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Abstract 

 

Decision-making and motor control both involve dopaminergic neurons in the basal 

ganglia. Thus, it seems logical to think that these two aspects are strongly related. There have 

been many studies showing that movements are modulated by reward, and even by dopaminergic 

activity. Recently, some studies have shown that even saccades, which were considered to have 

an internal value of baseline velocity for each subject, are modulated by reward. 

In Chapter 2, we first explain how we can modulate effort with eccentricity. We show 

that eye fixation on a location requires motor effort depending on its eccentricity. We also show 

that the velocity of saccade made from target to target is not decided by the difference in reward 

between the two targets, but rather by the sum of rewards. 

In Chapter 3, we construct a model to explain both gaze duration and saccade vigor by 

exploiting an existing model called the marginal value theorem (MVT), which originally only 

explained how harvest duration changes. We generated a task environment for eye movements 

that is analogous to the foraging environment and were able to predict the behavioral pattern of 

gaze duration from our new model. In addition to local factors, we also observed the effects of 

past and future parameters on gaze duration, which is only predicted when the global utility is 

defined as the sum of all gains divided by the sum of all times. We also observed modulation of 

saccade vigor by a similar set of parameters. 

In Chapter 4, we try to explain how saccade vigor and reaction time to a cue are related to 

the utility value associated with the target. We constructed a task that was a mixture of cued 

response trials and decision-making trials. We observed that not only were vigor and reaction 
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time modulated by reward, but also that they were more strongly modulated by utility values 

derived from the decision-making trials. Saccade vigor and reaction time were also shown to be 

dependent on the signed utility value, not on the salience (unsigned) of the associated stimulus. 

In conclusion, we show that motor control of saccades is closely related to decision 

making.  
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1. Introduction 

 

1.1. Saccades 

 
Saccades are rapid movements of both eyes from one fixation to another. Humans make 

saccades in situations such as reading or looking at pictures. This rapid eye movement is 

generally known to happen in order to change input of the visual map on the retina, which has 

differing concentrations of photoreceptors and thus provides an advantage when humans want to 

focus on a particular area of the visual map. We are interested in voluntary saccades, which are 

saccades made voluntarily to shift the visual map in order to improve resolution in an area of 

interest and acquire more information. 

Saccades have a stereotypical bell-shaped velocity profile. They are usually asymmetric: 

they accelerate faster to peak velocity than they decelerate after the peak, therefore skewing the 

shape to the right (positive skewness). As a result, the position profile of a saccade is S-shaped. 

Voluntary saccades have a typical reaction time >200ms, and saccades that have a shorter 

reaction time are considered reflexive and are called express saccades (Fischer and Boch, 1983). 

Saccade amplitude is usually shown in units of degrees, indicating how much the eye rotated 

around its axes.  

A saccade is generally faster when its amplitude is larger, but the steepness rapidly 

declines after 20°, and its peak velocity usually asymptotes below 1000°/s (Bahill et al., 1975). 

In fact, when tested for an abundant number of saccades of varying amplitude, each person 

shows a systematic relationship between amplitude and peak velocity, and the initial discoverers 

designated this the “main sequence” of saccades (Bahill et al., 1975). The authors also reported 
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that variability in saccade vigor is mostly accounted for by amplitude and not by its starting 

position or direction. In fact, most people believed that saccade vigor is generally invariant of 

external factors (excluding, of course, factors such as fatigue) since humans cannot consciously 

control saccade vigor. We will investigate this more closely and describe various recent studies 

that refute this concept in Section 1.5. 

 

1.2. Neural basis of saccadic behavior 

 
Although saccades are considered simpler compared to the likes of limb movements, they 

still involve a number of brain areas and the functionality of these areas has still not been 

completely explained. Saccades in various directions involve slightly different circuitry, partly 

because they use different muscles and thus different cranial nerves. In this thesis we will only 

consider horizontal saccades. 

The initial motor command comes from burst generators located within the brainstem. 

These neurons are called excitatory burst neurons (EBN) and inhibitory burst neurons (IBN), 

respectively, in areas called the paramedian pontine reticular formation (PPRF) for EBNs and 

medullary reticular formation (MRF) for IBNs. These neurons are essentially silent during 

fixation but show bursting activity during saccades, with a short lead time of several 

milliseconds (Van Gisbergen et al., 1981). Each burst generator fires differently for each 

direction, and the most active direction is called the on-direction (as opposed to off-direction) 

and saccades in such a direction are called ipsiversive (as opposed to contraversive). EBNs fire 

to excite motor neurons that cause the eyes to move in the ipsiversive direction, while IBNs fire 
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to inhibit motor neurons to prevent moving in the contraversive direction. This coordination 

between two burst neurons results in a properly conjugated saccade. 

Holding the eyes still was first discovered to be controlled by omnipause neurons (OPN), 

which are located in the nucleus raphe interpositus (part of the PPRF) in the brainstem and are 

known to inhibit both types of burst neurons and thus prevent eye movement (Keller, 1974). 

However, holding the eye in a certain position requires the existence of another signal that 

encodes the position. In fact, David Robinson proposed a model for the control of saccades that 

included a “neural integrator” component, which he hypothesized would integrate movement 

signals over time and add it to the movement signal (Robinson, 1973). The integrator was soon 

discovered by Robinson himself in a region called the nucleus prepositus hypoglossi (NPH, or 

simply the prepositus) by observing that injecting neurotoxins into this region did not disrupt 

saccades but caused the eyes to rotate back to near center (Cannon and Robinson, 1987). The 

output from the prepositus also goes to the motor neurons, which project to oculomotor neurons 

(cranial nerve III) and thus onto the muscles, generating tension to hold the eye in the position. 

The burst neurons get input from the well-known superior colliculus (SC), which receives 

signals from eye-related areas of the cortex. The dorsal layer will receive input from other areas 

and form a visual map, while the ventral layer is organized by intended saccade amplitude and 

will generate appropriate motor signals. A number of brain regions also elicit eye movement, 

including the likes of the frontal eye field (FEF) (Robinson and Fuchs, 1969) and supplemental 

eye field (SEF) (Schlag and Schlag-Rey, 1987). This connection also involves the basal ganglia 

(Parthasarathy et al., 1992). The implications of involvement of basal ganglia will be discussed 

in Section 1.4. 
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1.3. Decision and utility 

 
Decision making is a cognitive process of selection of actions among several alternative 

options. In fact, microeconomics is the field that specifically studies the behavior of humans (and 

firms) making decisions. Economists use a concept called a utility function, which is an amount 

of satisfaction, worth, or value of an alternative. This concept is based on the assumption that it 

is possible to assign real numbers to describe preference, so that an individual would prefer the 

alternative that has the highest utility to the others. The value is subjective (so each individual 

has a different utility for the same alternative) and is a nonlinear function by amount of gain and 

thus needs to be estimated each time. However, it is generally higher for larger reward and 

smaller cost or effort. 

Traditionally, utility is estimated by using each individual’s decisional behavior. The 

most direct way would be to ask each subject to manually assign a value to each alternative 

(cardinal utility), but this is not practical with nonhuman animals and sometimes the reported 

numbers do not explain actual choice behavior. Nowadays researchers generally try to measure 

the certainty equivalent (CE) of an alternative that suggests payoffs of either a low value or a 

high value with 50% probability. The CE is the payoff of another alternative that suggests only 

this single value of payoff that has the same utility (subjects will choose equally between the two 

alternatives when suggested). A number of measurements of CE will reveal the utility function. 

To get the most accurate estimates of CE, adaptive methods (test sets change based on an 

individual’s choice) are used, such as PEST (Pollack, 1968).  
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1.4. Neural basis of reward and its relationship to the neural basis of 

saccadic behavior 

 
Ever since it was discovered that dopamine encodes reward prediction error (Schultz et 

al., 1997), the dopaminergic system in the midbrain has been the focus as the main region of 

interest for decision making. Two regions were mainly acknowledged; the ventral tegmental area 

(VTA) of the thalamus and the substantia nigra pars compacta (SNc). Both areas innervate the 

striatum, which is a crucial part of the basal ganglia. 

We focus on two known properties of the dopaminergic system and the potential 

relationship between motor control and reward circuit. First, loss of dopamine usually results in a 

degenerative disorder called Parkinson’s disease, which results in motor disorders such as 

rigidity, shakiness, and slow movement. Parkinson’s disease patients are also known to display 

some impairment in decision making, such as reduced reward sensitivity in gambling tasks 

(Mimura et al., 2006) or speed-accuracy tradeoff (Manohar et al., 2015). Second, while basal 

ganglia are involved in the control of movements, its structure including SNc, these neurons are 

known to encode reward and cost in a decision-making task, although in a limited way 

(Pasquereau and Turner, 2013). As a result, these properties suggest that utility, which is decided 

by the subjective evaluation of reward and effort and also determines decision-making activity, 

could also modulate control of movement. 

In fact, several studies show that basal ganglia are involved in the control of saccades. 

The caudate nucleus (CN) is part of the basal ganglia that receives input from the 

aforementioned dopaminergic regions and sends output to the substantia nigra pars reticulata 

(SNr). The firing rate of CN neurons has been shown to be related to speed and reaction time 
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modulation by expected reward (Kawagoe et al., 1998) and also this relationship existed when 

expected reward was controlled for some neurons (Itoh et al., 2003). For the control of saccades, 

the SNr sends inhibitory output to the superior colliculus (SC) and shows bursting and pausing 

activity that generates saccades (Handel and Glimcher, 1999). Another pathway includes the 

VTA of the thalamus and the ventral pallidum which has also been shown to encode expected 

reward and modulate motion (Tachibana and Hikosaka, 2012). In summary, neural activity 

related to decision making and saccade modulation implies that there is a close relationship 

between the two. 

 

1.5. Saccade vigor modulation 

 
Despite the belief that saccade speed cannot be consciously controlled, in the 21st 

century, some evidence has been reported that velocity of eye movement might be modulated by 

visual stimuli. One observation reported eye movements toward images from several categories 

(Xu-Wilson et al., 2009). It was shown that humans make faster saccades toward faces than 

neutral objects or random pixels. This result implied that even if saccades were to be made 

between the same set of positions, their velocity would vary depending on the set of visual 

stimuli shown at the target location. 

To determine whether such effects had anything to do with decision making, a decision-

making task was performed where human subjects chose between an immediate reward and a 

delayed, greater reward while looking at a screen (Reppert et al., 2015). Analysis of data on eye 

movements showed that not only did saccade vigor decrease after a decision, but also saccades 

were faster toward the chosen option relative to the other option just before and after the (<1s) 



 7 

decision. The results implied that saccadic behavior is closely related to the decision-making 

process such that its vigor is faster toward more preferred stimuli.  

 

1.6. Specific aims of thesis 

 
Not only does each human individual have a different baseline level of saccade vigor, but 

also saccade vigor is modulated within each individual. How are they modulated by properties of 

visual stimuli in a task where humans make decisions with eye movements? In Chapter 2, we 

first try to establish an environment in which the content and location of visual stimuli is 

associated with reward and effort, respectively, and analyze human subjects’ choice of gaze time 

and saccade vigor from one visual image to another. We show that fixating on a location far 

away from the center position requires great effort. We also show that subjects make faster 

saccades when moving from a high-value image to a high-value image, implying saccade vigor 

could be affected by richness of environment. 

In Chapter 3, we implement the marginal value theorem (MVT), which is a method to 

explain foraging behavior in environments with localized reward patches. We create a visual 

foraging task that is analogous to an actual foraging situation where we view images as reward 

patches and saccades as moving to a new food source. We first show that analysis of gaze time 

validates marginal value theory in our task environment. Then, we look into how saccade vigor 

could be modulated by past, present, and future effort, and discuss its significance. 

