
Abstract Positron emission tomography (PET) was
used to examine changes in the cerebellum as subjects
learned to make movements with their right arm while
holding the handle of a robot that produced a force field.
Brain images were acquired during learning and then
during recall at 2 and 4 weeks. We also acquired images
during a control task where the force field was not learn-
able and subjects did not show any improvements across
sessions. During the 1st day, we observed that motor er-
rors decreased from the control condition to the learning
condition. However, regional cerebral blood flow (rCBF)
in the posterior region of the right cerebellar cortex ini-
tially increased from the control condition and then grad-
ually declined with reductions in motor error. Corre-
spondingly, rCBF in the ipsilateral deep cerebellar nuclei
(DCN) initially decreased from the control condition and
then increased with reductions in motor error. If mea-
sures of rCBF mainly reflect presynaptic activity of neu-
rons, this result predicts that DCN neurons fire with a
pattern that starts high in the control task then decreases
as learning proceeds. Similarly, Purkinje cells should
generally have their lowest activity in the control task.
This pattern is consistent with neurophysiological re-
cordings that find that cerebellar activity during early
learning of a motor task may mainly reflect changes in
coactivation of muscles of the limbs, rather than a learn-
ing specific signal. By the end of the first session, motor
errors had reached a minimum and no further improve-

ments were observed. However, across the weeks a re-
gion in the anterior cerebellar cortex showed gradual de-
creases in rCBF that could not be attributed to changes
in motor performance. Because patterns of rCBF in the
cortex and nuclei were highly anti-correlated, we used
structural equation modeling to estimate how synaptic
activity in the cerebellar cortex influenced synaptic 
activity in the DCN. We found a negative correlation
with a strength that significantly increased during the
4 weeks. This suggests that, during long-term recall, the
same input to the cerebellar cortex would produce less
synaptic activity at the DCN, possibly because of re-
duced cerebellar cortex output to the DCN.
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Introduction

The inertial dynamics of the human arm dictate a com-
plex relationship between motion of the joints and
torques. In order to faithfully produce even the most
simple single joint planar movements, for example, flex-
ion of the elbow, the brain must activate not only elbow
flexors, but also shoulder flexors that counter the shoul-
der extension torque that is produced by the acceleration
of the elbow. If the activation of the shoulder flexors is
delayed until the shoulder begins to extend due to the ro-
tation of the elbow joint, the time delays in the spinal
and supraspinal sensorimotor loops are too long for an
effective response, resulting in oscillation. What is need-
ed is an ability to predict that flexion of the elbow will
result in shoulder extension and to proactively intervene.
Stated more generally, the sensorimotor map that trans-
forms a desired limb trajectory to motor commands
needs to have access to an internal model of the dynam-
ics of the limb.

Some movements of patients with cerebellar damage
bear resemblance to a motor control system that has 
lost access to this internal model (Goodkin et al. 1993; 
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Bastian et al. 1996): the ability to predict interaction
torques of moving joints and to compensate for them is
affected. Cerebellar damage also affects the ability of in-
dividuals to learn to modify their motor commands in the
face of changing but predictable inertial dynamics (Lang
and Bastian 1999): in trying to catch a ball, cerebellar
patients need to feel the ball in their hand before they re-
spond to its weight by pushing upward. In contrast, nor-
mal individuals can learn to anticipate the dynamics of
the ball and program muscle activity to meet the ball at
its point of impact. Similarly, in a task where subjects
were instructed to make simple reaching movements
while holding a robotic arm that produced a force field,
work in our laboratory has found that cerebellar degener-
ation profoundly affected the ability to learn to compen-
sate for the novel forces (Smith 2001). In contrast, mild
to moderate stages of basal ganglia deterioration in 
Huntington’s disease did not have any significant effects
on this type of learning. Taken together, it appears that
learning a novel internal model of arm dynamics may be
strongly dependent on the integrity of the cerebellum.

In order to find neural correlates of learning control of
arm dynamics, functional imaging techniques were recent-
ly used as subjects made reaching movements while inter-
acting with a robotic arm that produced a force field
(Shadmehr and Holcomb 1997, 1999; Krebs et al. 1998).
It was found that initial learning of the task engaged the
putamen and the prefrontal cortex, while its recall at 6 h
later engaged regions of the premotor cortex and the pos-
terior parietal cortex. Because of the limitations of the
positron emission tomography (PET) camera, however,
the field of view in all these studies excluded most of the
cerebellum. The current study was undertaken with the
aim of focusing on the activation changes that occur in the
cerebellum coincident with learning of arm dynamics. In
addition, we asked how the cerebellar activations changed
over a 4-week period as the motor skill was mastered.

Materials and methods

We studied eight normal volunteers (mean age: 30.6 years, seven
males and one female, all right handed). The protocol was ap-
proved by the Johns Hopkins University Joint Committee on Clin-
ical Investigation. All subjects signed a consent form.

Behavioral paradigm and imaging protocol

Our intention was to design two very similar motor tasks where
the dynamics of reaching movements would be altered, resulting
in similar patterns of error in the naive individual. In one task,
there would be a possibility to learn the patterns of dynamics with
repeated movements. However, in the other task the dynamics
would be unlearnable despite repeated movements. To achieve
this, we asked subjects to perform reaching movement to targets
while holding the handle of a 2-degree-of-freedom lightweight ro-
bot with their right arm (Shadmehr and Brashers-Krug 1997). The
robot imposed forces on the hand. In the learnable case, the forces
were described by a constant relationship to hand velocity:

, where was the velocity vector of the hand and B=
[0, 13;–13, 0] N.s/m. In the unlearnable case, the force field was
non-stationary as the velocity coefficient B was changed randomly
with equal probability between B1=[0, 13;–13, 0], B2=[0,–13;13,

0], and B3=0 from target to target. In the experiment, subjects
practiced on both fields but performance improved in only the
learnable field. We used the random field as a control condition
with which to compare brain activations within subjects across the
weeks of scanning.

