces that were encountered at that state space. If the temporal order

of the states were changed from the ‘‘training set’’ in which the system had experi-
enced the forces, the neural system could still predict forces because the states them-

selves were part of the initial training set.

However, one could argue that the reason why the subjects learned to associate

states to forces, rather than some other input that explicitly included time, was be-

cause the force field that was imposed on the hand was itself not explicitly time

dependent. Rather, it was dependent on hand velocity. Conditt and Mussa-Ivaldi

(1999) tested this by asking whether subjects could adapt to force fields that explicitly

depended on time. Remarkably, the results indicated that they could not. When a
predictable, time-dependent pattern of force was imposed during reaching, behavior

in circular movements suggested that subjects still learned to associate states of the

arm to forces. Therefore, the brain’s ability to predict force did not explicitly depend

on movement time. Rather, the experiments of Conditt and Mussa-Ivaldi suggested

that with practice, participants learned a sensory to motor transformation where a

position and velocity-like input signal indicating state of the arm was transformed

into a force-like output signal. The term that is used to label this computation is

an internal model of the force field.
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3. Interaction between internal models and on-line error correcting mechanisms

The internal model, i.e., the neural system that predicts force as a function of a

given desired state of the limb, is our tentative answer to the question: ‘‘What is

being learned with training?’’ We have not specified how information is represented
in this internal model, or how this information is acquired through experience. All

we can say at this point is that at the start of training the internal model is ‘‘empty’’

(i.e., it predicts zero force for all input states) and after a period of training, it adapts

in the sense that it correctly predicts forces for typical states. However, there is suf-

ficient information in this statement to allow us to test whether our formulation thus

far is consistent with measurements.

If a simulation of an adaptive controller attached to the dynamics of the arm ac-

quires an internal model of a force field, what will its trajectories of motion look like?
The dynamics of the arm (in this case, a two-joint planar system) are derived from

Newton’s laws and are written as equations that describe how the limb’s acceleration

depends on forces. They describe how the mass of the limb responds to force input

from the muscles. To represent the error feedback system of the muscles and the re-

flexes, we add to the equations a simple low-gain spring-damper element that stabi-

lizes the limb about the desired trajectory. To produce a movement, we assume that

the joint torques are commanded based on knowledge of the inverse dynamics of the

limb, i.e., a map that transforms the desired sensory state of the limb into torques so
that it compensates for the arm’s inertial dynamics. This is an internal model of the

arm’s physical dynamics. The equations have been detailed in Shadmehr and Mussa-

Ivaldi (1994).

Initially in training, the simulated internal model has no knowledge of the

robot-imposed forces. Because of this, the simulated arm does not move straight

to the target (Fig. 1D). Rather, it moves along a hooking trajectory that is similar

to what we have recorded in our participants (Fig. 1C) (Shadmehr & Brashers-

Krug, 1997; Shadmehr & Mussa-Ivaldi, 1994). Note how the trajectory errors
(deviations from a straight line) are larger for reaches toward 90� than for 0�.
The simulated internal model underestimates the forces by the same magnitude

for all directions, yet the trajectory errors are direction dependent. The simula-

tion demonstrates that this difference is due to direction dependent anisotropies

in limb inertia and stiffness. Therefore, errors in reaching are not directly

related to errors in the internal model. Rather, limb biomechanics transforms

the errors in force prediction to produce errors in limb trajectory. This is an impor-

tant idea that we will come back to when we consider the question of generaliza-
tion.

Now we change the internal model so that it completely takes into account the

added dynamics of the force field. If we introduce a catch trial, the resulting move-

ment (Fig. 1F) is approximately mirror image of the field trials early in training.

Therefore, the trajectories that we had recorded in the reaching movements of our

subjects suggest a motor control system that utilizes both a feed-forward internal

model and a feedback error correcting mechanism.
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4. Neural correlates of learning an internal model of a force field

The equations of motion that produced trajectories in Fig. 1 included torque gen-

erators but not specific muscles. Thoroughman and Shadmehr (1999) added to these

equations constraints regarding function of arm muscles and translated expected
forces on the hand to changes in muscle activation patterns. To visualize the changes,

for each muscle they plotted the magnitude of activation, averaged for a given reach,

as a function of movement direction (Fig. 2B). The result was a tuning function that

had a preferred direction (PD) for each muscle (Flanders & Soechting, 1990; Sergio

& Kalaska, 1998). The PD for a muscle was the direction of movement in Cartesian

coordinates centered on the hand for which the modeled muscle was most active.

They observed that when the model adapted to certain force fields, the PD of certain

muscles rotated.
For example, they considered adapting to a curl force field (Fig. 1B). In a curl

field, forces push the hand perpendicular to its current velocity. In the clockwise ver-

sion of this field, force vectors point in a clockwise direction perpendicular to the

direction of hand motion. The simulations predicted and experiments confirmed that

in adapting to a clockwise curl field, the PD of elbow muscles rotated by �27� and
PD of shoulder muscles rotated by �18� (Thoroughman & Shadmehr, 1999). There-

fore, one way to represent the change in motor commands due to adaptation of an

internal model is via a rotation in the PD of the directional tuning of arm muscles.
In a sense, this is a trivial result because of course the commands to the muscles

must change if forces are to counter the robot-imposed field. However, the results are

useful for two reasons. First, because the simulation predicts that for any given field,
Fig. 2. Generalization from one configuration of the arm to another. (A) Subjects trained with the hand at

the ‘‘left’’ workspace in the force field shown and were then tested at a ‘‘right’’ workspace in a different

field. (B) Directional tuning for the biceps muscle. For each direction of movement, muscle activity was

averaged and is plotted during the null field (solid line) and after adaptation to the force field (dashed line).

The gray wedge indicates preferred direction of the muscle. The field at left produces 38� clockwise rota-
tion in the PD of biceps. At right, PD of biceps in the null field rotated 90� with respect to null at left.