In Chapter 4, we try to suggest that saccade vigor toward a stimulus could be an indicator 

of its utility. To validate this, we designed an experiment where subjects performed a mixture of 

decision-making trials and cued (forced choice) trials. We show that saccades made in cued trials 
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are faster and quicker toward stimuli with higher utility. We also show that this effect is 

consistent even when controlled for expected reward across subjects. 

With our findings, we suggest two main implications. First, we show that saccadic 

decision closely resembles the general decision-making process and that saccade vigor is also 

modulated by factors that affect decision. Second, we show that saccades are faster and quicker 

toward visual targets associated with higher utility. With these findings, we suggest the 

possibility of gauging utility with vigor alone, without decisional behavior. This suggestion is 

intriguing as we show the possibility that utility can be estimated from saccade vigor, a 

continuous, easily measured variable.  
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2. Modulation of saccadic behavior by eccentricity and 

richness of environment 

 
2.1. Introduction 

 
As described in the first chapter, the signal that is transferred to the extraocular muscles 

(recti) to generate eye movement is composed of a bursting component and an integration 

component. Since we only consider horizontal saccades, we only take two muscles into account: 

the medial and lateral recti, which are innervated by oculomotor neurons (cranial nerve Ⅲ) and 

abducens neurons (cranial nerve Ⅵ), respectively. Neurons in both nuclei, in fact, have been 

reported to show a discharge rate affected by both eye position and velocity linearly (Robinson, 

1970; Van Gisbergen et al., 1981). This implies that perceived effort to move the eyes is also 

dependent on these factors. Taking into account that neurons cannot have a negative firing rate, 

the linear relationships mentioned are actually rectified linear, and since a population of these 

neurons will innervate the muscles, we could expect that the final signal to the recti would be 

minimal for center position and zero velocity, being stronger as both the (unsigned) position 

from the center and saccade speed rises. We can speculate that if fixation on far positions results 

in great effort, humans will choose to fixate less frequently and for a shorter time on far 

positions. 

In previous studies, it was shown that people move toward faces faster than other types of 

images (Xu-Wilson et al., 2009). However, what happens if saccadic behavior is directly related 

to the outcome of a task has not been much explored. In a situation where subjects choose how 
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long to fixate on and when to move to an image, their decisions will affect the amount of value 

earned by looking at images. It is this kind of situation that we are interested in. 

We generated a task where people would choose how they would look between two 

images displayed apart for a fixed given time. We are interested in two aspects: (1) Whether the 

positions of images affect people’s behavior of fixation time and saccade vigor, and (2) how 

vigor is modulated by reward if it is made from one image to another in this task. We propose 

that positions will result in less fixation and vigor modulation, and also that saccade vigor in this 

situation is affected by richness of environment (reward of both images). 

 

2.2 Materials and Methods 

 
2.2.1. Participants and general apparatus 

Subjects (n=17, 25.2±4.2 years old, mean±SD, 8 females) sat in a well-lit room in front 

of an LED monitor (59.7 x 33.6 cm, 2560 x 1440 pixels, light gray background, frame rate 144 

Hz) placed at a distance of 35 cm. The subject’s head was restrained using a bite bar. They 

viewed images (4x4°, except as noted) and we measured their eye movements using an EyeLink 

1000 (SR Research) infrared recording system (sampling rate 1 kHz). Only the right eye was 

tracked. All subjects were naive to the paradigm. The experiments were approved by the Johns 

Hopkins University School of Medicine Institutional Review Board, and all subjects signed the 

written consent form approved by the board. Subjects were paid $15/hour regardless of any 

behavioral outcome. 

 

2.2.2. Behavioral task 
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Subjects were presented with a center fixation for 0.5-1 sec, followed by two 

simultaneously displayed images (3x3°). Each image was selected randomly from five 

categories: 1-noise, 2-simple shapes, 3-inanimate objects, 4-animate objects, and 5-faces (Fig. 2-

1A). Each category consisted of more than 100 images, except simple shapes (45 images). Face 

images were from those used in a previous study (Liu et al., 2015). Inanimate and animate 

images were from a standardized data set (Brodeur et al., 2010). We tested all possible 

combinations of categories, ensuring that each category was presented the same number of times. 

The two images were always 20° apart, but their positions varied with respect to the midline 

from 2° to 18°, in 2° increments, chosen randomly from a uniform distribution. Subjects had 2 

seconds to freely gaze. During this period the center fixation dot was removed. The trial repeated 

if the subject spent more than 20% of the total viewing period gazing somewhere other than one 

of the images. We included trials with two images from the same category twice as frequently as 

other trials to gather data regarding effects of eccentricity for those specific trials. Subjects 

completed 9 blocks, and each block consisted of 60 trials.  

 

2.2.3. Data Analysis 

The eye position data were filtered with a third-order Savitzky-Golay filter (frame size 

11). Saccade onset and offset was determined in real time with 20°/s threshold. We identified 

saccades between images as only those with onset and endpoint that were within 5° of the 

boundaries of the start and end images (to account for calibration error). We defined time spent 

on each image by adding all the times where the gaze was recorded within the image, allowing 

for microsaccades within the image boundaries. 
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We used peak velocity as a measure of vigor of saccade. The velocity with which humans 

move their eyes over a given distance is subject-specific, exhibiting a wide range. Some 

consistently move their eyes with high velocity, while others consistently move more slowly 

(Choi et al., 2014; Reppert et al., 2018). Because of this, we focused mostly on the within-subject 

effect of factors that we tested on vigor. Furthermore, there is an issue of peak velocity varying 

as a function of saccade amplitude and direction. For saccades from image to image (20° 

amplitude), we need not account for amplitude. For initial saccades from the fixation dot to the 

first choice of image, we divided peak velocity by mean within each subject and each amplitude. 

Thus, for instance, a saccade of 10° amplitude will be normalized by dividing by mean for each 

subject and for saccades with the same 10° amplitude. We will designate this term as saccade 

vigor. We will use a more complicated method in our later experiment but will still call those 

results as vigor too. 

To analyze the effects in the experiment, we implemented a linear mixed-effects model 

that related the dependent variables (gaze duration at the image, saccade peak velocity), to the 

fixed effect variables (type of image, eccentricity of the image, and type of the other image). 

Subject label was treated as a random effect. Also, nasal saccades (leftward saccade for the right 

eye) and temporal saccades (rightward, same case) could have different base levels of vigor, so 

for velocities, we also had saccade direction as a random effect. 

 

2.3. Results 

 
2.3.1. Gaze time and probability of initial choice reflect preference 
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In this experiment, people could make decisions on how long they would gaze at each 

image. They would allocate time of 2s between two images in a way that they think gives them 

the best outcome. Although people show a variety of behavior in each trial, on average they 

should reflect how much they value each factor. For this task, subjects could choose two things: 
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Figure 2-1. Preference is reflected in probability of initial choice and gaze time. (A) Experimental 

protocol. Subjects were asked to freely gaze at either of two images during their display after a brief 

fixation period. Free time was always 2 seconds. After free time, the images were removed and the 

fixation dot reappeared, signaling a new trial. (B) Probability of initial choice by image category. 

Images in the x-axis are representative examples of each category, aligned by the order of increasing 

mean probability. (C) Time spent on each type of image (left) and on each type of image on the 

other side (right). Images in the x-axis are aligned in the same order as in (B) in a monotonically 

increasing/decreasing order. (D) Probability of initial choice by image eccentricity. (E) Time spent 

on current image eccentricity. Difference in time diminishes as eccentricity increases. Error bars for 

all plots represent mean ± SEM across all subjects. 
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how frequently they would choose an image to saccade first toward, and how long they would 

choose to gaze at an image. Since we controlled all combinations of image categories, the 

frequency of each image category is independent of the competing image on the other side.  

Also, we controlled the distance between the images to always be 20° apart, and the probability 

of an image appearing at each eccentricity was also independent of image category. This control 

made us analyze the effect of each factor by simply averaging across all trials for each value. 

Image category served to modulate reward magnitude. We first established the mean 

reward of each image category by looking at the probability of first choice. This value increased 

with image type (Fig. 2-1B, 𝑝 < 10%&'), therefore allowing us to establish an order of reward 

magnitude between image categories. We also looked at mean gaze time for each image category 

to confirm the reward order. Subjects gazed longer at image categories that they also chose first 

more often (Fig. 2-1C, left, 𝑝 < 10%&(). Also, gaze time decreases as the image that is not 

looked at gets more rewarding (Fig. 2-1C, right, 𝑝 < 10%&)). 

We changed the eccentricities of images to modulate gaze fixation effort. We checked if 

people showed different behavior with images that had different eccentricities. Indeed, subjects 

showed more frequent first choice toward near center images (Fig. 2-1D, right, 𝑝 < 10%&'). 

Also, subjects gazed longer at images that were nearer to the center (Fig. 2-1E, 𝑝 < 10%*). We 

could confirm that near center images require less effort to fixate, and thus result in higher 

preference compared to images far from the center.  

 

2.3.2. Vigor is affected by environmental reward and effort 

People make various saccades during this task, including initial saccade from the center 

dot to their first choice of image, microsaccades while looking at a certain image, etc. We first 
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checked whether we could replicate previous studies that predicted that the initial saccade would 

be faster for more rewarding stimuli. According to the reward that we inferred from the time and 

probability measurements, we did find a similar effect (Fig. 2-2A, 𝑝 < 10%+). With this in mind, 

we particularly analyzed saccades that were made from one image to another. We expected these 

saccades to be modulated by properties of both images. 
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Figure 2-2. Saccade velocity is modulated by reward and effort. (A) Initial saccade vigor 

by image category. Images are aligned in order of preference (see Figure 2-1). Saccade 

vigor is a normalized value by the main sequence of each subject (see methods). (B) Peak 

velocity of saccades made between images, by image category. Images are always 20° 

apart. Peak velocity is subtracted by the value for least preferred category (noise). Mean 

peak velocity is calculated by the image type at destination (left) and the image type at 

origin (right). Note that both are positive effects. (C) Peak velocity of saccades made 

between images by eccentricity. First, we calculated the mean for each eccentricity value 

of the target (left). This plot has a U-shape. We also calculated the mean by difference in 

eccentricities between the target and the origin (right). Error bars for all plots represent 

mean ± SEM across all subjects. 
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We studied the effect of the mean reward magnitude of each image category to see how 

both images could affect saccade vigor. Obviously, saccade vigor was modulated to be faster 

toward images that were more preferred (Fig. 2-2B, left, 𝑝 < 10%,), coinciding with previous 

studies mentioned in Chapter 1. Interestingly, we also observed that saccade vigor was also faster 

when the previously viewed image was in a more preferred category (Fig. 2-2B, right, 𝑝 <

10%'). Together, we claim that in such a task, saccade vigor is faster when the environment of 

the trial is richer, disagreeing with the common concept that it is modulated by the difference in 

reward between the target image and the starting image. 

We also tried to analyze the effect of image eccentricity on saccade vigor. We did not see 

saccade vigor either increasing or decreasing by eccentricity of target image (Fig. 2-2C, left). 

However, the plot has an inverted U-shape, implying that asymmetry between the eccentricities 

of two images is the deciding factor. Indeed, we did discover an effect of difference in the 

eccentricities of two images (Fig. 2-2C, right, 𝑝 < 10%-). We also confirmed that saccade vigor 

is not faster as the eccentricity of the target image is smaller and the eccentricity of the starting 

image is larger.  

