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Introduction

If one was to take a robot arm and replace each of its motors with a pair of opposing rubber bands,

the arm would tend to settle to the same con�guration no matter from where it was released. That

con�guration is the equilibrium point of the system. If we now change the length-tension properties

of the rubber bands, for example, change the resting lengths or sti�nesses, the equilibrium point of

the system will change. Our muscles share a property with rubber bands in that the static force that

they generate depends on length: the greater the length, the greater the force (see Muscle Models).

The activations received by motor neurons, whether it be from direct descending commands from

the brain or from the spinal re
ex circuitry, can change the force-length relation for each muscle,

resulting in a change in the equilibrium position of the system. When we reach for an object, is

the smooth, stable motion a consequence of a simple trajectory of equilibrium points? Are our

muscles and the associated spinal re
ex circuitry designed in a way that makes control of motion

particularly simple for the brain?

If the answer is yes, then it implies that much of the problems inherent in control of a multi-

joint limb, for example, non-linear state-dependent dynamics, might be simpli�ed because of a well

designed muscle-re
ex system. Here I review the evidence regarding this hypothesis.

Mathematical basis of the hypothesis

Equilibrium refers to a state of a system in which the forces acting on it are zero. For example, if

the dynamics of the system are

_q = h(q; u) (1)

where q is the state of the system and u(t) is a control input, then the equilibrium points q� satisfy

the following condition:

0 = h(q�; u) for all t � t0:

In short, if the system reaches an equilibrium position, it will remain there.

For a mechanical system, the state is an ordered pair q = f�; _�g, where � and _� are the position

and velocity of the system. A change in the state occurs when there are forces acting on it. This

can be written in the framework of Eq. (1) as

�� = I(�)�1(fc( _�; �; u(t)) � fm( _�; �)) (2)

where I is the system's inertia, fc is the external force �eld imposed on the system due to the

controller with control input u(t), and fm is the force �eld produced by the motion of the inertial

coordinate frames (Coriolis and centripetal) and other forces. It follows that the system is at

equilibrium at any state f� = 0; _� = 0g where the force in the net �eld fc � fm is zero. Any such

position �� is an equilibrium point for the system.
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We call each state where a �eld has zero force a null point of that �eld. The equilibrium points

for the system, however, are a subset of these null points: the equilibrium point exists only at those

null points of the force �eld fc � fm where the state has zero velocity.

Let us consider how we could go about controlling the system of Eq. 2. Our objective may be

to select the input u in such a way that the system follows a desired trajectory �d(t). For this to

occur, we might select u at any time t in such a way that if we were at state f�d; _�dg, our controller

would produce a force fc = f̂m + Î ��d(t), where x̂ is the controller's estimate of x. Since there may

be uncertainties in the environment, it's a good idea to also have a mechanism to push us toward

where we should be if the need arises:

fc = f̂m + Î ��d �B( _� � _�d)�K(� � �d) (3)

where B and K should be positive de�nite matrices. We can think of the estimates as a feedforward

component of the controller, and the remainder as the feedback component of the controller. If the

estimates were perfect, substitution of Eq. 3 into Eq. 2 would give:

�e+ c1 _e+ c2e = 0

where e = � � �d is the error in tracking our desired trajectory, and c1 and c2 are positive de�nite

(because the inertia matrix I is also positive de�nite for a mechanical system). Therefore, the

tracking error would exponentially decline with time and the system will be stable about the

desired trajectory.

Eq. 3 makes plain the notion that the forces produced by the controller must take into account

the system's mass if it is to move the system along the desired trajectory. The estimates are

internal models that the brain would presumably have to know (see Motor Control, Biological and

Theoretical for a discussion on how these models might be learned). However, the equilibrium point

hypothesis suggests that the feedback system in Eq. 3 is designed in a way that largely eliminates

the need for the estimates of the dynamics of the limb. In this hypothesis, the muscles and the

spinal re
exes function as the feedback system about the desired trajectory, i.e., the sti�ness and

viscosity of the system. The main question is the extent to which the mechanical behavior of

muscles and the re
ex system can compensate for the dynamics of the limb.