However, the field at right also produced a clockwise rotation of biceps PD. (C) Performance measure

(perpendicular displacement of a reach with respect to a straight line) is plotted for bin size of 16 move-

ments. Training at left generalizes to the field at right. Redrawn from Shadmehr and Moussavi (2000).
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formation of an internal model should accompany a specific rotation in the PD of

certain simulated muscles, it provides a compact way to quantitatively predict the

experience-dependent change that should occur in the motor commands. Second, be-

cause in the monkey motor cortex, in certain conditions where PD of muscle activa-

tion functions had changed, so had the PD of some cells in the primary motor cortex
M1 (Sergio & Kalaska, 1997), one can suggest that the rotation in EMG is echoing a

similar change in PD of some motor cortical cells.

In an experiment where monkeys learned reaching movements in a clockwise curl

field, Bizzi and colleagues (Li, Padoa-Schioppa, & Bizzi, 2001) observed that about

20% of the task related cells in M1 underwent a median clockwise shift in PD of 16�.
This was close to the average change in PDs in the arm muscles of the monkeys.

These ‘‘dynamic’’ or ‘‘muscle-like’’ cells had PDs that rotated back to the null con-

dition when the field was washed out. The results suggested that perhaps the motor
cortex was involved in computing the internal model. However, what might be a test-

able behavioral consequence of this hypothesis?

One of the consistent properties of reach related cells in M1 is that if a cell is direc-

tionally tuned at one arm configuration, it is also likely to be directionally tuned

when the configuration of the arm is changed (Caminiti, Johnson, & Urbano,

1990). However, the change in the workspace often results in a change in the PD

of cells. When reaching is examined in the horizontal plane, PD of a typical M1 cell

will rotate approximately with the shoulder angle (Caminiti, Johnson, Galli,
Ferraina, & Burnod, 1991; Caminiti et al., 1990). The reason for this rotation is pos-

sibly the observation that many M1 cells are sensitive to force requirements of the

task. Sergio and Kalaska (1997) trained monkeys to generate isometric force ramps

in eight spatially constant directions in a horizontal plane while holding the arm in

nine different locations in a 16 cm diameter workspace. Typically, M1 activity was

directionally tuned for the direction of isometric force in any given arm location

in the workspace. However, many cells showed small but systematic shifts of direc-

tional tuning at different workspace locations even though the output force was in a
constant spatial direction. On average, there was a significant clockwise rotation of

cell PDs from the central hand location to locations to the right, and a significant

counter-clockwise rotation of cell PDs for hand position to the left. These rotations

were consistent with the rotation of PDs in the shoulder and elbow muscles of the

arm in the same task.

Because the ‘‘dynamic’’ cells that Bizzi and colleagues found (Li et al., 2001) were

sensitive to changes in force properties of the task, i.e., their PDs rotated as the task

was changed from a null field to a curl field, we can hypothesize that these cells might
be ‘‘muscle-like’’. By this, we mean that their PDs might change as the configuration

of the arm changes. We would expect that their PDs will rotate with the shoulder in a

way similar to rotation of PDs in arm muscles.

Imagine that the change in PD due to learning of the field and changes in PD due

to shoulder rotation are cumulative. Then training in one workspace should result in

the rotation of PDs by a certain amount, and translation of the arm to a new work-

space should result in an additional rotation by an amount approximately equal to

the rotation in the shoulder joint. At the new workspace, despite the fact that no
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prior training had taken place there, an effect of the prior training should be

observed, i.e., we should observe generalization. This is a behavioral prediction

of the model.
5. Generalization as a function of arm’s position

Consider adapting to a force field shown in Fig. 2A. If the right arm is near the

horizontal plane and the shoulder is flexed so that the hand is at a ‘‘left’’ workspace,

preferred direction of biceps (an elbow flexor) is about )90� (Fig. 2B). When a sub-

ject trains in the field, one observes a �35� clockwise rotation in the PD of biceps.

Now imagine that there are cells in the motor cortex that rotate their PD by an

amount similar to this. If we now take the subject’s arm and extend the shoulder
so that the hand is at the ‘‘right’’ workspace, we would expect the muscle-like M1

cells that were directionally tuned with the arm in the left workspace to also be direc-

tionally tuned when the hand is at the right workspace. Furthermore, we would ex-

pect that on average, the 90� clockwise rotation in the shoulder joint should cause

the PD of these cells to rotate by an average of 90�. So for a motor cortical cell that

was ‘‘muscle-like’’ and had a PD of say 180� at the left workspace, adaptation to the

field at that workspace should cause the PD to change to 150� (i.e., 180�) 30�), and
movement of the hand to the right workspace should bring the PD to 60� (i.e.,
180�) 30�) 90�). If the subject had not practiced movements in the field, at right this

cell would have a PD of 90�. Therefore, the effect of training at the left workspace

should be observable in terms of the behavior of the hand at the right workspace

if the muscle-like cells that rotated their PD at the left workspace maintained their

relative rotation at the right workspace. In terms of forces, this corresponds to a field

where the relative rotation of the muscle PDs is maintained as a function of arm con-

figuration.

One can approximate such a force field by transforming forces on the hand at the
left workspace to joint torques, and then transforming the torques back to hand

forces at the right workspace (Shadmehr & Moussavi, 2000). For the field shown

in Fig. 2A, this procedure produces 180� rotation of the field (Fig. 2A). This theore-

tical result means that if one trains at left in the field shown, at the right workspace

one should generalize to negative of that field. We were intrigued by this prediction

because we had earlier observed that if one adapts to field B and then is given field

�B in the same workspace, performance in �B is absolutely terrible. In fact, perfor-

mance in �B for these subjects is far worse than performance of na€ıve subjects in the
same field (Brashers-Krug, Shadmehr, & Bizzi, 1996). The model now predicted that

if after training in B we simply moved the subject’s arm to a new location, we would

see that performance in �B is quite good. Experiments confirmed this prediction

(Fig. 2C) (Malfait, Shiller, & Ostry, 2002; Shadmehr & Moussavi, 2000). The results

are consistent with the idea that the tuning properties of the muscle-like cells in M1

dictate some of the patterns of behavioral generalization.