 

2.4. Discussion 

 
We have proposed a new paradigm on how to observe decision and control of movement 

by modulating image content and eccentricity. Our proposition is based on the neural circuitry 

that connects to the extraocular muscles to generate saccades and hold the eyes in the right 

position. We assumed that since the input signal to the muscles from the cranial nuclei contain 

both a bursting component and an integrated component, not only moving the eye, but also 
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holding the eye at a certain eccentricity would require motor effort. Indeed, we saw modulation 

of gaze time and saccade vigor by eccentricity. Primarily, we saw that people tend to initially 

choose an image that has a larger eccentricity (i.e., further from the center fixation) more 

frequently. The subjects are aware that they have enough time to allocate between two stimuli, 

but they still tend to pick the more preferred one initially, which we observe by modulating 

image content. The fact that eccentricity decreases both first choice probability and gaze time 

strongly suggests that both moving the eyes to and holding them in that position require more 

effort for larger eccentricities. 

While the results of first choice probability and gaze time give us compelling evidence 

that eccentricity modulates effort, our interest mainly resides in our observations regarding 

saccade vigor, especially the ones made between images. We controlled the distance between 

images to always be 20° so that we could only compare between saccades with similar amplitude 

for this purpose. It would have been best if we could have gotten the main sequence for each 

subject, but since saccades between images have a narrow range of amplitude, we didn’t want to 

risk getting an inaccurate measure of coefficients. Although each subject showed a different 

baseline level of saccade velocity, the within effect was clearly observed. Interestingly, the effect 

increases in regard to the reward of both images, instead of the difference between target and 

starting images. In other words, the richness of the environment decides vigor. Considering that 

gazing at one image incurs an opportunity cost of not being able to gaze at the other image, this 

phenomenon is interesting. We could expect saccade vigor to be affected by the difference 

between two images, since the advantage of gazing at the target is larger if the other target is less 

preferred. However, we only observed an effect of overall reward. This result led us to consider 

the marginal value theorem (MVT), which will be explained in more detail in Chapter 3. 
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We saw a diminishing effect on gaze time as eccentricity gets larger, however, potentially 

suggesting that the effort function could be nonlinear. This nonlinearity is not expected from the 

neurophysiological results that extraocular muscles receive an input that has a highly linear 

relationship with eccentricity (Robinson, 1970; Van Gisbergen et al., 1981). It is also not 

expected from a simple physical model, if we suppose that muscles are similar to springs holding 

onto each left/right side of the eyes, which would predict the conservative force (towards the 

center) to be linear. Some more recent models do take into account acceleration, jerk, or time 

delay to estimate neural input (Sylvestre and Cullen, 1999), but it is still not fully explainable. 

Finding out the function of eccentricity in motor effort to hold and move is a potentially very 

interesting subject. 

In regard to this topic, we could also interpret the effect of saccade vigor not decreasing 

by the difference between target and starting eccentricity. Not only does this mean that saccade 

vigor is also not dependent on the difference, but on the overall environment, but it also implies 

that eccentricity modulates motor effort in a nonlinear relationship so that the mean effort to hold 

on low and high eccentricity is greater than the mean effort to hold on medium values of 

eccentricity (remember that eccentricity values are paired, i.e., 2° and 18° are always paired, 

while if one image is at 10°, the other image is also at 10° on the other side, and this happens 

because we kept the distance between images the same in all trials). This could be because of the 

average gaze time difference across eccentricity values, since for an eccentricity pair of 2° and 

18°, subjects usually fixate on the 2° position longer, resulting in low mean effort to hold 

compared to other eccentricity pairs. However, we still suggest the possibility of this function 

being nonlinear. 
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Since we observed that saccade vigor is decided by starting point property and target 

point property in the same way, not the difference between the two, it is interesting to develop a 

new mathematical theory to explain this phenomenon. In fact, we will develop a refined version 

of the marginal value theorem (MVT) so that we can explain both gaze time (decisional 

behavior) and saccade vigor (control of movement) with a utility function in Chapter 3. 

Chapter 2 is included in our published paper (Yoon et al., 2018). 
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3. Control of gaze time and vigor in a visual foraging 

task 

 
3.1. Introduction 

 
Studies have been conducted to explain the decisions that animals make while foraging 

for food. The model to explain such behavior is called optimal foraging theory (OFT). The idea 

originated half a century ago (MacArthur and Pianka, 1966), when the authors suggested that 

animals forage for food in order to maximize net energy gain, thus being in a more advantageous 

position for natural selection. Ecologists and economists have strived to identify the optimal rule 

for OFT. 

A widely used model was suggested (Charnov, 1976). The author called his model the 

“marginal value theorem” (MVT). The theory describes how long animals choose to reside in a 

specific patch of resources (food) that is located discretely, separated by areas that have no food. 

Animals could choose to not stay and consume food until it is completely depleted, and how long 

they would stay is a decision-making behavior. Such behavior is predicted when the resources in 

each patch are limited and it thus results in diminishing returns, so that animals will get less food 

per time as the patch gets depleted. The founder of the theorem tried to estimate the time, which 

is affected by properties of the patch and also by environmental factors. 

The original paper describes a situation where animals try to maximize the net energy 

intake rate by choosing the time spent in each patch. With a series of simple calculations, it 

concluded that the optimal time the animal would choose to spend in each patch to maximize net 

energy intake rate is when the marginal capture rate (derivative of energy assimilation function) 
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drops to the average capture rate for the environment. In other words, the animal would choose 

to leave when their current intake rate drops to the average intake rate, so that staying longer is 

less beneficial than the average gain. While this theorem explains well how long animals would 

stay, it does not explain how quickly they would travel between patches, because the theorem 

assumes that interpatch travel time is known and travel energy cost is not affected by other 

factors. 

We developed a new version of the marginal value theorem by introducing travel energy 

cost as a function of interpatch travel time. We could explain how movement vigor could be 

affected by patch properties and environmental factors. We also conducted an experiment that 

introduced a foraging-like situation. We discovered that gaze time on each image agreed with 

our predictions from the marginal value theorem. Also, we observed modulation of saccade vigor 

by several factors, which also justified our new modified MVT model. 

 

3.2. Materials and Methods 

 
3.2.1. Generalized MVT 

Our generalized MVT model is very similar to the original version but we take into 

account the cost of movement varying by travel time as well. In this case, subjects could control 

two variables: duration of time spent harvesting in each patch, and travel time to that patch. First, 

we establish the reward acquired and effort expended at patch 𝑛 = 1,… ,𝑁. We make an 

assumption that reward accumulation is an increasing function but then saturates, while 

consistently spending motor effort. We represent the harvest function 𝑓(5) as the sum of reward 

acquired and effort expended during time spent: 
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In this formula, 𝛼(5) is the total amount of reward in the patch, 𝑡9
(5) is the harvest time, 𝛽 

is rate with which the reward is harvested, and 𝑢9
(5) is the effort required for harvesting (also a 

function of harvest time). The exact form of this function is not critical here. What is important is 

that the harvest function is increasing but has a diminishing rate of return, with its second 

derivative being negative (Fig. 3-1A). We assume that harvesting effort has a linear relationship 

by time: 

In this formula, 𝑘(5) is the rate of harvest effort by time. Realistically, all variables are 

positive, so we got the harvest function that satisfied our assumption. 

We can also develop the local capture rate 𝐽(5) in each patch, also taking into account the 

effort expended to travel to the patch (𝑢>
(5)), and travel time to patch 𝑡>

(5). The traveling effort 

𝑢>
(5) will also depend on the travel distance 𝑑(5). Then we have the following: 

As the original version, the objective would be to maximize global capture rate 𝐽:̅ 

We didn’t specify the function for 𝑢>
(5) yet, but we assume that this function is convex, 

with its second derivative positive (Fig 3-1F). We think this is justified, because energy 

expenditure in many types of movements is convex, including walking and reaching (Zarrugh et 
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al., 1974; Shadmehr et al., 2016). This assumption is critical, because only then should we be 

able to derive the expression for optimal movement duration. 

Suppose that the subject considers moving to and harvesting in patch 𝑛. Then, we can 

only attend to the terms that are related to this patch: 

Constants 𝐴 and 𝐵 contains all other terms that are not associated with behavior in this 

patch. Subjects control harvest time 𝑡9
(5) and travel time 𝑡>

(5) to maximize the above. To get the 

optimal values, we note that the derivatives of 𝐽 ̅with respect to the two time periods can be 

simply written as: 

The optimal values of the two variables are found when the two derivatives are 

simultaneously equal to zero. As a result, the optimal harvest duration will be specified as the 

relationship between the harvest function and the global capture rate: 

Also, the optimal movement duration will be specified as the relationship between the 

effort expenditure function and the global capture rate: 
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Asterisks designate the optimal values of each variable. The expression for harvest 

function is still similar to the original version of the marginal value theorem, although now 

global capture rate 𝐽 ̅is also a function of travel time. In addition, we now have a new expression 

for optimal travel time. 

The meaning of these equations is fairly intuitive. For the harvest time, the optimal time 

is when the “marginal rate” drops to the global capture rate. For the travel time, the optimal 

duration is when the “marginal gain” (how much less effort is spent as movement time increases) 

drops to the global capture rate (minus sign for a negative slope). The two equations reach 

similar conclusions. 

 

3.2.2. Generalized MVT and its applications 

To test the model, we should be able to build an environment that satisfies basic 

assumptions for the model. We create an environment where subjects are given patches of 

images on a screen. They are free to move between patches as they want to. In this case, they can 

decide both their own gaze duration on each image and saccade duration between images. We 

control reward 𝛼(5) via image type and effort required to harvest 𝑢9
(5) via image eccentricity. 

This assumption holds valid because of our previous observations in Chapter 2: People choose 

more often and gaze longer at certain image types and images that have low eccentricity (Fig. 2-

1). The gain by looking at an image would diminish as subjects become more familiar with that 

image. The effort to hold would still remain over time. Although we cannot numerically derive 

reward values, we can still predict how each factor would affect gaze time and saccade duration. 
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For example, the theorem predicts the reward of the current image to increase harvest 
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Figure 3-1. The generalized marginal value theorem predicts harvest duration and movement vigor during foraging. 

(A) The harvest function is the sum of accumulation of reward with a diminishing rate and expenditure of effort with 

a constant rate, resulting in its concave form. For such harvest functions, the theory predicts the individual to leave 

the patch when the marginal rate equals the global rate. (B) Increased reward result in longer harvest duration for the 

same global rate. (C) Similarly, increased effort results in shorter harvest duration. (D) When the harvest function 

stays the same, increased past or future reward would change the global rate, thus changing the optimal harvest 

duration. (E) Similarly, past or future effort would have such effects. (F) During movement, for an effort function 

that is convex by movement duration, the theory predicts the individual to choose vigor so that the marginal 

advantage of movement duration equals the global rate. (G) The theory explains why longer distance is required to 

move results in longer movement duration. This does not imply that the speed is slower, because individuals will 

move different distances. (H) Although it has no direct relationship with movement, past or future reward is 

predicted to change movement vigor by modulating the global rate. (I) Similarly, past or future efforts will have 

their own effects. 
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duration (Fig. 3-1B) because it delays when the marginal rate drops below the global capture 

rate. Similarly, it predicts the eccentricity of the current image (=holding effort) to decrease 

harvest duration (Fig. 3-1D) because it does the opposite. However, not only does the 

modulation of the current harvest function change the optimal gaze time, but change in the global 

capture rate does as well. This would include both past and future reward and effort. An increase 

in reward would increase the global capture rate and thus decrease the optimal harvest time (Fig. 

3-1C) (in other words, richness of environment results in a shorter gaze time with the current 

image). Similarly, an increase in effort would decrease the global capture rate and thus increase 

optimal harvest time (Fig. 3-1E) (in other words, hardness of environment results in longer gaze 

time with the current image). 

In addition, we could also predict how several factors would affect saccade vigor. We can 

even explain why longer distance results in a longer saccade duration (Fig. 3-1G): change in 

effort function results in delay of when marginal gain would drop below the global capture rate. 