Targets appeared on a computer monitor facing the subject.
Distance of the target was always at 10 cm from the start position,
while its direction was at 0°, 45°,..., 135°, chosen randomly for
outward movements, and then back to the center on the subse-
quent target, encompassing eight total directions of movement. A
cursor indicated the hand’s location continuously. The desired
reaching time was 500±50 ms: if the target was reached too soon it
turned red, if it was reached too late it turned blue, and if it was
reached on time it “exploded’’ and made a pleasing sound.

Two or 3 days before the start of the experiment, subjects were
introduced to the task outside the scanner. They practiced in the null
field, a condition where the motors of the robot were disabled, for
384 targets. They then returned on the scan day and before the first
scan again reached to a sequence of 200 targets in the null field.

We were interested in quantifying the neural correlates of mo-
tor skill retention over long intervals of time. Therefore, we im-
aged the brain as subjects learned the force field on day 1, and
then retested them on the same field on days 15 and 29. The tasks
performed in the PET scanner were identical on all days. On each
day, subjects were scanned 6 times at 10 min apart. On the first
and sixth scans, termed random field condition, the force field was
non-stationary as it randomly switched between fields from target
to target. On scans 2–5, termed constant field condition, the field
was stationary. On average, subjects performed 110 movements
during each scan. Between scans, subjects rested, except that after
the third scan on each day subjects performed an additional set of
192 movements in the field to obtain further training. No informa-
tion was provided to the subject regarding the nature of the force
fields. The only instruction was to try to reach each target in time.

PET scans were carried out while subjects performed the task.
The scans were acquired with a bolus injection of 42 mCi H2O15

using GE 4096+ whole body tomography. A catheter was placed
in the left cubital vein for injection of the bolus. The motor task
was initiated 1 min before administration of bolus and continued
for 90 s after the injection. The 90-s period after administration of
bolus was used to acquire data for image reconstruction. After this
90-s period, the motor task stopped and subjects rested until the
next scan (except between scans 3 and 4, where subjects practiced
an additional set of 192 movements). Scans were initiated 10 min
apart. Emission scans were attenuation corrected with a transmis-
sion scan performed before the first scan. The field of view of the
acquired image included the entire cerebellum and parts of the
brainstem, but little or no arm regions of the motor cortex. Each
scan produced 15 brain slices at a resolution of 2.0×2.0 mm in the
horizontal plane and 2.0×6.5 mm in the coronal plane. The MR
scan for each subject was obtained with a T1-weighted sequence.

The position and velocity of the robot’s handle were recorded
and a performance measure was calculated based on the deviation
from a straight-line trajectory to each target at 250 ms into each
movement. This measure was chosen because the field produces
forces that are perpendicular to the direction of motion, pushing
the hand away from the direction of the target. Our measure of ad-
aptation, change in perpendicular displacement, is the extent that
the subjects learn to compensate for this perturbation.

Image subtraction analysis

The PET images were analyzed based on statistical parametric
mapping (Friston et al. 1995) using SPM99 software from the
Wellcome Department of Cognitive Neurology, London, imple-
mented in Matlab 5.2c. The 18 PET scans for each subject were
realigned to the first image using a six-parameter rigid-body trans-
formation. This resulted in an aligned set of images and mean im-
age for each subject. MR images were coregistered with the PET
images and then normalized into stereotactic space (Talairach and
Tournoux 1988) using a template image from the Montreal Neuro-
logical Institute. The resulting transformations were applied to the



The structural equations described the interactions of the network
shown in Fig. 4. In the equations, measurements are made from
voxels in the cerebellar cortex and nuclei, and these two regions
are assumed connected from the cortex to the nuclei (with no con-
straint on the sign of the connection). The cortex and nuclei re-
ceive other inputs that are not specifically measured but are as-
sumed to exist. The matrix equation is written as:

Yk=YkPk+Xk (1)

in which Pk is the path coefficient with elements pij, the path that
connects region ci to region nj and represents the path strength. In
our case, this is a 2×2 matrix. Because we assume no self-recur-
ring influence, and no connections from the nuclei to the cortex,
all but one of the elements in the matrix Pk are constrained by the
network’s design to be zero. The matrix Xk represents rCBF in all
other regions of the brain which also influence the cerebellar cor-
tex and nuclei but are not specifically known. Solving the equation
for Yk we have:

Yk=Xk·(I-Pk)-1

in which I is the identity matrix. The task is to find Pk. The ap-
proach is based on an analysis of the covariance between activity
in two regions from which rCBF is measured. In structural equa-
tion modeling, one does not minimize a function that assigns a
cost to the difference between the observed and modeled values of
Yk. Rather, one minimizes a function that assigns a cost to the dif-
ference between covariance of the measured variables, called ob-
served covariance, and the covariance predicted by the model
structure and its parameter Pk, called implied covariance.

The observed covariance is a matrix of the column zero-aver-
aged Yk, and is defined as:

(2)

in which n=2 is the number of regions to be analyzed. The implied
covariance matrix that results based on the model’s design is:

Σk=(I-Pk)-T·Zk·(I-Pk)-1 (3)

in which is the variance-covariance matrix of our re-
sidual influences. Here we assume no interaction between these
residual influences, and therefore no non-zero off-diagonal ele-
ments in Zk.