However, it is certainly not the case that all M1 cells are muscle-like in their tun-

ing properties. In many instances, experiments have demonstrated that a significant
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portion of cells in M1 code for parameters of reaching movements in extrinsic coor-

dinates (Kakei, Hoffman, & Strick, 1999; Moran & Schwartz, 1999). Indeed, in their

force field learning experiment, Bizzi and colleagues (Li et al., 2001) found that 34%

of M1 cells that they recorded had tuning properties that remained invariant despite

the changes in force properties of the task (labeled as ‘‘kinematic’’ cells). One would
predict that these kinematic cells would not change their PD with the configuration

of the arm. Therefore, our hypothesis predicts that M1 cells that have more muscle-

like properties, i.e., change their discharge patterns in a way that correlates with

changes in muscle activations, are the ones that contribute most to the representation

of internal models for dynamics of reaching movements.
6. Computing an internal model with a population code

How does one quantitatively test the idea that tuning properties of certain cells

influence patterns of generalization during learning? To answer this question, we

need to advance beyond a description of the input–output variables that are encoded

by the internal model (sensory state of the arm and force, respectively) and consider

how the transformation from input to output might take place. That is, we must first

consider how the central nervous system might compute an internal model.

One of the most widely used models of neural computation is the population
code. While the idea of using populations of neurons to code variables of interest

is old (Humphrey, Schmidt, & Thompson, 1970), it has become a compelling tool

since it was combined with a simple decoding strategy called a population vector

to reconstruct the direction of reaching movements from cells in M1 (Georgopoulos,

Kalaska, Caminiti, & Massey, 1982). To motivate our approach, let us put aside for

now the problem of estimating force fields and consider the simpler problem of rep-

resenting direction of movement of the hand.

Georgopoulos et al. (1982) recorded from a collection of cells in M1 and asked
whether one could estimate direction of a reaching movement from the discharge

of cells. Each cell had a preferred direction of movement that we represent as a vec-

tor of unit length wi. The movements were in a plane. Therefore, wi is a 2D vector

that might point along any direction about a unit circle. In a given trial, imagine that

the movement direction is a, and each cell i discharges by amount ri. This discharge
can be decomposed into two terms. The first term is an average response giðaÞ which
represents the cell’s tuning curve as computed over many movements to various

directions. The second term is noise ni that we might encounter at any given trial i:
ri ¼ giðaÞ þ ni:
Experiments show that the tuning curve is typically a cosine-like function of

movement direction and has a half-width at half-height value of approximately 56�
(Amirikian & Georgopoulos, 2000). The second term is noise that cannot be ac-

counted for by the ‘‘input’’ (target direction). Experiments suggest that this noise

term (for neurons in the visual cortex) is often normally distributed with a variance
that is proportional to the mean value of the tuning function (Tolhurst & Thompson,
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1982). If cells did not have this noise and we could record from a large number of

cells at the same time, we could simply note that cell j happened to fire most during

some movement and estimate the movement direction â to be the angle of the pre-

ferred direction vector of that cell, â ¼ \wj. This is a winner-take-all coding.

However, because cells are noisy, our estimate would have a large variance from trial
to trial, even though the actual direction of movement did not change. A better

approach is a population code (Georgopoulos et al., 1982). In this approach, each

cell’s discharge is weighted by its preferred direction vector. The sum of these vectors

produces the estimate of movement direction:
â ¼ \

X
i

wiri ¼ \

X
i

wigiðaÞ
 

þ wini

!
:

This approach is better in the sense that when the movement direction is fixed, it

produces a smaller variance in its estimate from trial to trial than the winner-take-all

approach. In fact, if the tuning curves were exactly cosine functions, the estimate

would be optimal in the sense that its variance would be as small as possible (Seung

& Sompolinsky, 1993). Therefore, the success of population coding depends on
computing with neurons that broadly encode the input variable. Where this condi-

tion has been approximately met, experiments have generally demonstrated that a

population code could successfully be used to estimate the input variable from noisy

neuronal discharge (Georgopoulos, Schwartz, & Kettner, 1986; Schwartz, 1994).

The example of population coding above is an instance of neural computation of

an ‘‘identity mapping’’, i.e., a map where the output is an estimate of the input var-

iable (movement direction). In general, a population code could also be used to map

an input variable x into any other variable y (Poggio, 1990; Pouget, Dayan, & Zemel,
2000). In this case, the tuning curves of the neurons that participate in this compu-

tation become the basis functions with which the output is approximated. When basis

functions are linearly combined, they can approximate almost any linear or non-

linear function. For example, Pouget and Sejnowski (1997) suggested that neurons

in the parietal cortex might serve as basis functions with which the brain computes

position of a visual target with respect to the head. Cells in this region of the brain

typically have a discharge r that is modulated by both position of the eye xe in the

orbit and position of the target on the retina xr. These cells have a preferred
position on the retina where discharge is maximum, and this discharge is modulated

approximately linearly with the position of the eye (Andersen, Essick, & Siegel,

1985). The tuning function of a cell i can be labeled as giðxe; xrÞ. Using a weighted

sum of these functions, one could estimate position of the target with respect to

the head:
ŷ ¼
X
i

wigiðxe; xrÞ þ wini:
The appropriate weighting wi would have to be learned to form this map. However,

Pouget and Sejnowski (1997) point out that because the tuning functions are the

bases with which the map is constructed, the same bases can be used to form any
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other representation, for example, a shoulder centered representation of the target.

This idea is important because it demonstrates that population coding, a method

that can be used to form neural computation of identity maps, is equally suited for

the more general problem of computing non-linear maps. However, whereas in the

population code described for decoding of movement direction the weights were
vectors that were static and pointed in the preferred direction of a cell, here if the

bases are to be used for learning arbitrary maps, then the weight vectors will change

and will have no specific relationship with the tuning function.