Of course, modulation of the global capture rate also has an effect on saccade vigor: an increase 

in reward and decrease in effort would increase the global capture rate and thus decrease optimal 

movement duration, resulting in a faster saccade for the same amplitude (Fig. 3-1H, 3-1I). We 

will try to show that such modulations indeed appear in our results. 

Interestingly, one alternative way to define the global capture rate is to derive it as an 

average value of the individual utilities of each patch: 

In this case, the optimal harvest duration and movement time depend only on the current 

conditions – that is, past and future reward and effort (and anything that only affects the global 
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capture rate) should not affect decision making and motor control. We will set out to test these 

predictions and prove that it is not the case. 

 

3.2.3. Participants and general apparatus 

Subjects (Experiment 1: n=22, 30.0±11.4 years old, mean±SD, 10 females; Experiment 2: 

n=18, 23.1±5.2 years old, mean±SD, 9 females) sat in a well-lit room in front of an LED monitor 

(59.7 x 33.6 cm, 2560 x 1440 pixels, light gray background, frame rate 144 Hz) placed at a 

distance of 35 cm. The subject’s head was restrained using a bite bar. They viewed images (4x4°, 

except as noted) and we measured their eye movements using an EyeLink 1000 (SR Research) 

infrared recording system (sampling rate 1 kHz). Only the right eye was tracked. All subjects 

were naive to the paradigm. The experiments were approved by the Johns Hopkins University 

School of Medicine Institutional Review Board, and all subjects signed written consent form 

approved by the board. Subjects were paid $15/hour regardless of any behavioral outcome. 

 

3.2.4. Behavioral task – Experiment 1 

Subjects began each block of trials with an image (4x4°) at the center location and a dot 

at another position along the horizontal axis. The dot location was selected randomly (uniform 

distribution) at a distance of 10°, 15°, or 20° from the image along the horizontal axis, but never 

beyond 20° from the center of the screen. We employed three image types: 1-simple shapes, 2-

realistic objects, and 3-faces, with at least 500 images in each category. Once the gaze shifted to 

the dot, the dot disappeared, and an image appeared at its location (Fig. 3-2A). In each trial, the 

image category was selected randomly with equal probability from each category, and then with 

equal probability from within that category. As there were no constraints on duration of gaze, 



 28 

block length was defined in time (200s) and not trials. Behavior was examined during 10 blocks, 

resulting in an average of 2812±419 trials per subject. 

 

3.2.5. Behavioral task – Experiment 2 

The basic experiment design was similar to Exp. 4 in that the subjects viewed an image 

for a duration of their choosing, being given the option of making a saccade to a dot, after which 

they were presented with an image at that location. Subjects experienced 16 blocks, 100 

trials/block. To modulate effort history, during a block, all images (except probe images) 

appeared at high eccentricity in a range from 10° to 30° with respect to midline (uniform 

distribution, mean eccentricity of 20°). In another block, the images appeared at low eccentricity 

within 10° of the midline (mean eccentricity of 5°). These blocks represented high effort and low 

effort environments, respectively (Fig. 3-3A). In each block, 20% of the trials were a probe, 

placing the image at 10° with respect to the midline, and the dot on the contralateral side, also at 

10° with respect to midline. Every fifth trial was a probe trial. Images were selected randomly 

from three categories, the same as in experiment 1. However, every probe trial started with an 

image from category 2 (realistic object). 

 

3.2.6. Data Analysis 

The eye position data were filtered with a third-order Savitzky-Golay filter (frame size 

11). Saccade onset and offset was determined in real time with 20°/s threshold. We identified 

saccades between images as only those with onset and endpoint that were within 5° of the 

boundaries of the start and end images (to account for calibration error). We defined the time 
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spent on each image by adding all the times where the gaze was recorded within the image, 

allowing for microsaccades within the image boundaries. 

We used peak velocity as a measure of vigor of saccade. The velocity with which humans 

move their eyes over a given distance is subject-specific, exhibiting a wide range. Some 

consistently move their eyes with high velocity, while others consistently move more slowly 

(Choi et al., 2014; Reppert et al., 2018). Furthermore, peak velocity varies as a function of 

saccade amplitude and direction. To quantify the effects of reward and effort on the saccade of 

each subject, we first built a subject-specific model of peak velocity as a function of amplitude 

and direction using a maximum likelihood approach, as described in another study (Reppert et 

al., 2018). The data that we used for constructing the model consisted of all saccades made by 

the subject during the experiment. Given the measured amplitude and direction of a given 

saccade, the model predicted the expected saccade peak velocity for that subject. We defined 

saccade vigor as the ratio of the actually measured peak velocity with respect to the predicted 

velocity. This normalization would account for vigor modulation accounting for individual 

difference and the main sequence (Section 1.1). 

To analyze the effects in the experiment, we implemented a linear mixed-effects model 

that related the dependent variables (gaze duration at the image, saccade peak velocity), to the 

fixed effect variables (type of image, eccentricity of the image). Subject label was treated as a 

random effect. In cases where we compared “high” and “low” values (two categories), the linear 

model is same as repeated measures ANOVA.  

 

3.3. Results 
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3.3.1. Effect of reward on gaze duration 

This experiment created an environment that is analogous to a foraging situation where 

subjects gazed at each image for a certain amount of time (analogous to harvesting food from a 

patch), and then moved to the next image (analogous to moving to a new patch of food). Thus, if 

the model is valid, we should be able to see the predictions made by the model (Fig. 3-1). 

Subjects could consciously choose the gaze duration for each image, and according to our 

version of the MVT model, modulate saccade velocity moving between images. Thus, we 

expected changes in these two parameters by various local and global factors to be different 

across trials. 

In Chapter 2, we already confirmed that image categories alter gazing behavior. In other 

words, subjects look longer at the more preferred image. Our results also show that this is true. 

Subjects certainly spend a different amount of time on each image category, on average (Fig. 3-

2B, 𝑝 < 10%'). The order of gaze time is identical to what we already saw in Chapter 2, although 

for this experiment there was no time limit and no competing image. Our model did predict the 

current reward to increase gaze duration by modifying the harvest function (Fig. 3-1B). 

In our task, there is no way for the subjects to predict what image type would appear in 

the next location, where the dot is, so future reward would not have any effect. However, an 

already experienced reward is predicted to have an effect by changing the global capture rate 

(Fig. 3-1C). We did see an effect of image type at just the previous patch (Fig. 3-2C, 𝑝 < 10%S), 

toward the opposite direction, which was predicted by the model. This effect was very small, 

however, with a range only roughly one-tenth of the effect of current image type. Due to the 

large variance in subjects’ behavior, we did not see any effect of image type past one previous 

patch. 
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Figure 3-2. Various factors modulate gaze duration and saccade vigor in a visual foraging task. (A) Experimental 

protocol for experiment 1. Subjects make continuous decisions of whether to continue gazing, or to move their eyes 

to the next target. (B) Gaze duration by current image category. (C) Gaze duration by past image category. Past 

reward decreases gaze duration. (D) Gaze duration by current eccentricity. Higher eccentricity requires more effort 

during holding, therefore changing the form of the harvest function. (E) Gaze duration by past distance moved. 

Past effort modulates the global capture rate. (F) Gaze duration by future eccentricity. Future effort also modulates 

the (expected) global capture rate. All gaze durations are normalized for each subject by mean across all trials. (G) 

Saccade vigor by target image eccentricity. A similar principle as in (F). (H) Saccade vigor by current image 

eccentricity. The effect is the opposite of the effect of target image eccentricity. Saccade vigor is calculated by 

normalization using each subject’s main sequence (see methods). Error bars for all plots represent mean ± SEM 

across all subjects. 
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3.3.2. Effect of effort on gaze duration 

Although the task instructions were simple and many variables for eccentricity were 

randomly chosen, parameters of eccentricities and distances were moderately correlated because 

of some task conditions we applied and because distances were calculated as differences between 

signed eccentricities, thus being completely dependent. Therefore, we needed to adopt an 

additional method to single out each parameter to study its effect on subjects’ behavior. To do 

this, we simply extracted pairs of sets of parameters that only differed by our choice of the 

parameter of interest, while keeping the other parameters that were correlated to be the same. 

This simple procedure excluded many trials for each test, but still provided us with enough 

statistical power because we had many trials to begin with (see methods). In this way we were 

able to test the individual effects of each parameter without having to be concerned with cross-

correlation between independent variables. 

As mentioned earlier in Chapter 2, image eccentricity modulates behavior by modulating 

the effort to fixate on the right location. We observed that eccentricity of the current image had a 

negative effect on gaze duration (Fig. 3-2D, 𝑝 < 10%&)). Our model predicted that this would 

happen because eccentricity would modify the value of 𝑘(5), the coefficient for holding effort, 

which results in a change of the harvest function (Fig. 3-1D). 

Not only did eccentricity of the current image modulate gaze duration, but also those of 

past and future images, as well as distances between images. We also observed that distance 

traveled before fixation on the current image had a positive effect (Fig. 3-2E, 𝑝 = 0.046). In 

other words, subjects gazed longer at a target image just after they had to move their eyes a 

longer distance. This effect is predicted from our model because distance traveled would 

decrease the global capture rate, thus increasing gaze duration on the current image (Fig. 3-1E). 
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Similarly, the eccentricity of the future image had a similar effect (Fig. 3-2F, 𝑝 < 10%&(). This 

effect is also predicted from a decrease in the global capture rate, same as the distance from the 

past image (Fig. 3-1E). 

 

3.3.3. Effect of effort on vigor 

For this task, we are also interested in observing the effects of eccentricity and distance 

on vigor. Since distance itself would modulate the baseline level of velocity due to the main 

sequence of saccade, the effect of distance traveled would be trivial. Thus, we investigated the 

effect of eccentricities on saccade vigor. Unlike gaze duration, there is no concept of “current” 

image, so all eccentricities will be past or future. According to our model, both are predicted to 

lower the global capture rate and thus increase saccade duration (= decrease saccade vigor) (Fig. 

3-1I). However, we observed some conflicting results. 

To compare between different sets of parameters that differ in saccade distance, we used 

a normalization method mentioned in the methods section (Section 3.2.6) (Reppert et al., 2018). 

We observed that the normalized vigor is affected by both eccentricities; it decreases by 

eccentricity of target image (Fig. 3-2G, 𝑝 < 10%-) and increases by eccentricity of current image 

(Fig. 3-2H, 𝑝 < 10%&'). Only the former effect is expected by our model, as illustrated (Fig. 3-

1I). 

In conclusion, we observed effects of past and future efforts on gaze duration and saccade 

vigor, and they mostly agreed with the predictions from our model. However, we fond one 

mismatch where past effort expenditure resulted in higher vigor. The next experiment is to 

further confirm this observation in this task and provide an alternative explanation of how vigor 

could be modulated by past effort. 
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3.3.4. Effect of past effort expenditure on vigor 

Experiment 2 in this section was conducted to show two things: that (1) the effect of past 

effort expenditure on vigor that we have observed (Fig. 3-2H) also happens in the relatively long 

term, and (2) the effect is observed even when saccade trajectories are controlled to be the same 

(i.e., saccades that have the same starting position, target position, and amplitude). In order to 

show these, we conducted a task similar to experiment 1 but controlled parameter distributions 

so that they have distinct “environments” (Fig. 3-3A). In a high effort environment, targets were 

presented in positions that were at least 10° eccentricity. In a low effort environment, targets 

were presented in positions that were at most 10° eccentricity. Meanwhile, we had some probe 

10 15 201 5

10 15 20
0.5

0.6

0.7

0.8

G
az

e 
du

ra
tio

n 
(s

ec
)

-0.2

-0.1

0

0.1

0.2
10 15 20

Probe trial

460

480

500

520

540

560

P
ea

k 
ve

lo
ci

ty
 (d

eg
/s

)

-40

-20

0

20

40

0 10 20 30
Eye position (deg)

D
 p

ea
k 

ve
lo

ci
ty

 (d
eg

/s
)

D
 g

az
e 

du
ra

tio
n 

(s
ec

)

probe
trial

time

1 5

10 15 201 5

60

1 5

A B C

low effort block

high effort
block

Gaze duration in probe trials Saccade velocity in probe trials

Probe trial

probe
trial

probe
trial

probe
trial

Lo
w

 e
ffo

rt
 b

lo
ck

H
ig

h 
ef

fo
rt

 b
lo

ck

-30 -20 -10
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trials in each environment that had its current image at 10° and the next target dot at 10° on the 

other side, so that it satisfied both environment conditions. This manipulation allowed us to 

compare between probe trials that have the same local properties but in different environments. 