Pk and Zk will be solved for by optimizing a cost function. Typ-
ically, a maximum likelihood cost function is employed (McIntosh
and Gonzalez-Lima 1994}:

(4)

in which tr() is the trace of the matrix and q is the number of free
parameters in P. If our structural model is perfect, then Fk will be
zero. We wish to find the value of Pk that minimizes this function.
Here we used Matlab and a gradient descent optimization method
to minimize this function.

Model verification

Having specified the model and estimated coefficients Pk for each
condition, we then assessed the adequacy of the estimated model.
The idea is to quantify the likelihood of the covariance matrix S to
appear for a randomly selected population having covariance ma-
trix Σ. It has been shown that the minimum of the maximum like-
lihood cost function times the number of observations minus one
follows a chi-squared distribution with m/2 (m+1)–n degrees of
freedom, where m is the number of observed variables and n is the
number of free parameters (Bollen 1989). The null hypothesis is
that the proposed network is not able to produce the observed co-
variances among the measured variables. To reject the null hy-
pothesis, one requires a non-significant chi-squared value. Unfor-
tunately, this is problematic because a low chi-squared value may
also be due to a small sample size.

A better approach for validation of the significance of the path
strength coefficients is to construct a null model and compare its
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PET images, generating images that had a voxel size of 2.00 mm
in each dimension. The normalized PET images were smoothed
with an isotropic gaussian filter, full-width at half-maximum set at
12 mm. The MRIs of subjects were averaged to produce an ana-
tomical atlas. Once the transformation of the PET data was com-
plete, statistical parametric maps (SPMs) were created. For with-
in-day analysis, the images within each day of the experiment
were used to create the SPM, each image as a new condition. For
between day analyses, the average of constant field images (scans
2–5) was used as one condition and the average of the scans in the
random field condition (scans 1 and 6) was used as another condi-
tion. The significant regions were identified using an intensity
threshold of 80 maximum voxel value per image. The mean flow
in the gray matter was normalized to 50/min. In all the paradigms
the SPM was inspected for regions of activation in the cerebellum
with z≥3.0.

Structural equation modeling

We were interested in asking whether across the days of the exper-
iment there were changes in the strength of functional connectivity
between regions in the cerebellar cortex and nuclei that had shown
learning related activity in day 1.

We followed the approach suggested by McIntosh and col-
leagues (McIntosh and Gonzalez-Lima 1994) and Buchel and 
Friston (1997). In this analysis, the first step is to select brain re-
gions of interest (i.e., voxels) based on subtraction analysis. On
day 1, subtraction analysis identified a region in the right cerebel-
lar cortex and another region among the right cerebellar nuclei
that significantly changed activations during learning. The peak
voxel from each region was selected for further analysis. We then
described a set of “structural equations’’ that allowed us to ask
how the strength of functional connectivity between these two 
areas changed as subjects were retested on the same field on days
15 and 29.

To describe the structural equations, one assumes that activa-
tion measured at a given region of interest influences other regions
of interest via a known network structure that has unknown
weights of connectivity, or path strengths. The task is to find these
unknown path strengths for each condition of the experiment. In
our case, the network was simply a connection from a representa-
tive voxel in the cerebellar cortex to another voxel in the ipsilater-
al nuclei. These voxels were the peak task related voxels that were
activated in the cerebellar cortex and nuclei during the first ses-
sion. The network also included separate inputs to each of the cor-
tical and nuclei voxels from other, unknown regions. To find the
unknown parameters of the network, correlations between the
voxels were computed across subjects for each condition separate-
ly and used to estimate the path strengths (as described below).
These correlations reflected the relative influence of one region
(voxel) on the variance observed in another region.

For each day and each condition (random field or constant
field), a separate set of path strength parameters was estimated.
We were interested in the consistency in path strengths across con-
ditions and the change in them across days. The sign of the path
strength reflected whether the influence was suppressive (in terms
of rCBF changes) or facilitatory. Mathematically, the change in
the path strengths signified a change in the influence of one region
on the variance observed in the connected region.

The rCBF values for the two task related voxels in the cerebel-
lar cortex and nuclei were labeled as cijk and nijk, where i was sub-
ject number, j was scan number for that condition (i.e., 2, 3, 4, 5
for constant field condition, and 1, 6 for random field condition),
and k was day number. For each condition at day k, an 8×2 matrix
Yk was constructed:
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performance with the optimized model (Bollen 1989). The null
model has the same structural equations but the path strengths are
not allowed to change among the different conditions. In our case,
we were interested in asking whether the change in the path
strength between the cerebellar cortex and the nuclei across the
days of the experiment was significant. After the parameters were
estimated for each condition on day 1, we constructed a null mod-
el that kept the parameters constant from day 1 to subsequent
days. For each day, a goodness of fit value, expressed as χ2, was
computed for the null model. We then looked at the difference in
the χ2 statistic between this null model and the model where vari-
ables could change between the days. The significance of the 
differences between the models is expressed by this difference
(Bollen 1989). If the goodness of fit was significantly better when

the path strengths were allowed to vary across the days, then it
was concluded that there were changes in the interregional
strength of connectivity during that condition.

Results

Our initial aim was to design a situation where in the
control condition dynamics of reaching movements
would be altered through imposition of a force field on
the hand, but that there would be little likelihood that
subjects could learn a coherent internal model of the
field’s forces, and therefore errors would persist despite
repeated practice sessions. We found that practice in the
random field resulted in large errors that persisted across
sessions (Fig. 1C). In contrast, in day 1 in the constant
field condition, performance of subjects began with 
errors comparable with that of the control condition, but
improved rapidly. By the end of the last constant field
scan on day 1, reaching movements were essentially
straight, with a slight overcompensation for the force
field (mean perpendicular displacement of –1.4 mm).