Let us now return to our problem of how the brain might compute an internal

model. One can think of an internal model as a map that transforms sensory input

regarding the desired state of the arm h (i.e., an ordered set of vectors representing

the joint position and velocity of the arm) into joint torques s. We choose a joint cen-

tered representation of limb states and forces because of the pattern of generalization
in Fig. 2. Assume this computation is performed via a population code. Each basis

that participates in this computation has a tuning curve gi that describes activation
as a function of limb position and velocity. Each basis has a preferred torque vector

wi. The population vector response of the network is:
ŝ ¼
X
i

wigiðhÞ þ wini: ð1Þ
We now have a framework to relate tuning gi with behavioral generalization.

Consider the following experiment: force trajectory f acts on the hand as the hand

moves along trajectory x1. The hand forces results in joint torques s at arm state h1.
The difference between s and ŝ is an error signal that can change weights w.
Assuming Hebbian learning rules, the weight change will be maximum for those

bases that happened to be most active about state h1. The subject is then asked to

make a movement with the arm along state h2, an arm position (or velocity) where

the subject has not been trained. If performance is different from na€ıve, then the

function gi for which the weights adapted for movements along h1 must have been

broad enough to not only be active for h1, but also h2. Therefore, if the internal

model is represented via a population code, then generalization is affected by the
shape of the tuning curves of the bases.

From the experiment in which we observed generalization from one arm confi-

guration to another (Fig. 2) we can now conclude that the basis functions could

not have had sharply tuned activity fields around a preferred hand position. If they

did, then experiencing force at one hand position could not have generalized to an-

other hand position 80 cm away. Our idea is that the tuning properties of muscle-like

cells in M1 may be the function g in this population coding (Eq. (1)). To mathema-

tically describe how activity of the bases might vary with arm position and velocity,
we note that cell activity in M1 is modulated globally and often linearly as a func-

tion of static limb position (Georgopoulos, Caminiti, & Kalaska, 1984; Sergio &

Kalaska, 1997), and cells have preferred directions of movement that often changes

as a function of the shoulder angle (Caminiti et al., 1990). To capture these observa-

tions, let us hypothesize that cells that are involved in representing the internal model

have tuning functions that are described as follows:
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giðh; _hÞ ¼ ðkTi hþ cÞ exp k _h� _hik2

2r2

 !
: ð2Þ
The above function represents the output of a basis in the internal model. The po-

sition dependent term is a linear function that encodes joint angles. The gradient

vector k reflects sensitivity of the basis to changes in static position of the shoulder

and elbow. Preferred limb velocity is specified by _hi and c is a constant. The output

for various limb positions and movement directions is plotted in Fig. 3. The basis is
directionally tuned, but the preferred direction changes as a function of hand

location. Furthermore, change in hand position alters both the activation at static

hold time and the depth of tuning of the basis.

Consider a situation in which the internal model is constructed as a linear combi-

nation of these bases. With training at a given arm configuration, the preferred tor-

que vector for some of these elements will change. The change will occur in those

elements that happen to be most active at that arm configuration. The way that these

active elements change their static discharge with arm position dictates how far in
position space the learning will generalize. The gain k dictates how close two work-

spaces have to be (in position space) before learning of conflicting fields becomes

impossible. When the gain is high, output of the bases changes greatly as a function
. Activation of bases that encode limb position and velocity as a gain field. The figure is a polar plot

vation pattern for a typical basis function in the model. The polar plot at the center represents acti-

for an eight-direction center-out reaching task (targets at 10 cm). Starting point of each movement

enter of the polar plot. The shaded circle represents the activation during a center-hold period and

lygon represents average activation during the movement period. The eight polar plots on the

ery represent activation for eight different starting positions. Each starting position corresponds

location of the center of each polar plot. The preferred positional gradient of this particular basis

n has a rightward direction. The preferred velocity is an elbow flexion at 62�/s. Redrawn from

, Donchin, Smith, and Shadmehr (2003).
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of hand position. This results in poor generalization between neighboring positions

of the hand, making it possible to learn two different patterns of force at two differ-

ent hand positions. When the gain is low, output of the bases changes slowly as a

function of hand position. At its limit, output changes not at all as a function of

hand position and effectively there is no coding of hand position. In this situation,
forces generalize globally in hand position space and it is not possible to learn

two different forces for the same direction of movement in two different spatial loca-

tions.

Hwang et al. (2003) estimated the gain k by measuring generalization patterns.

The results of their estimate produced the basis function that was plotted in

Fig. 3. Using these bases, they predicted learning patterns in a number of tasks

(Fig. 4). For example, the model predicted poor learning when the force field was

translation invariant in Cartesian coordinates (Fig. 4A). The model predicted poor
learning when three movements that were in the same direction had a null field on

the outside as opposed to the middle (Fig. 4B). The model predicted poor learning

when a position dependent field presented opposite forces for movements that were

in the same direction but started from slightly different positions (Fig. 4C). Behav-

ioral measures have confirmed these predictions. Therefore, behavioral measures

suggest that the internal model of limb dynamics is constructed with bases that

broadly and perhaps linearly encode static limb position and this encoding act as

a gain that multiplicatively modulates tuning with respect to direction.
The reason why we assumed that the bases linearly coded hand position space was

because discharge of cells in the spinocerebellar tract (Bosco, Rankin, & Poppele,

1996), somatosensory cortex (Helms Tillery, Soechting, & Ebner, 1996), and M1

(Georgopoulos et al., 1984) is modulated linearly with hand position. The reason

for assuming that the bases encoded joint velocity (rather than hand velocity) was

because such encoding can account for the observation that preferred direction of

many task related cells rotates with a rotation in the shoulder angle (Ajemian,

Bullock, & Grossberg, 2001; Scott & Kalaska, 1997). Indeed, it appears that a lin-
ear-like modulation of discharge with respect to limb position and a Gaussian-like

tuning with respect to arm velocity may be a fundamental property of many cells

in the motor system. Simulations suggest that if the brain computes the internal

model with elements that have these tuning properties then one can account for spa-

tial generalization patterns that we and others (Ghez, Krakauer, Sainburg, & Ghi-

lardi, 2000) have recorded in human subjects.
7. Generalization from one arm to the other