Similar to experiment 1 in this chapter, we still see longer gaze duration in probe trials in 

the higher effort environment (Fig. 3-3B, 𝑝 < 10%-). Furthermore, we also see faster saccade 

velocity for probe trials in the higher effort environment (Fig. 3-3C, 𝑝 < 10%+). The fact that 

there still is saccade vigor modulation makes us believe that past and future efforts (represented 

by eccentricities) to fixate on images modulate such that higher effort results in faster saccade 

vigor. This is also still equivocal with results in experiment 1. 

 

3.4. Discussion 

 
We proposed a new model in the context of foraging and suggested a way to explain both 

time in patch (= gaze duration on image) and travel time (= saccade vigor, reciprocal). Previous 

models simply assumed a certain value of mean travel time and used it to explain duration in 

patch, under the assumption that travel time is unaffected; we proposed that even movement 

vigor could be modulated as a variable. We also suggested that a foraging situation could be 

formulated by presenting visual targets in various positions, which we showed represent 

harvesting effort (= holding effort) in Chapter 2. In fact, this context of study has been conducted 

for a long time under a task termed “visual search,” but we specifically confine variables in order 

to observe and quantify systematic changes in gaze duration and saccade vigor. 

Our generalized theory of the marginal value theorem (MVT) states how gaze duration 

and saccade vigor could be modulated not only by local reward and effort, but also by average 
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global capture rate. The predictions from our model come from the logical policy to maximize 

global utility, defined as the sum of all rewards divided by the sum of all time spent. Although 

there could be some modifications to this formula, such as adopting weights (<1) that is 

multiplied as it gets further away toward the past/future from the current trial of interest, as is 

done for temporal difference (TD) learning (Sutton, 1988), the conclusion should still remain 

similar and predictions should be affected in a similar way by local and global factors. We do 

claim that our definition of global utility is important considering that an alternative hypothesis 

of defining global utility as the mean of utility of each trial predicts the global capture rate to 

have no effect on current gaze duration, which is a completely different prediction. 

In this chapter (and Chapter 2 as well), we used an analogy of our task to an actual 

foraging situation. We assumed that viewing images was akin to harvesting food on a patch. This 

comparison comes from behavioral evidence (Xu-Wilson et al., 2009) and neurophysiological 

evidence that people like and move faster toward faces, and that facial images trigger a response 

in regions associated with reward (O’Doherty et al., 2003). As with facial images, we could 

assume that images in other categories would show similar effects to varying degrees. In 

addition, we assumed that making a saccade from one image to another is analogous to traveling 

between harvest patches, and that while looking at an image, the eye exerts effort similar to how 

animals have to spend effort to consistently harvest on a patch. As mentioned in Chapter 2, 

eccentricity results in both the neurophysiological consequence of a higher firing rate for motor 

neurons and the behavioral consequence of fixating for a shorter time due to requiring more 

effort. Thus, we could safely make the analogy, and apply our model to predict saccadic 

behavior. 
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The pattern of gaze duration on each image spent by subjects showed exactly the pattern 

predicted by our new version of the marginal value theorem. We showed that current reward 

lengthened gaze duration, obviously. We also observed that a reward (image type) in a previous 

trial shortened gaze duration, although its effect size was much smaller than the effect of the 

current trial reward. The fact that no more previous reward showed any significant effect 

indirectly points to the fact that there should be a temporal discount term, as mentioned above, 

even though this story alone does not reveal what its exact mathematical form would be. 

Nevertheless, the effect of past reward implies that a decreased global capture rate results in a 

longer gaze duration on the present image. 

Also, we observed that images on higher eccentricities are gazed at for a shorter time, 

implying that the eye has to exert consistent effort during gaze time. Not only this, but we also 

saw that past and future efforts (represented by distances and eccentricities) affect gaze duration, 

but in the opposite direction (so that they lengthen gaze duration in the present trial). Our model 

predicted this would happen because of alteration of the global capture rate, and the predictions 

match the results. These effects also trail beyond one trial back and forward, also implying a 

temporal discount. With these observations, we believe that our analogy between our 

experiments and foraging is reasonable and our models are applicable to the situation of our 

experiments. 

Since our global utility rate term is not simply the average (or weighted sums, if we 

consider time decay) of utilities of all trials, the question would be how a temporal discount term 

could be applied to the formula. This cannot be shown simply from our study, but we could 

simply suggest the discount multiplier in each trial term for both reward in the nominator and 

time in the denominator. Even this simple assumption would predict that the effects of previous 
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trials would decay as it is further away in the timeline toward the past, as a change in the 

parameters of that trial would have much less of an effect on the global rate. It would still be an 

interesting topic to look at how the global rate is actually affected by each trial based on the 

subjects’ foraging behavior. 

Recently, a number of studies have shown that movement vigor is modulated by reward, 

including saccadic eye movements (Takikawa et al., 2002; Xu-Wilson et al., 2009; Summerside 

et al., 2018). We observed effects of past and future efforts on saccade vigor, suggesting that this 

is affected by utility and not just reward. However, the observations do not exactly match the 

predictions from our model. Our model predicted that vigor would decrease because the global 

capture rate would drop, but it did not happen for past effort, since we observed it actually 

resulting in higher vigor. 

One suggestion to explain this phenomenon is simply that a different saccade trajectory is 

what is causing the difference in vigor. It has been suggested that saccades of different directions 

and relative positions could have different peak velocities, even if they have the same amplitude, 

such as left-right asymmetry (Vergilino-Perez et al, 2012) and nasotemporal asymmetry 

(Jóhannesson and Kristjánsson, 2013). Nonetheless, we did try to minimize this effect by 

accounting for both directions (leftward and rightward). Previous studies do not show systematic 

differences in saccade velocity by its starting and ending eccentricities, so we believe that our 

observations are due to the structure of the task requiring holding on each image before and after 

the eyes arrive. This is further confirmed by experiment 2, where we saw that this effect occurs 

even when we compare between saccades that have the same starting and ending eccentricities. 

Not only does this result show that long-term effort has an effect on current vigor, but it also 
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shows that even when saccade trajectories are controlled, the vigor is modulated by effort, thus 

further confirming our suggestion. 

An alternative way to explain this phenomenon is to relate it to a similar effect. In fact, 

people elevate the subjective value of a reward when it is gained by an expenditure of cost. This 

is usually referred to as effort justification (Aronson and Mills, 1959). Although this behavior 

was originally a psychological phenomenon, similar behavioral patterns were observed in 

animals foraging (Clement et al., 2000; Kacelnik and Marsh, 2002). It has been suggested 

recently that the reason for this phenomenon is a within-trial contrast (Zentall, 2013). In detail, it 

explains that since a reward associated with higher expenditure of effort used to have low utility, 

when it is evaluated without concerning any cost, its value elevates due to the contrast effect. In 

economics, a similar effect is referred to as the sunk cost fallacy, where people value things they 

have obtained by paying more for them. 

Recently, a series of neuroscientific studies suggested the plausibility of this phenomenon 

(although it was not directly addressed). A study that observed the behavior of mice in distinct 

types of environments that differed by whether the cost to obtain food increased/decreased 

showed that dopamine neurons fired stronger in an environment where cost decreased under the 

same cost value, indicating that they had a higher firing rate succeeding high-effort expenditure 

(Schelp et al., 2017). Another study that looked at the relationship between dopamine signals and 

movement showed that substantia nigra pars compacta (SNc) dopamine activation promotes 

succeeding movement initiation (da Silva et al., 2018). These facts considered together could 

suggest that higher expenditure of effort would lead to more vigorous movement, which we saw 

in our observation. 
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Neurological patterns involving foraging behavior have already been observed in the 

frontal lobe. When fixating, animals are in a persisting decision process. They have to make a 

decision to either stay or leave the current patch. The effort of eye fixation is encoded in the 

frontal eye field (FEF) (Segraves, 1992), while the relative value of leaving is encoded in the 

cingulate cortex (Hayden et al., 2011), whose rate rises faster when the effort expenditure of 

travel is larger. When this rate reaches a threshold, the animal would decide to travel to the next 

patch. The cingulate cortex is also affected by reward, as its rise is faster when the current 

reward rate is higher, and the threshold is also affected by the reward history (Barack et al., 

2017). Together, we see the similarity between our behavioral observations and the pattern of 

neuronal activity in the frontal lobe. 

As already mentioned in Chapter 1, dopamine neurons in the SNc innervate the basal 

ganglia, while neurons in substantia nigra pars reticulata (SNr), part of the basal ganglia, send 

inhibitory output to the superior colliculus. In fact, a bilateral lesion of the globus pallidus 

external (GPe), which receives inputs from other areas of basal ganglia and sends output to the 

SNr, results in the inability of animals to modulate saccade vigor in response to changes in 

reward (Tachibana and Hikosaka, 2012). Thus, it seems clear that dopamine release is crucial in 

modulating saccade vigor given a decision-making task. 

However, phasic dopamine release only reveals an effect of local reward and effort. It has 

been suggested that tonic dopamine release could encode a sustained reward history (Niv et al., 

2007). Unfortunately, not much has been studied about this, although several effects of tonic 

dopamine release have been reported (Beeler et al., 2010). Other studies mention that reward 

history is instead reflected in tonic firing of serotonergic neurons (Cohen et al., 2015). Thus, 



 41 

while it is clear that the history of reward and effort modulates vigor, its neurological basis is 

poorly understood.  

In this chapter (and also Chapter 2), we use images that are at least neutral (some of 

them, such as faces, could even be considered attractive). In the case of an aversive image, vigor 

could be modulated differently. It has been reported that appetitive and aversive outcomes incur 

different patterns of neuronal activity in the prefrontal cortex (Kobayashi et al., 2006) and 

dopaminergic neurons (Matsumoto and Hikosaka, 2009). In fact, serotonergic neurons in the 

dorsal raphe nucleus (DRN) also show distinct firing patterns in both types of outcomes (Hayashi 

et al., 2015). Meanwhile, the effect of positive or negative images has mostly been studied in the 

field of psychology in terms of emotion and attention. In fact, it has been observed that saccades 

occur more quickly towards more fearful tasks (Öhman et al., 2001, Bannerman et al., 2009). It 

would be interesting to see how movement vigor differed in the presence of negative stimuli. 