On day 15, performance was again poor in the ran-
dom field condition, but dramatically improved upon in-
troduction of the constant field that subjects had prac-
ticed in during day 1. The nearly step-like change in per-
formance from the random field condition to the constant
field condition (Fig. 1C) was again observed on day 29.
There were no statistically significant differences be-
tween performances of subjects during scans 4 and 5 on
day 1 and all other scans during recall of the internal

Fig. 1A–D Characteristics of reaching movements during the ex-
periment. A Performance of a typical subject during specific
scans. For each reach, a target appeared at one of eight possible di-
rections at 10 cm from the starting position. Hand position of the
subject is displayed with points at 30-ms intervals. In the random
field condition, a non-stationary velocity dependent force field
was imposed on the hand that significantly perturbed the hand’s
trajectory but was by design unlearnable. For this condition, two
representative trajectories for each target are plotted. In the con-
stant field condition, the velocity dependent force field was sta-
tionary, providing an opportunity to adapt to the field. B A view of
the experimental setup in the scanner. C Performance of all sub-
jects (means ± SEM) as measured by the displacement of the
hand’s trajectory from a straight line at 250 ms into the movement.
Clockwise displacements are positive; counterclockwise displace-
ments are negative. In the random field condition, the absolute
value of the displacement is plotted. D Mean performance across
subjects in the random field for each movement toward 90°. Solid,
dashed, and dotted lines are measured from the last scan of days
1, 15, and 29, respectively. Performance in the random field did
not change across sessions
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model on days 15 and 29. Therefore, once the internal
model was learned on day 1, it was available for recall
on subsequent probes.

In the random field, forces were present during each
reach but the mapping from limb trajectory to forces was
not stationary from one movement to the next. There-
fore, the forces could not be predicted. Not surprisingly,
errors persisted and performance was unchanged across
the days of the experiment (Fig. 1D).

We then examined the neural correlates of the de-
crease in movement errors that occurred during the con-
stant field condition in day 1. Using a contrast that used
only the images acquired during the constant field condi-
tion (i.e., non-zero contrast values for scans 2–5, and ze-
ro contrast values for scans 1 and 6), we looked for re-
gions where blood flow correlated with the decline in er-
ror. The most significant correlations were for a region
in the right posterior cerebellar cortex (Table 1). The
SPM for this region and its rCBF during all the scans is
shown in Fig. 2A. Interestingly, the rCBF in this region
showed an increase in the first constant field scan with
respect to the initial control condition (P<0.01), and then
a decrease. This is in contrast to the general decline ob-
served in the motor error from scan 1 to 6. 

Given that the output of the cerebellar cortex is only
via Purkinje neurons that inhibit the neurons in the deep
cerebellar nuclei (DCN), we next looked for regions
where rCBF demonstrated a gradual increase during the
constant field condition (Table 2). We found that coinci-
dent with the decline in the activation of the right cere-
bellar cortex was an increase in the activation of regions
in the right DCN (Fig. 2B), as well as in the left DCN
(Table 2). Though the contrast did not explicitly look for
the following behavior, we nevertheless found that rCBF
in the right DCN followed the inverse of the pattern that
we had observed in the cerebellar cortex from the control
condition to the constant field condition. Despite the fact

Fig. 2A, B Changes during acquisition of the internal model on
day 1. The contrast vector used for the analysis is shown in each
subfigure. The vector has non-zero values only during the constant
field condition (scans 2–5). The first and sixth scans were in the
random field and had a contrast of zero. A Regions that showed
decreased rCBFs during the constant field condition. The region
with the most significant change was in the right posterior cerebel-
lar cortex (46, –74, –54, t=4.17). The means ± 95% confidence in-
tervals for the rCBFs at this voxel are shown. A region in the left
inferior parietal lobe (–46, –80, 24, t=4.56, BA 39) is also high-
lighted. B Regions that showed increased activations during the
constant field condition. A region in the right deep cerebellar nu-
clei (22, –54, –44, t=3.88) is highlighted, and rCBFs at this voxel
are shown. Regions among the left deep cerebellar nuclei (–14,
–52, –38, t=3.41) and in the right frontal medial gyrus (26, 20, –8,
t=4.05, BA 11) are also highlighted

Table 1 Regions with decreasing activation during constant field
condition on day 1

Side Region x y z t value

Right Cerebellar cortex, posterior lobe 46 –74 –54 4.79
Left Temporal lobe, inferior temporal –64 –18 –26 4.71

gyrus (BA 20)
Left Inferior parietal lobe (BA 39) –46 –80 24 4.56
Left Temporal lobe, medial temporal –40 2 –30 4.13

gyrus (BA 21)

Table 2 Regions with increasing activation during constant field
condition on day 1

Side Region x y z t value

Right Prefrontal cortex (BA 9) 40 6 34 4.14
Right Prefrontal cortex (B 11) 26 20 –8 4.05
Right Cerebellar deep nuclei 22 –54 –44 3.88
Left Prefrontal cortex (BA 10) 14 60 –4 3.84
Left Cerebellar deep nuclei –14 –52 –38 3.41
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that error decreased from control to the constant field
condition, rCBF in the cerebellar cortex initially in-
creased while there was an initial decrease in the DCN.

We next looked for neural correlates of recall of the
acquired motor skill on days 15 and 29. In general,
across session comparisons are difficult because of non-
task related factors that might influence metabolic activi-
ty of the brain as a function of time (Rajah et al. 1998).
We assumed that any non-specific factors should be
common to both the control and constant field condi-
tions, and therefore used a time-by-condition interaction,
that is, a difference between (constant field–control
field) on day 1 and (constant field–control field) on a
subsequent day to quantify between day changes.