We can take this argument a step further and predict generalization patterns from

one arm to another based on tuning properties of cells in M1. One of the remarkable

properties of many of these cells is that if their discharge is modulated as a function

of movement direction for the contralateral arm, that discharge is also modulated

when the reaches are performed with the ipsilateral arm. In fact, it was recently

reported that many cells in M1 maintained their preferred direction of motion



Fig. 4. Consequences of learning internal models with bases that encode static limb position and move-

ment direction as a gain field. Generalization patterns that are produced by these bases predict that certain

tasks will be very difficult to learn. (A) Because the bases encode state of the limb in intrinsic coordinates

(e.g., joint position and velocity), and associate this state to joint torques, a field that is translation invari-

ant in Cartesian coordinates will be hard to learn. (B) Because the bases linearly encode static position of

the limb, it is difficult to learn to associate movements that are in the same direction with different forces.

However, when the movements are sufficiently far apart (about 14 cm), the task becomes learnable. When

the center movement is in a null field, the linear encoding of static limb positions makes it so that the gen-

eralization pattern from left and right movements cancel at center, making this an easy task to learn. When

the null field is placed to the right, the middle movement in field F2 generalizes to the right movement,

making this task hard to learn. (C) A field where forces depend on hand position. Reaching targets are

drawn as small circles. In the easy task, movements that are in the same direction (for example, from bot-

tom target to the center target) have the same force pattern. In the hard task, movements that are in the

same direction have opposite forces. Part B redrawn from Hwang et al. (2003).
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(calculated with the contralateral arm) even when the ipsilateral arm was performing

the reaching movements and the contralateral arm was at rest (Steinberg et al.,

2002). Kalaska and colleagues also observed similar properties of tuning functions

for cells in the premotor cortex (Cisek, Crammond, & Kalaska, 2003). An important

technical point in both of these experiments is that the left and the right arms per-
formed reaching movements directly in front of the animal in the same workspace.

Imagine that this invariance of PD with respect to the right and left arms is also a

property of the muscle-like cells that we hypothesized were involved in representing

this task. Consider a subject who trained with her right hand in a curl force field,

resulting in a rotation of PDs in the dynamic cells by approximately 30�. We now

ask the subject to use her left hand and make reaching movements. Because the neu-

rons in the left hemisphere changed their PD due to training with the right hand, and

because these same cells are also tuned for movements with the left hand, they could
potentially influence movements with the left hand. In fact, the model predicts that

there should be generalization from right to left. Furthermore, it predicts that the

coordinate system of generalization should be in an extrinsic, Cartesian-like coordi-

nates.

This is a very surprising prediction because we noted before that PDs rotate with

the shoulder of the trained arm, causing the training to generalize in an intrinsic

coordinates within the same arm. The theory now predicts that because the PDs

are invariant to the arms, if we looked for generalization between arms, we would
see transfer in extrinsic coordinates.

We tested this by asking whether acquisition of an internal model of arm dynam-

ics allowed the brain to generalize the acquired information to the other arm, and if

so, what was the coordinate system of representation (Criscimagna-Hemminger,

Donchin, Gazzaniga, & Shadmehr, 2003). We used the standard reaching movement

paradigm with curl fields. Hand position was directly in front of the subject centered

on the midline. We considered two coordinate systems for generalization: intrinsic

(joint) coordinates and extrinsic (Cartesian) coordinates. In the intrinsic coordinate
system, if a movement to a given direction required increased activity in the biceps

(for example), then the same movement direction with the other arm should also re-

quire increased activity in biceps. Mathematically, this results in a mirror transfor-

mation of the force field to the other hand. In the extrinsic coordinate

representation, the system would expect the same forces to act on the other hand

in terms of direction of movement in Cartesian space. We explored generalization

from right hand to left hand in right-handed subjects. We found that in right-handed

individuals, generalization occurred only from the dominant right to the left arm,
and its coordinate system was extrinsic in the workspace that we tested.
8. Tuning properties with respect to color of the target

The main claim of the hypothesis is that tuning properties of cells in the ‘‘muscle-

like’’ cells in the motor cortex can strongly influence behavior. In particular, the tun-

ing properties predict how we learn dynamics of reaching movements. In most of the
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examples that we have considered thus far, forces that were imposed on reaching

movements explicitly depended on the state of the arm. Let us now consider a task

where the forces do not depend on state of the arm. For example, imagine a reaching

movement where limb position or velocity does not uniquely describe the forces in

the task. A very simply case is one where a target is presented at a given direction,
but the forces that will be presented during that movement depend both on hand

velocity and the color of the target.

If the bases that take part in learning this task are strongly tuned with respect to

position or velocity of the arm and not to the color of the target, then this apparently

simple task should be in fact extremely difficult to learn. Gandolfo, Mussa-Ivaldi,

and Bizzi (1996) asked subjects to make movements to various directions. For the

initial 48 movements, a velocity dependent field, labeled B1 was present. For the next

block of 48 movements, field �B1 was present, and so on. During presentation of
each field, the room was flooded with a specific color of light. Despite hundreds of

movements, subjects never learned to use the color as a cue to predict the pattern

of forces.

We recently simplified this experiment by limiting movements to only one direc-

tion (Rao & Shadmehr, 2001). On any given trial, the color of the target was ran-

domly chosen as either red or green. Red implied a clockwise curl field and green

implied a counter-clockwise curl field. Because the movement was always in the same

direction, the pattern of forces on that movement depended exclusively on this cue.
We trained subjects extensively on this task, providing them with over 3000 trials,

spread over three days. Remarkably, in catch trials we found no evidence of col-

or-specific after effects. Therefore, over the course of this training our volunteers

were not able to use color as a cue to predict the pattern of forces. However, under

some conditions, color can be a salient cue for learning of fields. For example,

Krouchev and Kalaska (2003) demonstrated that a highly trained monkey could dif-

ferentiate between certain force fields using a color cue. Osu, Hirai, Yoshioka, and

Kawato (2004) found that with cognitive instructions and certain training schedules
color cues could be used for learning of different fields. In all these reports, however,

it is apparent that color is simply not as salient a cue as movement direction. This

predicts that while the bases that take part in representing dynamics of reaching

movements are significantly affected by movement direction, their activation is not

as fundamentally altered by the color of the reaching target.
9. Problems in measuring a generalization function

The basic idea then is that by measuring generalization, one can infer some of the

properties of the bases with which the internal model is computed. However, it is

useful to outline the problems that are inherent in this approach.