Biomechanical behavior at rest

In a seminal paper by Feldman (1966), it was observed that the spinal control system acting on the

elbow joint of the human arm (composed of muscles and the local feedback circuitry) had static

characteristics that were similar to a non-linear spring. When the elbow was displaced from its

equilibrium position, muscles produced monotonically increasing force (as measured at the hand):

f = a(exp[b(x(t)� x�(t))]� 1) (4)
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where f is muscle force, t is time, x(t) is length of a muscle, and x�(t) is the threshold length

beyond which the muscle will produce force. Feldman's thesis was that the signals sent from the

brain to the spinal re
exes and muscles could be interpreted as setting the threshold length x�(t)

for each muscle. Feldman and Orlovsky (1972) later showed that stimulation of a motor center in

the brainstem (of cats), resembling what might happen in a voluntary change in the brain's input

to the spinal cord, did result in force-length changes in the muscles. These changes appeared as

changes in x�(t) in the above system.

For a constant input x�(t) in Eq. 4, muscle force re
ects both the mechanical properties of the

isolated muscles (increased production of force when muscle is lengthened), and the e�ect of local

neural feedback (recruitment of more motorneurons if length exceeds a set threshold). There is

now independent support for the formulation in Eq. 4. Ho�er and Andreassen (1981) measured

the rate of change in sti�ness with respect to force in muscles of a cat's hindlimb. They found the

relation between force and sti�ness to be independent of muscle length, and of the form:

df

dx
= k(1� exp[��f ]) (5)

where df=dx is muscle sti�ness. Shadmehr and Arbib (1992) noted that the solution to the above

di�erential equation has the form:

f =
1

�
ln(exp[�k(x� �)] + 1) (6)

In the above, � is the constant of integration and depends on the initial conditions for Eq. 5. This

result demonstrated that an intact muscle-re
ex system has a static behavior that resembles a

non-linear spring with an adjustable threshold.

If a single-joint limb is controlled by a pair of muscles, then setting � for each muscle sets the

equilibrium point of the system and describes a force �eld about this equilibrium. Hogan (1985)

showed that in a multi-joint system, this �eld will be conservative. This means that if the nervous

system produces a force �eld fc in Eq. 3 through setting of threshold lengths for the muscles of the

limb, then when �� and _� are zero, curl of the �eld fc should be zero. Mussa-Ivaldi, Hogan, and Bizzi

(1985) measured the static component of fc in humans. The procedure was to have subjects hold

on to the handle of a robotic arm. The robot produced force perturbations at various directions

and measured the steady-state force response of the subject's arm as a function of position. It

was found that the resulting force �eld was essentially curl-free. Taken together, static behavior of

muscles and the spinal control circuitry appeared to be well described as a non-linear spring with

an adjustable threshold length.

Movements as a shift in equilibrium position

When threshold lengths are set for each muscle, the result is a corresponding equilibrium position

�� for the limb. The major contribution of EPH has been to suggest that motion is generated by
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the CNS through a gradual transition of equilibrium points along the desired trajectory without an

explicit compensation for dynamics. The evidence for this initially came from a simulation study by

Flash (1987). She suggested that in the case of human reaching movements in the horizontal plane,

it was possible to predict the hand's motion accurately by smoothly shifting the equilibrium point

along a straight line from the start point to a target location. Interestingly, she showed that in the

simulation, because the controller was not attempting to compensate for the limb's dynamics, the

hand's trajectory slightly deviated from a straight line. However, it turns out that the trajectories

recorded in human subjects also show similar deviations, matching her simulations. In this model,

the controller was composed of a linear spring-dashpot system with adjustable threshold:

fc = K(� � ��(t)) +B _�

The �eld had the property that its static behavior about equilibrium was de�ned by a sti�ness

matrix K. This matrix was measured about the equilibrium position of a resting arm by Mussa-

Ivaldi, Hogan, and Bizzi (1985).

Taking a di�erent approach, Shadmehr, Mussa-Ivaldi, and Bizzi (1993) suggested that if a

movement was generated through a gradual shift of the equilibrium position toward the target,

then from measurements of the force �eld about the hand at rest, one should be able to predict the

direction and magnitude of forces that should be produced by the muscles during the initiation of

the reaching movement (Fig. 1). Because the �eld at rest is not isotropic, and depends on position

of the hand, forces measured during initiation of a movement should not point toward the target

and be position dependent. These movement initiation forces were measured and it was found that

the pattern of forces from measurements at rest agreed with the measured forces during initiation

of movement. In other words, during start of movements the equilibrium point of the �eld had

shifted toward the target.