A second concern was that the amount of movement
error experienced by subjects was significantly higher in
the early, constant field scans of day 1 vs similar scans
on subsequent days. The errors were not significantly
different, however, between the later scans (4, 5) of day
1 and the scans during the constant field condition (scans
2, 3, 4, 5) in days 15 and 29. Therefore, we looked for
time-by-condition interactions between control and con-
stant field scans that had comparable motor error.

In comparing days 1 and 15, we found no region in
the brain that had a significant decrease in its activation.
However, between day 1 and 29 we found that there was
a single region with a significant decrease and it was lo-
cated in the right cerebellar cortex (16, –62, –24,
T=3.74). The rCBF values for this region are plotted
with respect to the control scans for each day in Fig. 3.
Activation in this region of the cerebellar cortex ap-
peared to have an orderly decline from the first day to
the last, despite the fact that there was little or no differ-
ence in task performance during the scan periods.

In comparing days 1 and 15, the only region with a
significant increase was in the left temporal lobe, medial
gyrus, Brodmann’s area 22 (–54, –2, –22, T=3.59). The
same general area of the brain was also significantly
more active in day 29 in comparison to day 1 (–50, 0,
–14, T=3.55).

We next inquired about the changes that occurred
within days to the regions in the cerebellar cortex and
nuclei that during day 1 had been identified to play a role
in learning the task (i.e., the highlighted voxels shown in
Fig. 2A, B). The patterns of rCBF change in day 1 in the
cerebellar cortex and DCN were suggestive of a possible
inhibitory link between these regions. While subtraction
analysis between days had found no significant change
in the activations of these regions, we thought that initial
learning might differ from subsequent recall in the
strength of functional connectivity between them.

We therefore constructed a simple network model
(Fig. 4) and simulated it with linear structural equations.
The model included a representation of the rCBFs in the
cerebellar cortex (voxels 46, –74, –54) and DCN (voxels
22, –54, –44), as well as residual input from other, un-
known regions of the brain. The task was to estimate the
path strength between these two voxels for each condition
in each day. From the voxel values recorded in each sub-

ject a matrix Yk, as described in “Materials and methods,”
was constructed for each day k. We made a separate ma-
trix Yk for each condition in the task for each day, i.e., the
random field condition and the constant field condition.
To find the unknown parameters of the network, correla-
tions between the two voxels were computed and a maxi-
mum likelihood cost function in Eq. 4 was minimized, re-
sulting in an estimate of the strength of connectivity and a
measure of goodness of fit in terms of χ2.

We found that, in all days and all conditions, the path
strength between the right cerebellar cortex and right
DCN was negative, reflecting a suppressive, or inhibito-
ry-like, influence on the rCBF covariances. However,
between day 1 and day 29, the strength of this inhibitory
influence gradually increased (Fig. 4).

To test whether the between day connectivity changes
were significant, we asked whether there would be a sig-
nificant change in our cost function (Eq. 4) if we had not
allowed the path strength to vary from day 1 to the sub-
sequent days (Bollen 1989). In this approach, we defined
a free model and a constrained model. For each condi-
tion, the free model allowed the path coefficient between

Fig. 3 Between session (day 1 and day 29) decreases in rCBF. In
order to compare scans between days, we only considered periods
during which performance was similar. This eliminated the first
two scans during the constant field condition on day 1. In day 1,
the contrast vector had non-zero values for the random field, and
the late scans of the constant field only. This was compared with
the random and constant field scans on day 29. We assumed that
any non-specific factors should be common to both the random
and constant field conditions on each day, and therefore a differ-
ence between the two should reflect between day changes. The
highlighted region is in the right anterior cerebellar cortex (16,
–62, –24, T=3.74). For each day, the rCBF values for this voxel
are plotted during the constant field condition with respect to val-
ues for the random condition
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the cerebellar cortex and nuclei to vary for each day. In
the constrained model, this parameter was not allowed to
change and was set to the value found for the first day’s
measures. The analysis then compared the goodness of
fit (in terms of the change in the fit of the maximum
likelihood cost function) between the free and con-
strained models at each day. On day 15 in the constant
field condition, the change in the goodness of fit be-
tween models was not significant at ∆χ2(2)=3.681,
P<0.2. However, on day 29 the improvement was signif-
icant at ∆χ2(2)=8.181, P<0.02. It is possible that in the
constant field condition, between the days there was a
gradual but significant increase in the magnitude of
strength of connectivity between regions of right cere-
bellar cortex and nuclei. This increase in path strength
was also observed on the last day during the random
field condition: On day 29 the increase in path strength
was significant at χ2(2)=7.751, P<0.025.

For a second approach to verification of the model,
we asked whether path strength estimation provided
meaningful results if we had chosen cerebellar cortex
and nuclei regions from the opposite hemisphere, contra-
lateral to the performing arm. We chose voxels –46, –74,
–54 and –22, –54, –44, which were mirror images of
voxels found to be significant in the above analysis. We
found that while the path strength was also always nega-
tive for this network, the change in its value from the
1st day to subsequent sessions was never significant: In
the constant field condition, on day 15, ∆χ2(2)=2.571,
P<0.5, and on day 29, ∆χ2(2)=1.579, P<0.5. In the ran-
dom condition, on day 15, ∆χ2(2)=0.488, P<0.9, and on
day 29, ∆χ2(2)=1.345, P<0.75.