To measure generalization, subjects are trained with an input x1 and are then

tested with a new input x2. The first problem with this approach is that it requires

an experimentally na€ıve set of participants to be trained in each pairing of x1 and

x2. As a result, behavioral experiments are often limited to training and testing with
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one or two pairs of inputs, and conclusions are in terms of qualitative statements

regarding the shape of the bases, i.e., wide or narrow. The approach is simply not

feasible for non-human primate studies.

The second problem is that in motor control, we have to consider coordinate sys-

tems. Generalization not only depends on the distance between training and test
locations, but also on the coordinate system in which that space is encoded. For

example, a force that is experienced at a given location may be generalized in terms

of torques on the joints or forces on the hand. These two coordinates predict differ-

ent patterns of generalization in terms of position of the hand.

The third problem is that the bases that are inferred from one generalization

experiment might not be consistent with those that are inferred in another. In other

words, adaptation to one force field might result in a pattern of generalization that is

inconsistent with the pattern observed in adaptation to another field. It would indeed
be remarkable if behavioral data from a wide variety of force adaptation experiments

suggested a consistent shape to the bases. If this were the case, then one could argue

that one has estimated the basic motor primitives with which internal models are

computed.

Finally, even if we are lucky enough to solve all of these problems, we would still

have the problem of interpretation: we would hope that the bases that are inferred by

this abstract model not only explain behavior, but also are interpretable in terms of

the neurophysiology of the motor system. In the next section, I suggest that all four
questions can be approached.
10. Measuring generalization from trial-to-trial changes in behavior

To approach the first two questions – being limited to na€ıve subjects and needing

to consider coordinate systems – we have been developing a new mathematical meth-

od to estimate the shape of the bases from the trial to trial variations in performance
(Donchin, Francis, & Shadmehr, 2003; Donchin & Shadmehr, 2002; Thoroughman

& Shadmehr, 2000). We leverage the fact that the shape of the bases determines how

error experienced during a movement will generalize to the subsequent movement.

That is, the weight associated with the basis elements is likely to change most for

the elements that are most active where the error was experienced. The weight

change is smallest for the elements that were not active where the error was experi-

enced. This means that if error on one movement affects behavior on the next move-

ment in a different direction, then some of the bases must be reasonably active during
both of these movements. That is because they must be active in the first movement

to be influenced by the error and active in the second movement in order to have an

influence on behavior. Thus, generalization of error from one movement to the next

can tell us whether the basis elements are wide enough to encompass both move-

ments.

The idea is useful because it suggests that it is not necessary to train in one set

and then test in another in order to estimate generalization. Rather, all possible in-

puts should be presented in a random sequence. From the trial-to-trial changes in
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performance, one can estimate how error in one movement affected the subsequent

movement as a function of the distance of the two movements in the state space (for

example, angular distance in directions of the two movements). The result is a gen-

eralization function. It is a measure of similarity between two states. If the bases are

activated by similar amounts in two different states, then the similarity is high and
the generalization function will be large. If the bases are uncorrelated in these two

states, then similarity is low and there is little generalization. Therefore, the genera-

lization function estimates the similarity between states as seen through the window

of the bases.

As an example, consider a task where subjects make movements to eight direc-

tions in a random order. We are interested in estimating how force experienced in

a given direction is generalized to all other directions. However, we do not know

the bases g. To simplify matters, let us ignore the noise in Eq. (1), assume that the
bases are only a function of movement direction a, and rewrite that equation in

terms of vector quantities:
ŝ ¼ W gðaÞ;

W ¼ w11 � � � w1m

w21 � � � w2m

� �
;

gðaÞ ¼ ½ g1ðaÞ � � � gmðaÞ �T:
Here ŝ is a 2 · 1 vector. It is an estimate of actual robot-imposed torques s. The error
in our estimate is
~s ¼ s� ŝ ¼ ~s1
~s2

� �
:

Our objective is to change W so that we minimize the ‘‘squared’’ error e:
e ¼ 1
2
~sT~s:
To do so, we need the gradient of e with respect to W . After some algebra, we find
de
dwij

¼ �~sigj:
After performing trial n, the error in that trial ~sðnÞ will be used to change the weights

W ðnÞ of the internal model. That change will be in the opposite direction as the

gradient, and will be weighted by a small constant g:
wðnþ1Þ
ij ¼ wðnÞ

ij þ g~sðnÞi gjðaðnÞÞ:
Writing this in vector form we have
W ðnþ1Þ ¼ W ðnÞ þ g~sðnÞgðaðnÞÞT:

If we multiply both sides of this equation by gðaðnþ1ÞÞ, we have
W ðnþ1Þgðaðnþ1ÞÞ ¼ W ðnÞgðaðnþ1ÞÞ þ g~sðnÞgðaðnÞÞTgðaðnþ1ÞÞ:
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This is equivalent to
ŝðnþ1Þðaðnþ1ÞÞ � ŝðnÞðaðnþ1ÞÞ ¼ ggðaðnÞÞTgðaðnþ1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
generalization function

~sðnÞ: ð3Þ
Eq. (3) says that the change in the internal model from trial n to nþ 1 is completely

described by the error in trial n times a generalization function. That generalization

function is the correlation between the activation of the bases in trial n and trial
nþ 1. Intuitively, we see that the correlation will be largest when the two consecutive

trials are along the same direction. The shape of the tuning functions will determine

the generalization as the distance between the two trials changes in the direction

space.