Our experiments had the great advantage of being able to collect thousands of trials of 

fixation and movement of the eyes in a relatively short time of about 1 hour. Also, we used 

images to provide accumulating reward during fixation, and this assumption seems valid given 

our observations. In fact, we did have to make important assumptions about the harvest function 

and the cost of travel function; in order to apply our model, the harvest function should be 

concave, and the movement effort function should be convex. These assumptions will need to be 

tested in a more quantified study where reward value and cost of movement is objectively 

measurable. Also, it could be a concern that the time scale is very different from the situation 

that the original MVT usually explains, but since predictions turn out to be valid, we could still 

make the conclusion that people still care about optimizing global capture rate in those 

situations, even if the effort required is very small and the time scales are very short. 
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Chapter 3 is included in our published paper (Yoon et al., 2018). 
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4. Modulation of vigor and reaction time to visual 

stimulus associated with reward 

 
4.1. Introduction  

 
Subjective value is a popular topic in economics, and is usually referred to as utility, 

which is defined as the amount of worth or value gained by the option of choice. This value is 

measured from people’s decision and choice behavior. Most studies involve “risky” choices, 

which present various outcomes with differing probability. It was initially suggested that people 

choose the option with the highest expected utility value (von Neumann and Morgenstern, 1944). 

A series of studies led by economists eventually arrived at the Prospect theory (Kahneman and 

Tversky, 1979), which suggests that humans make decisions based on their own heuristics on 

potential values of gains and losses, which accounts for some decisions that do not follow the 

expected utility theory (Allais, 1953; Ellsberg, 1961). Thus, not only is utility an abstract 

quantity that cannot be measured directly, it is also subject to subjective heuristics and thus needs 

carefulness in measurement. 

A number of studies revealed that movement vigor is modulated by reward and effort 

(Yoon et al., 2018, Shadmehr et al., 2019, Summerside et al., 2018). In fact, recent studies have 

even shown that reward prediction error (RPE) modulates movement vigor in saccade adaptation 

(Sedaghat-Nejad et al., 2019). Interestingly, RPE is also what is encoded by dopaminergic 

neurons in the substantia nigra pars compacta (SNc) (Schultz et al., 1997; Bayer and Glimcher, 

2005). It was also discovered recently that stimulation of dopamine just before movement 

increases its vigor (da Silva et al., 2018). These series of results raise the possibility that the 
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vigor with which an individual moves toward an option depends on its subjective value assigned 

by the brain. If this is the case, vigor could provide an objective assay of subjective value. 

Alternatively, instead of representing subjective value, it might reflect the salience of the 

stimulus. Chapter 3 already mentioned that fearful images are responded to more quickly 

(Öhman et al., 2001, Bannerman et al., 2009). If this is the case, vigor then increases for both 

larger gain and loss. Some dopamine neurons also show increased activity for both positive and 

negative feedback (Matsumoto and Hikosaka, 2009). It was already mentioned in Chapter 1 that 

the frontal eye field (FEF) sends input to the superior colliculus (SC); and it was discovered that 

FEF activity is modulated by expected reward (Glaser et al., 2016). On the other hand, the lateral 

intraparietal cortex (LIP) is also known to encode value-based decisions in action-based 

decisions, and it is reported to encode salience (Leathers and Olson, 2012). This region is also 

known to respond to the novelty of a stimulus (Foley et al., 2014). Therefore, it will have to be 

determined whether movement vigor is decided by value or salience (or both). 

 We examined these questions by measuring saccades in a task where subjects learned to 

associate value with neutral abstract stimuli paired with different amounts of gains or losses. In 

decision trials, which involved risky options, they chose an option with a saccade to maximize 

reward, from which we inferred the utility of individual options. In probe trials, subjects made a 

cued saccade in the direction of a single stimulus, from which we measured vigor and reaction 

time. We found that subjects showed faster movement and quicker reaction toward a stimulus 

that was associated with gain, and the opposite for a stimulus that was associated with loss. More 

notably, we observed across-subject differences in evaluation and behavior and it showed a 

strong association with subjective value. 
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4.2. Materials and Methods 

 
4.2.1. Participants and general apparatus 

Subjects (Experiment 1: n=24, 26.3±8.2 years old, mean±SD, 8 females; Experiment 2: 

n=22, 26.3±7.5 years old, mean±SD, 10 females) sat in a well-lit room in front of an LED 

monitor (59.7 x 33.6 cm, 2560 x 1440 pixels, light gray background, frame rate 144 Hz) placed 

at a distance of 35 cm. The subject’s head was restrained using a bite bar. They viewed images 

(4x4°, except as noted) and we measured their eye movements using an EyeLink 1000 (SR 

Research) infrared recording system (sampling rate 1 kHz). Only the right eye was tracked. All 

subjects were naïve to the paradigm. The experiments were approved by the Johns Hopkins 

University School of Medicine Institutional Review Board, and all subjects signed written 

consent form approved by the board. Subjects were paid $15/hour regardless of any behavioral 

outcome. 

 

4.2.2. Behavioral task – Experiment 1 

Our goal was to assess whether the saccade vigor of an individual was associated with the 

value that they had learned to assign to an abstract stimulus. To assess subjective value, we 

performed an experiment in which people learned the values of 10 abstract visual stimuli through 

experience. Each stimulus was a 2° x 2° colored square, designated with a “+” or “-” (Fig. 4-1B). 

Each square was randomly assigned to a point distribution, with a mean that ranged from a loss 

of 5 points to a gain of 5 points. The points associated with each color were selected randomly in 

each trial from a beta distribution with parameters 𝛼 = 𝛽 = 2, scaled so that each color box was 

associated with a single mean: -5, -4, …, +5. The plus and minus indicator at the center of the 
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square noted the sign of the mean of the distribution. The color to point association was selected 

randomly for each subject but remained consistent throughout the experiment. For example, the 

plus yellow square in Fig. 4-1B was associated with a distribution with mean equal to a gain of 4 

points, and the minus yellow square was associated with mean equal to a loss of 4 points. In 

addition to these 10 colored squares, a black square with “0” at the center was associated with 

exactly 0 points. 

The experiment contained two types of trials, randomly intermixed. Both types of trials 

(Fig. 4-1A) began with a center fixation period that lasted for 1 sec and ended with a beep (1 

kHz). In decision trials, the fixation point was replaced with three different colored stimuli. One 

stimulus appeared alone and represented a sure bet (100% probability of acquiring the points 

associated with that stimulus). The other two stimuli appeared together and represented a risky 

bet (each with 50% probability). The participant had 5 seconds to indicate their choice by 

making a saccade to one of the two stimuli (square, 0.5° x 0.5°) that appeared on the horizontal 

axis at ±20°. Once the saccade concluded, the stimuli at the center were erased and the trial 

consequences were displayed for 1 sec: the earned stimulus was displayed at the dot location 

along with text that indicated the number of points acquired. The points were drawn from the 

random distribution associated with the colored stimulus. Failure to make a choice within the 

time limit resulted in a loss of 10 points. The trial ended with the display of the color stimulus 

and the amount of points gained or lost for that trial (duration of 1 sec). 

In probe trials, the fixation point was removed, a single stimulus (chosen at random from 

the 10 colored stimuli) was displayed at the center, and a dot appeared on the horizontal axis (at 

±20°). This was the instruction for the subject to make a saccade to the dot. Once the saccade 

concluded, the stimulus at the center was erased and displayed at the dot location, along with text 
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that indicated the number of points that the subject had gained or lost for the trial. As in the 

decision trials, the points were drawn from the random distribution associated with the colored 

stimulus. 

Before the start of the experiment, the subjects were instructed that there were 10 stimuli 

consisting of two sets of five colored boxes that represented points that could be gained or lost in 

each trial. “Each color will indicate how many points you will gain or lose. The black box will 

always give zero points when chosen. Boxes with plus signs will add to your score, while boxes 

with minus signs will decrease your score. For example, if an orange box with a plus sign 

indicates a gain of 10, an orange box with a minus sign will indicate a loss of 10.” 

The experiment consisted of 11 blocks, each with 100 trials. The first block was a 

training block and began with 100 points and included only probe trials. The remaining 10 

blocks each had 40 probe trials and 60 decision trials, distributed randomly. The total score was 

reset to 100 at the start of the second block. For probe trials, each of the 10 colored squares was 

presented with equal frequency within each block, distributed randomly. In probe trials, the 

direction of the dot was chosen randomly on the left or right but with equal frequency within 

each block. 

For a decision trial, we randomly picked three stimuli from among the 11 stimuli. We 

presented the medium-valued stimulus as the sure bet and the other two stimuli as the risky bet. 

Subjects were not provided any information about the value of the stimuli and thus had to make 

their decisions solely based on the consequences of previous trials. The side that represented the 

sure bet was random and chosen with equal left-right frequency for each block. Following 

completion of the second block, the final score of the previous block was carried over as the 
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starting score of the next block. At the conclusion of every fourth trial, the total score earned was 

displayed at center fixation. 

 

4.2.3. Behavioral task – Experiment 2 

This version of the experiment used the same set of visual stimuli and structure of blocks 

and trials. It only differed from the previous experiment in how the probe trials were presented.  

In probe trials, instead of presenting a single stimulus, two stimuli were presented, one on 

each side (Fig. 4-4A). One of the stimuli was always the black box stimulus. Instead of giving 

the “go” signal simultaneously with the display of stimuli, we instructed the subjects to wait for 

~1 second (0.8~1.2 second, uniform random distribution) after the two stimuli were displayed. 

After this time, we eliminated one of the stimuli and displayed a dot on the horizontal axis (at 

±20°). Subjects were instructed to move their eyes toward the dot. The rest of the procedure was 

the same as in Experiment 1. The chance of which stimuli should be selected, and chance of each 

side was equal for both options available. The chance of each stimulus (that is not the black box) 

appearing was also equal for all options. 

Decision trials were given in the same manner, again randomly intermixed with probe 

trials, again in the same manner. 

 

4.2.4. Data analysis 

Eye position data were filtered with a third-order Savitzky-Golay filter (frame size 11). 

Saccade onset and offset were determined in real time with 20°/s threshold. We identified valid 

saccades as those that occurred between stimuli with start and endpoints that were within 5° of 

the boundaries of the start and end images (to account for the fact that the subjects were not 
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specifically instructed to fixate on a precise location). For probe trials, we excluded reaction 

times that were longer than 1 sec. 

Our objective was to test whether behavior in probe trials reflected the subjective value 

that we had estimated from decision trials. Thus, we analyzed the vigor of saccades only in probe 

trials, and inferred subjective value based on choices made in decision trials. Statistical testing 

relied on linear mixed-effect models. In each model, the dependent variables were saccade peak 

velocity and reaction time, fixed effects were stimulus objective value or subjective value, and 

random effects were individuals. Dependent variables were normalized for each individual by 

dividing the measured value by the within-subject mean. Statistics were performed on 

normalized dependent variables. 

Once we determined the reaction time and peak saccade velocity associated with a given 

stimulus in the probe trials, we asked whether vigor could serve as a proxy for subjective value. 

To evaluate the accuracy of such a policy, for each stimulus in the probe trials we computed 

saccade velocity and reaction time, imagined that the subjective value of the stimulus was set by 

these variables, and then used these measures in each decision trial to predict choice. For 

example, to evaluate the vigor policy, we assigned subjective value to the 11 stimuli based on 

vigor in the probe trials, and then used this to predict the choice of the participant in each of the 

decision trials: pick the option that has the larger vigor estimated subject value (100% of the 

vigor for the sure option stimulus, vs. the sum of 50% of vigor for each of the risky option 

stimuli). We compared the accuracy of this vigor-based and reaction time-based policy with a 

policy that made choices based on subjective values that were estimated based on the actual 

decisions of each subject. We also estimated the accuracy of a reward-based policy, calculated in 

the same manner, but excluding trials with equal expected reward. To predict outcomes, we used 
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the actual options faced by each participant. We used a Wilcoxon signed-rank test to compare the 

performance of the various policies. 

 

4.2.5. Estimating subjective value of stimuli 

The objective value of each stimulus was set by the mean of the point distribution 

associated with each colored square (Fig. 4-1B). The participants formed subjective values based 

on the choices that they made and the points that they earned. We estimated the subjective value 

of a stimulus for each subject based on their choices in the decision trials. 