Discussion

We studied a task where subjects learned dynamics of
reaching movements. With practice, initially distorted
movements became smooth, straight-line trajectories. We
have hypothesized that this improvement is due to for-
mation of an internal model in the brain. The internal
model is, in part, a sensorimotor map that transforms a
desired hand trajectory to forces that should be produced
in order to make that movement accurately (Shadmehr
and Mussa-Ivaldi 1994). We had observed that a single
session of training was sufficient to allow the subject to
form an accurate internal model and maintain this model
for up to 5 months (Shadmehr and Brashers-Krug 1997).
Research in our laboratory had also found that patients
with cerebellar degeneration were profoundly impaired
in acquiring the internal model, while mild to moderate
basal ganglia damage in Huntington’s disease spared
much of this learning (Smith 2001). The current study
quantified changes in cerebellar blood flow during initial
learning and subsequent recall of the internal model at 2

Fig. 4 The network representing the functional connectivity be-
tween the right cerebellar cortex (voxels at 46, –74, –54) and nu-
clei (voxels at 22, –54, –44). The path strength was estimated
from measured covariances between the two regions using struc-
tural equation modeling. The resulting values are plotted for each
condition on each day of the experiment. The change in path
strength during the constant field condition was found to be signif-
icant from day 1 to day 29: ∆χ2(2)=8.181, P<0.02

Fig. 5A–D Estimation of change in the firing activity of a popula-
tion of task related neurons in the right DCN and Purkinje cells in
the right cerebellar cortex. We assume that measured rCBF in the
DCN, as shown in Fig. 2, is primarily a reflection of presynaptic
activity of neurons, i.e., input to the DCN. The inputs to DCN
come from three sources: precerebellar nucleus cells that give rise
to mossy fibers (carrying desired state information), inferior olive
neurons that give rise to climbing fibers (carrying error informa-
tion), and Purkinje cells. We assume that mossy fiber input reflects
a desired limb trajectory, and is constant across the scans. A Hy-
pothetical change in rCBF at the DCN due to change in error. The
error function is from Fig. 1. B Change in DCN rCBF from Fig. 2.
C Estimate of rCBF change recorded at the right DCN due to ac-
tivity of Purkinje cells. Assuming that DCN rCBF is a sum of
rCBFs related to error and activity of Purkinje cells (other inputs
are assumed constant), rCBF due to activity of Purkinje cells was
estimated by subtracting plot A from plot B. D Estimate of change
in firing patterns in the neurons of DCN. We assumed that neuro-
nal activity in DCN was inhibited by activity of Purkinje cells and
excited by the error signal. We further assumed that activity of in-
ferior olive neurons was proportional to the error related rCBFs
and activity of Purkinje cells was proportional to the rCBF esti-
mated in plot C. Activity of DCN neurons was estimated by sub-
tracting plot C from plot A



and 4 weeks. To minimize across session artifacts that
influence metabolic activity of the brain but may not be
related to the recall of the motor skill, a control task was
included. In this task, the field was non-stationary, effec-
tively preventing the formation of a coherent internal
model. Whereas in the initial training session in the con-
stant field error levels gradually declined and reached a
near zero level that was maintained on re-test at 2 and
4 weeks, performance in the control task displayed errors
that never declined.

Acquisition of the internal model

We found that during initial training, coincident with de-
creases in movement errors there were decreasing rCBFs
in the right posterior cerebellar cortex and increasing
rCBFs in the ipsilateral deep cerebellar nuclei (DCN).
The posterior focus of the changes is reminiscent of ob-
servations made by Thach and colleagues (Martin et al.
1996) in another kind of motor learning task, prism ad-
aptation. They reported that patients with infarcts in the
distribution of the posterior inferior cerebellar artery had
impaired adaptation to prism distortions but not those
with lesions in the distribution of the superior cerebellar
artery. Monkeys with lesions in the posterior cerebellum
are also impaired in adapting to prism distortions (Baizer
et al. 1999).

We found rCBFs in the right posterior cerebellar cor-
tex and right DCN to be highly anti-correlated. In fact,
activation patterns were more correlated to each other
than to error changes in the task. For example, consider
the scans where the condition of the task changed from
random field to constant field. During this transition,
while the movement errors in the task decreased, rCBFs
in the cerebellar cortex tended to show an increase, and
this was coincident with a decrease in the rCBFs in the
DCN (Fig. 2). Similar covariations between the cortex
and DCN occurred when the condition of the task
changed from constant field to random field.

While it is implicit in many functional imaging papers
that increases in rCBF are associated with increases in
the number of action potentials in the main neurons of
that region, there is good evidence that in the case of the
cerebellum this assumption is false. Stimulation of
climbing fibers results in complex spikes in Purkinje
cells, and this is accompanied by significant increases in
rCBF (Mathiesen et al. 1998). Parallel fiber stimulation
also results in increased rCBFs, yet there is a net de-
crease in the number of simple spikes generated by 
Purkinje cells (Mathiesen et al. 1998). This is because
parallel fiber activation provides excitatory input to in-
hibitory interneurons as well as dendrites of Purkinje
cells. It appears that the excitation of inhibitory interneu-
rons in the cerebellar cortex is the main contributor to
rCBF increases accompanying parallel fiber stimulation
(Akgoren et al. 1996). Therefore, an increase in rCBF in
cerebellar cortex does not necessarily indicate increased
firing in Purkinje cells. Unfortunately, because of the lo-

cal inhibitory circuitry in the cerebellar cortex, it is not
apparent how one can infer Purkinje cell activity from
rCBF changes.

To interpret the rCBF changes, it is important to note
that changes in blood flow occur in response to changes
in glucose metabolism of neurons, which in turn may 
be dominated by presynaptic events. Measures of rCBF
with PET or functional magnetic resonance imaging
(fMRI) appear to mainly reflect presynaptic activity of
neurons (for review, see Jueptner and Weiller 1995). We
observed that rCBF in the right DCN declined from the
random to the learning condition, and then increased
during learning (Fig. 2). We interpret this as a reflection
of changes in the total sum of presynaptic activity in the
right DCN, i.e., the change in the input to the DCN neu-
rons.