However, Eq. (3) only describes the effect of the generalization function from

movement n on the direction of the next movement nþ 1. In principle, error could

have been generalized to all directions, but its effect on only one direction is obser-

vable in trial nþ 1. Therefore, we need to account for potential generalizations on
directions (i.e., states) that cannot be observed in trial nþ 1. To express this idea,

we begin by assuming that generalization can be described as a function of the dis-

tance between the direction aðnÞ in which the error was experienced in trial n and all

other potential directions aðiÞ:
bðjaðiÞ � aðnÞjÞ � ggTðaðiÞÞgðaðnÞÞ 8i:

The symbol j j is absolute value. Therefore, the internal model in trial nþ 1 is
ŝðnþ1ÞðaðiÞÞ � ŝðnÞðaðiÞÞ ¼ bðjaðiÞ � aðnÞjÞ~sðnÞ 8i:
We see that if we could estimate the generalization function b from trial-to-trial

changes in performance, we could have a reasonable idea of the kind of bases that

are being used for computation of the internal model. However, our problem is that

we can only record people’s reaching movements, not ŝ. Movements will be straight
when the internal model has a correct estimate of force. There will be an error in the

hand’s trajectory when this estimate is incorrect. Let us assume that this error in the

hand’s trajectory is computed simply as a vector that describes where the hand is at

peak velocity yðnÞ with respect to where it ‘‘should be’’ y� (perhaps along a straight

line to the target). Let us call that position error vector ~yðnÞ. Let us further assume

that it will be related to the force error ~s via a compliance matrix D. This matrix

relates how force error produces a displacement from the intended trajectory. We

now have the following:
~yðnÞ ¼ DðsðnÞ � ŝðnÞÞ ¼ D~sðnÞ;

ŝðnþ1ÞðaðiÞÞ ¼ ŝðnÞðaðiÞÞ þ bðjaðiÞ � aðnÞjÞ~sðnÞ 8i:
ð4Þ
One begins by measuring a sequence of movement errors ~yðnÞ and fit them to the

system in Eq. (4) in order to find the best fit for matrices D and vector b. If there are
eight directions of movement in the task, b has eight unknown parameters. D is

typically a 2 · 2 matrix. Therefore, there are 12 unknown parameters in this model.
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The procedure for fitting these equations to a sequence of movements is provided in

Donchin and Shadmehr (2002). If the model is correct, it should describe all the trial-

to-trial changes in performance that takes place during adaptation and provide us

with an estimate of the generalization function.

Donchin et al. (2003) fit these equations to behavioral data (Fig. 5A). Data from a
large group of subjects (n ¼ 75) had been collected as they learned to make move-

ments in a curl force field. The target pattern was out-and-back in a half-pinwheel

pattern. That is, movements began at center; a target was presented at 0�, 45�,
90�, or 135�. Upon completion of that movement the center target was lit, and the

pattern was repeated. In this way, the movements were to eight directions but all out-

ward movements were followed by a movement back to the center. We found that:

(1) the equations typically explained about 75% of the variance in the data (Fig. 5A);

and (2) the generalization function b (Fig. 5B) and compliance matrix D (Fig. 5C)
remained consistent across repeated measures. Interestingly, the generalization func-

tion was wide and bimodal. That is, generalization dropped off as angular distance of

movements increased and reached a minimum at a distance of 90�, but then rose to

approximately 50% of its peak value at 180�.
It was possible that this bimodality was an artifact of the out-and-back target

sequence. Donchin et al. (2003) tested a new group of subjects in a random target

sequence where the robot brought the hand to the start position of each movement

(2nd row of Fig. 5). b and D maintained their shape. They also tested another
group of subjects in a target sequence where not only the directions of movement

were random, but the force field at each direction was also random (3rd row of

Fig. 5). In this condition, at any given trial the field was either null, clockwise curl

field, or counter-clockwise curl field. As the field was random, adaptation in the

traditional sense was not possible. Remarkably, analysis of the trial-to-trial

changes in performance produced a generalization function similar to that which

was estimated in a ‘‘constant’’ field. In all cases, the generalization function was

bimodal, consistent with bases that encode direction of movement with a bimodal
activation pattern. The shape of the basis function that is consistent with this gen-

eralization pattern is shown in Fig. 5D.

Our finding that the generalization function remains invariant even in a randomly

changing force field suggests that the fundamental computational properties of the

internal model are approximately the same across repeated measures, across subjects

and across a small number of force learning tasks that thus far we have tested. Be-

cause the shape of g in Eq. (1) is responsible for generalization, this is our strongest

evidence that there exists a single set of bases that encode internal models of limb
dynamics.
11. Neurophysiological correlates of the bases

In the 4th question that we posed above, we asked whether the bases that are to be

inferred with this abstract model are interpretable in terms of the neurophysiology of

the motor system. From the patterns of generalization, we conclude that:



Fig. 5. Estimation of a generalization function from trial-by-trial patterns of error. (A) Top row: Black

lines are movement errors during 192 movements (out-and-back pattern) in a standard curl field paradigm

to eight directions of targets. Sharp negative spikes are catch trials. Black lines are measured data and gray

lines are fit to Eq. (4). Subjects performed 3 · 192 movements (three target sets), but data for only one set is

shown. Second row: In this experiment, subjects practiced in a target set that was not out-and back, but

random directions. The shape of the generalization function and compliance are similar to that obtained in

the first row. Third row: In this experiment, subjects trained in a force field that randomly changed from

movement to movement. Despite no obvious learning trends, the generalization function is similar to other

‘‘learnable’’ tasks. (B) The estimated generalization function (b in Eq. (4)). The generalization function im-

plies that �18% of the error that was recorded for a movement toward any given direction updated the

internal model for that same direction. About 12% of error was generalized to neighboring directions

at 135� and 180�. The same subjects were again tested on the same field a second and a third time (2nd

and 3rd target sets, each set 192 movements). The generalization functions for all three sets of targets

are shown in (B). Little change is seen in these repeated measures. (C) The estimated compliance matrix

D for each target set. Compliance matrix is plotted by multiplying D by a unit force vector that goes about

a circle. The estimates change little with repeated measures. The orientation of the ellipse is consistent

with previous estimates of arm stiffness. (D) A basis function consistent with the generalization func-

tions. This particular basis has a preferred velocity at ½0:21; 0:21� m/s, corresponding to the peak velocity

for a 10 cm movement toward 45�. Dark regions indicate higher activation. Redrawn from Donchin et al.