In a decision trial, the choice was between a sure option (a single stimulus) and a risky 

option (two stimuli, 50% chance of each). To model the choices that subjects made, we designed 

a one-layer perceptron network that had as its input the three stimuli that were available in each 

trial. The output of the network was the probability of picking the sure option (Fig. 4-1C). Input 

𝒙 was an 11-element vector, with each element representing one of the stimuli 𝑥&, … , 𝑥&& starting 

from the most negative to the most positive, and with the black square (0 points) being the sixth 

element. In each trial, the input vector 𝒙 was set so that one element had a value of -1 for the sure 

stimulus, two elements had a value of 0.5 for the pair of risky stimuli, and 0 for the remaining 

elements. The weight vector 𝒖 represented the subjective value of each stimulus and was also an 

11-element vector. A linear combination of the available stimuli was represented with variable 𝑧: 

For example, if in a given trial the sure option was stimulus 𝑥-, and the risky option was 

stimuli 𝑥( and 𝑥*, then 𝑧 = 0.5(𝑥( + 𝑥*) − 𝑥-. In other words, the variable 𝑧 represented the 

difference between the subjective values of the two options. This was then transformed via a 

 𝑧 = 𝒖]𝒙 (4.1) 
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logistic function that produced an output 𝑦 that represented the probability of picking the sure 

option: 

From the decisions that each participant made we estimated the subjective value that they 

had assigned to each stimulus, represented by the weight vector 𝒖. We assumed that the 

subjective value of the zero stimulus (the sixth element of 𝒖) was exactly zero. To find the 

remaining weights, we used a binary cross-entropy loss function: 

In the above equation, 𝑁 is the total number of decision trials (600). Binary variable 𝑡 

represented the actual decision of the subject, with 1 for choosing the risky option, and 0 for the 

sure option. To find 𝒖, we differentiated Eq. (3) with respect to 𝒖, thus providing a stochastic 

gradient descent estimate of the subjective values. We stopped the algorithm when the norm of 

change of the subjective value Δ𝒖 was less than 10%-, within 10,000 iterations. 

 

4.3. Results 

 
4.3.1. Subjective value reflects choice behavior 

In this task we had two types of trials. In decision trials, people choose one of two 

options, a sure option and a risky option. In probe trials, people are given the cue to choose the 

only option present. These two types of trials are related to the subjective values of the stimuli. 

Thus, it is important to estimate the utilities of each color box accurately so that we can argue 

 𝑦 =
1

1 + exp	(−𝑧) (4.2) 

 loss = −
1
𝑁R

(𝑡 log 𝑦 + (1 − 𝑡) log(1 − 𝑦)) (4.3) 
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that there is a significant relationship between subjective value and how people move towards 

visual stimuli associated with reward. 

Figure 4-1. Utilities are derived from choice behavior. (A) Experimental protocol for experiment 1. In probe trials, 

subjects are cued to choose the only stimulus displayed. In decision trials, subjects choose either the sure option or 

the risky option (50% of each color box). (B) Example of probability distribution of points from each color box. The 

distributions are randomly assigned for each subject but are the same throughout the entire session. Colors encode 

the magnitude of points, and signs inside the boxes encode gain/loss. (C) Single-layer perceptron network designed 

to learn utility. Inputs represent what stimuli have appeared in that trial, and weights are utilities. The intermediate 

value is the difference between the utilities of the two options (risky minus sure). This value is sent to a logistic 

activation function to get choice probability. (D) Actual and estimated choice probabilities for example pairs for 

subject S02. The output of the neural network fits the behavior well. (E) Example of a utility curve by expected 

value of point for each color box (left). Each individual shows different utility curves. The slope distribution (right) 

shows the variety of utility curves. (F) Utility curve averaged across all subjects. Error bars represent mean ± SEM 

across all subjects. 
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To actually relate movement behavior to utility, inferring subjective value is a very 

important part of the analysis. Due to the limitations of the present methods to infer utility 

(explained in the discussion section in detail), an efficient way to figure out utility from a 

relatively few, simple trials was needed. Therefore, we adopted a neural network to figure out 

utility (Fig. 4-1C). All subjects but one (who we excluded from all analyses due to very low 

performance) converged in experiment 1(all subjects converged in experiment 2). For these 

subjects, a utility curve could be obtained (Fig. 4-1E-F). Since every person was fit with the 

same logistic function (Eqn. 4.2), utility values refer to how much a subject prefers the option 

over a default stimulus of zero utility (in this task, the black box). 

The subjects show a variety of utility curves, but the utility values are closely related to 

the objective reward (𝑝 < 10%S)). People show differences in the steepness of the curve 

(0.88±0.40, mean±SD, Fig. 4-1E). The prediction rate of the utility-based policy (see methods 

for how policies are applied) on actual choice behavior is better than the prediction rate of the 

reward-based policy (Fig. 4-3D, 𝑝 = 1.12´10%- for easy choices, 𝑝 = 4.02´10%' for hard 

choices). For this and future comparisons, we classified decision trials into easy trials (reward 

difference ³ 1) and hard trials (reward difference < 1). It could also be observed that it fits the 

behavior of individual trials well (Fig. 4-1D). We claim that we acquired utility values that are 

the best values to explain people’s choice behavior.  

 

4.3.2. Effect of gain and loss on vigor and reaction time 

In probe trials, people’s motor performance in the task has little to do with their final 

score; the reward itself is random in a fixed distribution associated with the given stimuli. 

Nevertheless, saccade vigor and reaction time (RT) are both still modulated by reward. For 
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example, if we compare between the highest-reward stimulus (mean=5) and the lowest-reward 

stimulus (mean=-5) (for example, the orange color set in Fig. 4-1B), the higher reward stimulus 

has higher vigor and quicker reaction in probe trials (Fig. 4-2A). This is only representative of 

the effect of gain and loss, but it implies that reward fastens movement and quickens reaction. 

A closer look at the overall data on all stimuli show that this is generally true. Linear 

model analysis reveals the effect of signed reward value on both behavioral metrics (Fig. 4-2B, 

top; vigor: 𝑝 < 10%h, RT: 𝑝 < 10%&)). This effect states that saccade vigor is not affected by 

salience, which would be represented by the color and not by the sign on the color boxes, and is 

Figure 4-2. Saccade vigor and reaction time is decided by value, not salience. (A) Velocity 

trace of saccades (top) and histogram of reaction time (bottom) for an example pair of 

stimuli for subject S05. Even with the same number of points, the person shows faster 

saccade and quicker reaction to gain. (B) Saccade vigor and reaction time by reward value 

(top) and subjective value (bottom). Both show significant effects of values, and all of them 

are monotonic, and not U-shaped. Error bars for all plots represent mean ± SEM across all 

subjects. 
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instead significantly affected by the reward value. The effect on RT is the opposite, such that it is 

quicker for higher-valued stimuli, but it still reaches the same conclusion. 

It was also observed that the subjective values acquired from decision trials and the 

neural network (Fig. 4-1F) have a strong relationship with vigor and RT (Fig. 4-2B, bottom; 

vigor: 𝑝 < 10%*, RT: 𝑝 < 10%&(). However, since utility and objective reward have a very 

strong relationship, this is expected. One interesting thing to note here, though, is how large the 

effect size is for vigor and RT. An additional linear mixed-effect model with RT reversed around 

1 (so, RT -> 2 minus RT), so that both vigor and RT increase by value, revealed a relative effect 

size on vigor and RT via its interaction term. In the loss domain, the effect is larger on RT (𝑝 <

10%S); in the gain domain, the effect is larger on vigor (𝑝 = 0.036). This reflects the asymmetry 

of the utility curve, which has a wider range, and implies that vigor might be a better 

representation of utility, although this is likely task-specific since we do not see the loss aversion 

commonly reported in decision tasks. 

 

4.3.3. Subjective value determines vigor and reaction time 

Subjects show different patterns of utility (Fig. 4-1E-F), and it is an interesting question 

whether subjects who assign larger values to a given stimulus also show higher vigor than others. 

To look into this question more closely, we constructed a graphical model that describes how 

values could influence decision and movement (Fig. 4-3A). The objective value perceived by the 

sensory system will be converted into a subjective value, and this will decide choice behavior. In 

our hypothesis (H1), we suggest that objective value is converted to subjective value, which 

decides both choice behavior and movement vigor. On the other hand, in an alternative null 
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hypothesis (H0), vigor would only be decided by the objective reward of the target, independent 

of any influence of their subjective evaluation, while decisions are still done by utilities. 

To test this hypothesis, we looked at the individual stimulus and at the data among 

subjects (Fig. 4-3B). In this example, some subjects have higher utility values, while some have 

lower utility values, even within the distribution for the same objective reward. Moreover, there 

Figure 4-3. Subjective evaluation directly governs movement vigor and reaction. (A) Hypothesis of the 

quantity that guides vigor. The main hypothesis is that subjective value decides both choice and vigor. 

The null hypothesis directs objective value (points) to modulate vigor, without any direct link between 

subjective evaluations. (B) Example of how individual differences in subjective value result in 

differences in the peak velocity of saccades, for an example pair. (C) Deviation of saccade vigor 

(normalized for each subject) by deviation of subjective value. Saccade vigor and reaction time still 

shows the same tendency as they did in Figure 4-2, even with constant objective reward. (D) Prediction 

accuracy of policies depending purely on control of movement (vigor, RT). Although fitting by utility 

(logistic fit) trivially gives the best prediction rate, velocity and RT policies both give better results than 

choosing randomly (50%). We also see that predictions are better for easy trials than for hard trials. Error 

bars for all plots represent mean ± SEM across all subjects. 
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looks to be a trend between utility assignment and vigor: subjects that assign a higher utility 

value to the same stimulus exerts higher vigor toward that stimulus. 

To test whether this effect is statistically prevalent, we applied the linear mixed-effect 

model to the “deviation” of vigor and “deviation” of utility. In this analysis, deviation refers to 

individual value minus the mean value across subjects for a particular stimulus the individual 

value is assigned to. This test effectively assessed how between-subject evaluation is related to 

the between-subject difference in utility. The model gives a significant result for both vigor (Fig. 

4-3C, 𝑝 = 0.0047) and reaction time (Fig. 4-3C, 𝑝 = 0.0036). Thus, we keep our main 

hypothesis (H1) and conclude that vigor and reaction time are affected by subjective evaluation 

even when the objective reward stays the same. 

Finally, we analyzed how well vigor and reaction time fit people’s choice behavior. To 

assess this, we suggested alternative “policies” that subjects could implement to make decisions. 

Section 4.3.1 already describes how good the utility-based policy is in predicting choice behavior 

for both hard trials and easy trials. For a policy to be relevant in predicting choice, it should be 

better than the prediction rate of a random policy, which is simply choosing any option with 50% 

probability. A random policy will always have a 50% prediction rate for choice behavior. 

For hard choices, the vigor-based policy showed no difference from 50% (Fig. 4-3D, left, 

𝑝 = 0.99). However, the RT-based policy showed a significantly better prediction rate than the 

random policy (Fig. 4-3D, left, 𝑝 = 0.0042). The relative accuracy of the RT-based policy 

compared to the utility-based policy was about 75.3±2.2% (mean±SEM) (Fig. 4-3D, right). For 

easy choices, both vigor-based and RT-based policies were significantly better in predicting 

choices than random policy (Fig. 4-3D, left; vigor: 𝑝 = 0.0225, RT: 𝑝 < 10%S). The relative 
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accuracies of these cases were about 67.1±2.9% and 72.4±2.7% (both mean±SEM) for each (Fig. 