The inputs to DCN neurons come from three main
sources: precerebellar nucleus cells that give rise to
mossy fibers, inferior olivary nucleus cells that give rise
to climbing fibers, and Purkinje cells. If we assume that
mossy fibers carry a signal related to the desired trajecto-
ry of the limb (Schweighofer et al. 1998; Wolpert et al.
1998; Spoelstra et al. 2000), then it can be said that dur-
ing the various conditions of the task this signal does not
change. If we assume that the climbing fibers carry a sig-
nal corresponding to the errors in the task, then a mea-
sure of that signal is available in Fig. 1. The error signal
is highest in the random field, then declines as the learn-
ing proceeds. If we assume that rCBF in the DCN is a
simple sum of input from these three sources, then by
subtracting the error signal from the DCN rCBF we ar-
rive at an estimate of the change in presynaptic activity
in the DCN due to Purkinje cell firing (Fig. 5C). Our es-
timate shows low levels of Purkinje cell activity during
the random condition and during the initial stage of
learning. This activity rises as training proceeds. Be-
cause Purkinje cells are inhibitory, their activity leads to
increased rCBF in the DCN but reduced firing of DCN
neurons. Assuming that DCN neuronal activity changes
due to a linear combination of excitation from the error
signal and inhibition from Purkinje cell activity, then the
DCN neurons are estimated to fire with a pattern that
starts high, then decreases as learning proceeds (Fig. 5D).

If our assumptions are reasonable, then our results
suggest that DCN neuronal activity as a population is
highest in the random field and during the initial stage of
learning (Fig. 5D). Correspondingly, the total sum of
Purkinje cell neuronal input to DCN is lowest during
these conditions (Fig. 5C).

Is there any evidence for this kind of activity in the
cerebellum during motor learning? To answer this ques-
tion, we need to consider that muscle co-contraction in
the force field learning paradigm is highest when sub-
jects begin learning a task (and is correspondingly high
in the random field), and progressively decreases as sub-
jects learn to selectively activate muscles that counteract
the field (Thoroughman and Shadmehr 1999). Studies by
Smith and colleagues have demonstrated that when a
task involves co-contraction of antagonist muscles, a
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large majority of task related Purkinje cells decrease
their firing (Frysinger et al. 1984), while neurons of the
dentate and interposed nuclei increase their firing (Wetts
et al. 1985). Results from Bloedel and colleagues in a
study where cats learned to move a manipulandum found
that magnitude of activity of dentate and interposed cells
tended to decrease as the task was mastered (Milak et al.
1995). It is not known whether this is coincident with a
reduction in muscle co-contractions. Therefore, our esti-
mates of change in the rates of firing of Purkinje cells
and DCN neurons, though clearly speculative, are con-
sistent with the idea that muscle tone is expected to be
highest in the random field and in the early stages of
learning.

This high muscle tone results in an increased stiffness
of the limb, which in turn makes the limb more resistant
to perturbations imposed by the field. As the brain learns
which muscles to turn on at the correct time, the need 
for high arm stiffness is reduced (Thoroughman and
Shadmehr 1999). The framework would suggest that if
the cerebellum is guiding the learning process, then
while many DCN neurons should be reducing their activ-
ity as general muscle tone is reduced, a small number
should be increasing their activity to reflect appropriate
activation of the select muscles that counteract the field
for any particular movement. Correspondingly, while
many Purkinje cells would be increasing their activity as
muscle tone is reduced, a small number should be de-
creasing their activity to reflect learning in the task.
Therefore, it seems likely that metabolic costs associated
with muscle-tone related changes will dominate the
learning related changes during acquisition of the inter-
nal model.

Long-term recall of the internal model

We asked whether the rCBFs in the cerebellum showed
significant changes in subsequent weeks as the internal
model was recalled. We used images acquired during the
random field task on each day as a control condition to
account for non-specific changes between the weeks, and
used a time-by-condition interaction to quantify between
session changes specific to recall of the internal model.
We found that there were no significant differences
across the weeks in the posterior cerebellum or DCN.
The contrast considered only conditions where move-
ment errors were comparable, i.e., late stages of learning
during day 1, and learning conditions during days 15 and
29. As the weeks passed, there was a significant and
monotonic decrease in the rCBFs in a region of the right
anterior cerebellar cortex (Fig. 3).

This suggests that some aspect of the total synaptic
activity acting on the Purkinje cells in the anterior cere-
bellum might have declined. In models of the cerebellum
where the output of the DCN reflects a force-like quanti-
ty, learning of dynamics is made possible because the ap-
propriate excitatory synapses acting on Purkinje cells un-
dergo a reduction in their strength, which in turn results

in the disinhibition of nuclear cells (Spoelstra et al.
2000). The evidence for this kind of mechanism is per-
haps strongest in classical conditioning tasks. For exam-
ple, in the models of Mauk and colleagues, improved
performance is coincident with a dramatic reduction in
the firing of some Purkinje cells in response to the con-
ditioned stimulus (Medina and Mauk 1999). In models
of reaching movements, the conditioned stimulus signal
is replaced with a desired trajectory signal. If a reduction
in synaptic strength of inputs on Purkinje cells results in
reduced metabolic costs in the cerebellar cortex, then as-
suming that all other inputs to the cerebellar cortex are
constant (for example, error related signals), the change
across the weeks might be an indication of a gradual re-
duction in the synaptic strength of inputs upon Purkinje
cells.