(2003).
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(1) The bases encode position of the arm linearly in the horizontal plane. The linear

coding of static limb position acts as a gain on directional tuning.

(2) The bases encode hand velocity with a function that has a preferred direction

and is modulated broadly but is bimodal.

(3) The preferred directions of the bases rotate with the shoulder angle.
(4) The bases are tuned to movements of the ipsilateral arm such that the preferred

direction remains arm invariant if the workspace is near the midline.

(5) The bases are either not modulated by color of the target or the modulation is

weak.

All of these properties except the bimodality can be found among task related

cells in the primary motor cortex, the basal ganglia, and the cerebellum (Caminiti

et al., 1991; Georgopoulos et al., 1984; Johnson & Ebner, 2000; Turner & Anderson,
1997). The invariance of the preferred direction with respect to movements of the

contralateral and ipsilateral arms was recently observed in the cells of the motor cor-

tex (Steinberg et al., 2002), premotor cortex, and the cerebellum (Bradley Greger &

Tom Thach, personal communication). However, to our knowledge bimodality has

only been observed in the cerebellum during reaching movements: Purkinje cell dis-

charge during reaching movements shows a weak but consistent bimodal activation

pattern as a function of hand velocity (Coltz, Johnson, & Ebner, 1999), whereas no

such bimodality is reported in the same task in the primary motor cortex (Johnson &
Ebner, 2000).

In reaching movements, a muscle that provides the agonist burst to reach in a par-

ticular direction (say 0�) also provides the antagonist burst for a movement in the

opposite direction (180�), but is generally not modulated very much when a move-

ment is made to 90�. The antagonist burst is generally significantly smaller than

the agonist burst. Therefore, bimodality is a fundamental characteristic of muscle

activation functions during reaching and generalization patterns in terms of direc-

tion of movement suggest that the bases are likely to have muscle-like tuning func-
tions. We saw earlier that generalization patterns in terms of spatial configuration of

the arm also made this suggestion. Taken together, this suggests that the neural com-

putation of the internal model is with neurons that have muscle-like tuning proper-

ties with respect to contralateral arm during reaching movements.

The one aspect of the model that is not muscle-like is the encoding of velocity. In

Eq. (2), the bases encode velocity with Gaussians. This means that each basis has a

preferred velocity of movement. Purkinje cells in the cerebellar cortex appear to en-

code movement velocity in this way, where as cells in M1 generally increase their dis-
charge with increased movement speed (Johnson & Ebner, 2000; Moran & Schwartz,

1999). Only one study has considered how the internal model generalizes in terms of

speed of movement (Goodbody & Wolpert, 1998). In that study, force adaptation at

a given average velocity generalized less than linearly to neighboring velocities. How-

ever, the precise shape of the generalization function is not known. If it generalizes

globally, then that representation would be muscle-like and consistent with tuning

of cells in M1. If it generalizes locally, then that representation implies a coding

of velocity that peaks at a particular value and then declines, that is, a preferred
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velocity. This later generalization would be consistent with tuning of task related

cells in the cerebellum.
12. Consolidation

I described learning of internal models using a mathematical framework where

acquisition of information was one and the same as memory. In this framework,

the preferred torque vector associated with each basis changed to minimize error

in the task. Once the task was over, presumably these changes are maintained and

that forms the basis of long-term memory.

The scope of my naivet�e was plainly demonstrated when we found that acquisi-

tion of memory of an internal model was merely the first step in a sequence of events
that eventually resulted in a long-term representation of motor memory. Our behav-

ioral measurements suggested that the internal model changed not only during the

training session, but also in the hours that followed completion of training (Shad-

mehr & Brashers-Krug, 1997). The motor memory appeared to gradually change

from an initially fragile state to a state more resistant to change during a period

of �5 h (Brashers-Krug et al., 1996). Some of these results have recently been ex-

tended: Ghez and colleagues reported that in a task where subjects learned internal

models of an inertial object, motor memory of inertial object 1 could be disrupted if
practice was immediately followed by movements with inertial object 2 (Krakauer,

Pine, Ghilardi, & Ghez, 2000). Using transcranial magnetic stimulations (TMS),

Hallett and colleagues reported that stimulation of M1 immediately after practicing

a thumb flexion task resulted in marked retention deficits whereas stimulation of M1

at 5 h post-practice did not affect retention (Muellbacher et al., 2002). Using func-

tional imaging, we have observed that at comparable levels of motor performance,

the map of activation patterns in the brain differed significantly near the end of train-

ing on day 1 vs. at 6 h (Shadmehr & Holcomb, 1997, 1999), vs. at 2 or 4 weeks after
initial practice (Nezafat, Shadmehr, & Holcomb, 2001).

Therefore, passage of time changes the neural representation of the internal

model. We currently have no theory to account for this. One hope is that we even-

tually might be able to track changes in neural representation by measuring their

influence on patterns of generalization. For example, one possibility is that with con-

solidation, the adaptive components of the neural system that represents the internal

model will become less plastic. This will be reflected behaviorally in the way that er-

ror in one movement affects the subsequent movement.
13. Summary

The specific coding of movement parameters in the neurons that compose the

motor system may have a significant, measurable influence on behavior. That influ-

ence, I suggest, can be observed in how our brain learns to compensate for forces in

control of reaching movements. Training to reach in a force field results is a specific,
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highly reproducible pattern of generalization to other movements. If we assume that

the neural computation of an internal model is via a population code, then the tun-

ing curves of the bases that participate in this computation dictate the patterns of

generalization. From the patterns of generalization one can infer the shape of these

bases, and therefore infer representation.
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