Won and Hogan (1995) went a step further and suggested that during the entire movement, the

static component of the �eld fc should be similar to that measured when the hand was at rest, i.e.,

it should converge to an equilibrium position. In their experiment, the hand was displaced from

its intended trajectory via a rigid mechanical constraint. It was shown that as the arm was being

displaced, it produced forces directed toward the intended trajectory (Fig. 2). We see the notion of

stability about a trajectory (Eq. 3) clearly demonstrated in this data. Controller's output during

movement is a force �eld with an equilibrium point moving roughly along the path connecting the

start to the target position.

Dynamics of the muscle-re
ex system during movement

Katayama and Kawato (1993) noted that the simulations by Flash (1987) had used a magnitude

of sti�ness K that was approximately three times that measured when the arm was at rest. While

the actual sti�ness of the arm was a crucial factor in the simulations, its actual value was unknown
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and its estimation had been di�cult. Bennett et al. (1992) had found that sti�ness during a

highly practiced movement was signi�cantly less than that measured when the hand was at rest,

while Milner (1993) had found a value that was near the rest levels. It seemed clear that accurate

measures of the arm's sti�ness during motion were required.

Gomi and Kawato (1996) designed a high performance robotic manipulandum and measured

the arm's sti�ness during motion. They found that the sti�ness of the arm was near those measured

at rest but was temporally modulated about this level during motion. They used measures of local

sti�ness to estimate the point of convergence of the static component of �eld fc by assuming that

the static muscle forces were linearly related to distance from equilibrium. Gomi and Kawato

concluded that motion of the arm could not be due to a simple shift of the equilibrium point

along the desired trajectory. This suggested that ultimately, control of motion required explicit

compensation for dynamics of the limb.

The crucial question in the work of Gomi and Kawato (1996) was how to estimate the null

point of a force �eld from local measures of sti�ness. Most if not all of the experimental data

on intact muscle-re
ex systems describe only the static behavior, as in Eqs. 4 and 6. Gomi and

Kawato showed that if the dynamic behavior of the muscle-re
ex system is dominated by its static

properties, then it is unlikely that the brain can produce a desired movement via a simple shift of

the equilibrium point of the system. But what about the dynamic properties of the muscle-re
ex

system? How do they contribute to control?

Gribble et al. (1998) approached this question by modifying Eq. 4 to include the e�ect of delayed

sensory feedback on recruitment of motorneurons, and dependence of muscle force on velocity of

contraction and temporal summation of activations. The result was a muscle-re
ex model that

as before was controlled via a threshold muscle length, and had a static behavior that remained

similar to Eq. 4, but was now a complex dynamical system. Remarkably, it was found that if the

threshold lengths of the muscles acting on a simulated two-joint arm were shifted along a smooth

desired trajectory to the target, the resulting motion was also a smooth trajectory. Furthermore,

the local sti�ness of the system about the actual trajectory was very similar to that reported by

Gomi and Kawato (1996). This suggested that the dynamical behavior of the muscle-re
ex system

was a crucial element in compensating for the arm's dynamic, and that the input to the system

might change rather simply from a starting location to a desired endpoint in order to produce a

smooth hand trajectory.

It remains to be seen whether the muscle-re
ex model proposed by Gribble et al. (1998) has

a dynamical behavior that can be valided by experiments on the actual system. If this is the

case, then it will be an intriguing example of how the design of the low-level control system and

the actuators can simplify computational problems in control of the limb (see GEOMETRICAL

PRINCIPLES IN MOTOR CONTROL and FROG WIPING REFLEX).
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Figure 1. Subject was seated in front of a robotic arm and instructed to hold the handle at either the

\right" or \left" con�guration. Robot slowly displaced the hand from the origin and measured restoring

forces. These forces represent the static component of the force �eld produced by the muscles, i.e., the

postural �eld. Note the anisotropic shape. Now subjects are told to reach to a target. For randomly

selected targets, the robot prevents initiation of the movement (applies a break) and measures the force that

the subject is generating in order to make the movement. The magnitude and standard deviations of the

movement-related forces are plotted for targets at 0, 45, ..., 315 degrees. The magnitude and direction of

movement-related forces are in agreement with the hypothesis that movement is generated through a shift

of the equilibrium position of the postural force �eld toward the target. (From Shadmehr, Mussa-Ivaldi, and

Bizz, 1993)

Figure 2. The hand is making a reaching movement while holding the robot. In some cases, the movement

is perturbed by forcing the hand to travel in an arc (gray arrows connect the unperturbed trajectory with

the perturbed trajectory, similar points in time are connected). Black arrows are the vector di�erence of

the forces between the two trajectories. These forces cause a strong tendency to return the hand to the

unconstrained path. (From Won and Hogan, 1995)
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