To better quantify the influence of time on the interac-
tions of the cerebellar cortex and nuclei, we compared
the patterns of covariance between the right posterior
cerebellar cortex and the right DCN (regions which had
shown task related changes during session 1) across ex-
periment days. Functional connectivity analysis was per-
formed using a simple network where inputs to the voxel
at the DCN were assumed to be from the voxel at the
right posterior cerebellar cortex, as well as potentially
from other regions. The path strength from the cortex to
the nuclei was estimated independently for each condi-
tion in each day of the experiment. We found a negative
path strength that in a fairly orderly fashion became
more negative with the passage of weeks. This suggests
that a given amount of synaptic activity in the cerebellar
cortex was coincident with a smaller amount of synaptic
activity in the DCN.

To interpret this result, let us assume that the major
source of synaptic activity in the cerebellar cortex is
from climbing fibers and mossy fibers, and that, in addi-
tion to these inputs, DCN synaptic activity includes out-
put of Purkinje cells. After the initial two scans in the
constant force field, error related and state related signals
did not change across the weeks. With these assump-
tions, the result that the same input to the posterior cere-
bellar cortex would produce less synaptic activity at the
DCN would suggest that Purkinje cell firing activity
might have been reduced across the weeks.

We tested for the significance of our result regarding
the changing functional connectivity using an approach
where a null model was constructed from the results ob-
tained from the 1st day. We asked whether the errors in
accounting for covariances in days 15 and 29 significant-
ly changed if we assumed that the functional connectivi-
ty during these days was the same as that observed on
day 1. The change in path strength was found to be sig-
nificant by the 4th week. A second control experiment
was performed by assessing the change in effective con-
nectivity between the cerebellar cortex and DCN regions
contralateral to the performing arm and mirror to the
voxels on the ipsilateral side. Although the path strength
was also always negative in the contralateral regions, no
significant changes in connectivity were observed with
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the passage of time. Therefore, it appeared that with the
passage of time there was a significant increase in the
magnitude of the negative path strength between regions
in the right posterior cerebellar cortex and DCN.

Relation to earlier works

Functional imaging studies have generally found de-
creasing rCBFs in the cerebellum as subjects train in a
motor task. When the task precluded visual feedback,
repetition of finger tapping sequences (Hund-Georgiadis
and von Cramon 1999) or training to move the hand in a
maze while holding a pen (van Mier et al. 1998) were
coincident with decreasing activations in the cerebellar
cortex. When the task included visual feedback, discov-
ery of tapping sequence with trial and error (Toni et al.
1998) was coincident with decreased activations in the
cerebellar cortex while repeated practice of a given tra-
jectory of hand movements was associated with declin-
ing activations in the dentate nucleus (Seitz et al. 1994).
In a task where subjects moved a joystick that was cou-
pled to a visual target with an altered spatial relation be-
tween the motions of the cursor and hand, training re-
sulted in marked decreases in rCBFs in the cerebellar
cortex (Flament et al. 1996). Kawato and colleagues
were able to normalize for movement errors in a similar
task and found significant increases in the cerebellar cor-
tex (Imamizu et al. 2000).

As we noted above, the results of Mathiesen and col-
leagues (Mathiesen et al. 1998) suggest that Purkinje cell
firing activity does not follow rCBF changes in the cere-
bellar cortex (and may in fact be opposite to these
changes), even when climbing fiber activity is constant.
This is because of the large rCBF cost apparently associ-
ated with synaptic activity of inhibitory neurons that
convey mossy fiber information to the Purkinje cells. For
this reason, we approached the problem of interpreting
our rCBF results by starting from the change in the
DCN.

Neuroimaging studies of long-term effects of motor
practice remain rare. A prominent study (Karni et al.
1995) reported that a larger area of primary motor cortex
(M1) was activated after subjects had practiced a sequen-
tial finger movement for 3 weeks. We have not observed
any analogous M1 effects either during initial learning of
dynamics or at 6 h (Shadmehr and Holcomb 1997,
1999). For studying internal models of motor control,
however, the learning of dynamics has an important ad-
vantage over sequence learning. A quantitative and pre-
dictive model is available with which rigorous predic-
tions about motor learning can be tested. For example,
Fig. 1A shows that errors become smaller than zero. This
means that, with extensive practice, subjects overcom-
pensate the velocity-dependent force field and produce
slightly S-shaped hand trajectories.

Elsewhere, we have suggested that this overcompen-
sation results from the implementation of sensorimotor
basis functions, or “primitives,” that the brain may use to

represent the internal model (Thoroughman and Shad-
mehr 2000). These primitives are functions that encode
sensory space. In the context of this model, the problem
of motor learning is to assign a weight to each primitive
such that they sum to predict the dynamics necessary to
compensate for the force field. After an error-based ad-
justment of weights during learning, the best fit to motor
behavior is with primitives that encode sensory space
rather coarsely, i.e., they have a broad receptive field in
velocity space. These basis functions have properties
that resemble the spatial fields of some Purkinje cells,
which are also broadly tuned in velocity space (Coltz 
et al. 1999). Such broad tuning functions cause compen-
sations to velocity-dependent force field that overesti-
mate the forces early in movement, when velocity is low,
producing S-shaped hand trajectories.

Recent neurophysiological reports show that some
cells in M1 change their preferred directions of move-
ment as a force field is learned (Li et al. 2001), and this
change is similar in magnitude to the changes reported 
in muscle activation functions (Thoroughman and 
Shadmehr 1999). It is possible that a source of the
changes in M1 may be from a changing input from the
cerebellum. A strengthening of the functional connectiv-
ity between the cerebellar cortex and nuclei implies that,
given a constant error signal, the same sensory signal
representing one of the inputs to the cerebellum (for ex-
ample, a desired limb trajectory) should result in an out-
put that becomes larger and more robust with passage of
time. This changing output might be one source of the
observed changes in the activity of M1.
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