4-3D, right). Thus, we observed the relevance of these policies in predicting decisions. 

 

4.3.4. Modulation of vigor and response time during decision making 

So far, we have analyzed people’s behaviors in probe trials and their relationship with 

utility from decision trials. We also analyzed movement velocity and decision time in decision 

trials, since we think they would be also modulated by values of the stimuli. We hypothesized 

that either the difference between the expected utilities of two options or the sum of expected 

utilities of two options (or both) would affect vigor and decision time. 

We saw effects on vigor and reaction time regardless of the parameter selected between 

reward and utility. Movement vigor is modulated not by the difference in expected reward/utility 

(Fig. 4-4A), but the sum (Fig. 4-4B, reward: 𝑝 < 10%S, utility: 𝑝 < 10%'), such that the eye is 

faster when the overall value of the trial is higher. This actually corresponds to our earlier 

finding in Chapter 2 (Fig. 2-2B). Meanwhile, decision time is affected by both the difference in 

expected reward/utility (Fig. 4-4A, reward: 𝑝 < 10%*, utility: 𝑝 < 10%&*) and the sum (Fig. 4-

4B, reward: 𝑝 < 10%S), utility: 𝑝 < 10%(-). In detail, decision time is shorter when the 

difference is larger (it is easier to choose the better option) and when the overall value of the trial 

is higher. Not only probe trials but also the decision trials show modulation of movement. 

 

4.3.5. Reward prediction error and its potential effect 
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Since dopamine neurons encode reward prediction error, we proposed the possibility that 

it is the reward prediction error, instead of reward, that determines movement vigor. To test this 

hypothesis, we conducted Experiment 2, which had a behavioral task very similar to experiment 

1, but with one major change (Fig. 4-5A). In this experiment, we changed the probe trials so that 

it briefly showed (~1s) two visual stimuli, one box on each side, before removing one of them, 

and the subjects were to make a saccade toward the target dot 20° away in the direction of the 

remaining stimulus. Basically, the role of the 1s window display period was to have subjects 

form a belief about the expectation of an outcome; we set an equal chance of a color box on each 

side remaining, thus having the expected value be the mean of the values of both stimuli. One of 

the targets was always the black box, and thus 50% of the probe trials were those made toward 
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the non-black stimulus, and the other 50% were those made toward the black box. Utility 

analysis was made in the same way in Experiment 1 (Fig. 4-5B). 

For each type of probe trial, we analyzed the effect of the subjective value of the non-

black stimulus on vigor and RT (Fig. 4-5C-D). Most of the linear mixed-effect models do not 

give any significant effects of utility on saccade vigor or reaction time, except the effect on 
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reaction time for probe trials with saccades made toward the non-black stimulus (Fig. 4-5D, 

green line, 𝑝 = 0.0027). Binary comparison between stimuli with negative reward and positive 

reward separately gives more insight. For effects on vigor, there is a significant difference 

between probe trial types of gain stimuli (Fig. 4-5E, left, 𝑝 = 0.016). For effects on RT, not only 

is there a significant difference between probe trial types of gain (Fig. 4-5E, right, 𝑝 < 10%S), 

but there is also a significant difference between gain and loss for both probe trial types (Fig. 4-

5E, right, toward non-black stimulus: 𝑝 < 10%S, toward black box: 𝑝 < 10%S). The rest of the 

binary comparisons had no effect. 

 

4.4. Discussion 

 
The brain makes decisions based on the subjective values of available options. However, 

the subjective value is a hidden value that we cannot directly measure. We’ve already observed 

instances of vigor modulation in the previous chapters. In this chapter, we look at what exact 

quantity (such as utility, salience, points) movement vigor could serve as a proxy. 

Here, we use abstract visual stimuli associated with the fixed distribution of gain or loss. 

Subjects performed two types of trials intermixed: decision trials, from which we inferred the 

utility subjects assigned to each stimulus, and probe trials, from which we observed motor 

behavior. We found that vigor and reaction time varied monotonically with the value of the 

stimulus; vigor was high and RT was short for a stimulus that forecasted high gain, and the 

opposite for a stimulus that forecasted high loss. Vigor and RT showed differing degrees of 

sensitivity in each gain or loss domain. From the probe trials, we think that vigor is modulated by 

reward value rather than salience. 
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Furthermore, a critical question is whether the between-subject difference in evaluation 

causes a difference in vigor. We found that for a given objective reward, there was a relationship 

between utility and vigor/RT. Individuals who assigned a greater value to a stimulus also moved 

faster and reacted quicker to that stimulus. Also, we observed that the prediction rate of 

behavior-based policy is significantly better than chance in most cases, suggesting that choice 

behavior could be predicted from motor behavior to a certain degree. 

To precisely assess the effect of subjective value, inferring utility values from decision 

trials is crucial. Unfortunately, utility is a subjective value that is hard to measure. Studies in 

neuroscience that aim to estimate utility use a concept called certainty equivalent (CE), which is 

a quantity that has the same utility with the option of choice. If the option is a risky one that has a 

50% probability of resulting in one of two values, the utility of a value of the CE will be the 

mean value of the utilities of the two values. This mathematical property makes estimating utility 

possible by measuring the CE for various options. CE could simply be directly judged by the 

subjects (Grether and Plott, 1979), but better alternative methods are fitting a logistic function 

between the fixed risky option and the variable sure option, or even using a psychological 

adaptive method such as PEST (parameter estimation by sequential testing), which proved to be 

better (Bostic et al., 1990; Christopoulos et al., 2009; Stauffer et al., 2014). 

Even under the oversimplified assumption that utility is invariant throughout the 

experiment (at least after the training block) and that subjects make rational decisions to 

maximize reward, utility is still hard to measure accurately for two reasons: it is subjective, 

which means that it should be measured independently for each subject, thus drastically 

increasing the number of choices needed for each subject, and it is not directly estimated from 

choice, so that a choice does not give an expected utility value for each option, thus requiring a 
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large number of choices to make an indirect estimate. These problems have been partly solved by 

the methods mentioned above, but it still requires many repetitions, while adding another 

limitation that if a similar decision is presented repetitively many times, individuals will make 

decisions based on their memory instead of evaluating utility independently each time for each 

trial. Thus, we wanted an efficient way to infer utility from a relatively smaller number of trials, 

for a limited number of associated stimuli, with random presentation, without needing to change 

subsequent trials based on subjects’ choice. 

We implemented a neural network, which is very efficient to “learn” utilities by an 

optimization algorithm such as gradient descent. We believe that our estimates of utility values 

are the quantities that best explain the choices of each subject across all decision trials, since they 

are the values with minimum loss. The high accuracy of prediction (Fig. 4-3D) to the real 

decision indicates that this value is accurate to predict choice behavior. We only used 600 trials 

for each subject, which is a small number, with all stimuli chosen at random, and its randomness 

allowed subjects to judge utility in every trial instead of referring to their previous choice by 

memory. 

The effect of utility could be predicted by neurophysiological evidence. The superior 

colliculus is known to send input to bursting neurons that send initiation signals to motor 

neurons. Not only this, but it also controls saccade vigor and reaction time (Dorris et al., 1997; 

Smalianchuk et al., 2018). The superior colliculus receives excitatory inputs from the cortical 

areas, such as the frontal eye field (FEF) and the lateral intraparietal area (LIP), both of which 

house neurons that respond stronger to stimuli that predict greater reward (Glaser et al., 2016; 

Platt and Glimcher, 1999). The superior colliculus also receives inhibitory input from the basal 

ganglia, specifically the substantia nigra pars reticulata (SNr), which houses neurons that also 
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respond to associated rewards (Sato and Hikosaka, 2002). Thus, it is likely that the subjective 

value of a visual stimulus could be reflected in the change of input signals from these areas, 

which in turn would influence behavior so that greater value results in faster movement and 

quicker reaction. 

However, collicular activity and cortical and basal ganglial inputs are also affected by 

stimulus salience, which makes it difficult to predict what determines vigor and RT. Neurons in 

the superior colliculus show modulation by salience based on trial context (Kim and Basso, 

2010). The LIP neurons also show activity modulation by salience or novelty rather than reward 

value (Leathers and Olson, 2012; Foley et al., 2014). In the basal ganglia, the SNr is modulated 

by the striatum in various pathways, and dopamine neurons regulate how these striatal neurons 

respond to cortical inputs. It was also shown that while some dopamine neurons show greater 

response to higher reward, some others show greater response to both higher reward and 

punishment (Matsumoto and Hikosaka, 2009). 

Our results show undisputedly that saccade vigor is a reflection of subjective value and 

not salience. However, it is still possible that if negative feedback exists in a different form (such 

as an air puff), it could result in increased cortical and dopaminergic activity which would result 

in greater vigor. 

Our results also show that movement vigor is an indicator of actual subjective value, 

rather than simply a reflection of sensory input of objective value. Our hypothesis (H1) is 

validated if the across-subject difference in subjective value reflects the across-subject difference 

in vigor. Not only this, but previous studies have shown that lack of vigor sensitivity to reward 

coincides with lack of sensitivity of dopamine neurons and caudate nuclei activity (Kawagoe et 
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al., 2004). Thus, these findings suggest that behavioral results could provide a real-time proxy 

for subjective evaluation. 

Decision trials are harder to analyze due to the limited number of trials compared to the 

variety of combinations of the stimuli displayed, compared to probe trials (3 vs. 1). However, we 

saw modulation of both vigor and decision time. Vigor increases with the value of both options, 

which is interesting since it is faster even when the non-chosen option has higher value. In fact, 

this observation corresponds to our results in Chapter 2 (Fig. 2-2B), where we saw that vigor 

between two images was decided by both the target and the starting image in a positive 

relationship. Maybe vigor is a reflection of the overall value of all available options. The fact that 

vigor does not rely on the difference between the two options implies that it is not always the 

same as the target value. 

We also observed that decision time is modulated by both the difference and the sum of 

the values of the two options. Common models such as the drift diffusion model (DDM) predict 

this effect in a two alternative forced choice (2AFC) task (Bogacz et al., 2006). Also, it has been 

observed that reaction time is quicker when the sum of the values of two options is higher (Bari 

et al., 2019). Our analysis of decision time also revealed similar effects. It is interesting that as in 

this example, vigor and decision time do not always follow each other, implying a difference in 

nature between the two variables. 

Unfortunately, in experiment 2, we could not find any evidence that reward prediction 

error could also modify movement vigor. However, the fact that we could not observe the effects 

seen in experiment 1 suggests that the effects are more reflective in nature. The prediction error 

we are controlling in experiment 2 is not the error between the prediction and actual reward of 
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the same associated visual stimulus, however, so it also suggests that the effects could be tied to 

each individual stimulus already associated with a certain utility value. 
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5. Conclusion and General Discussion 

 
This thesis has presented how the control of movement is closely related to decision 

making. People cannot consciously decide their own saccade velocity, but interestingly, many 

studies have shown that it is still modulated by reward. The close relationship between the 

saccadic circuitry and decision-making pathway suggests that people control saccade vigor in a 

different way based on reward and effort, on which they make decisions. Our primary question is 

how saccade velocity is modulated by factors that affect decision making in a quantifiable way. 

In Chapter 2, we showed how saccade vigor is modulated in a two-target gaze task. When 

participants could decide how long they gazed at each stimulus, they preferred certain types of 

images and positions with small eccentricity, suggesting that eccentricity modulates the effort 

required to hold the eyes on a fixed location. We also observed that saccade vigor increases as 

both images become more preferred, regardless of whether it was at the start or the destination. 

This fact led us to consider the richness of the environment as the factor that decides saccade 

vigor. 

In Chapter 3, we suggested a refined version of the marginal value theorem (MVT) to 

explain both harvest time and movement vigor. We created a task environment that closely 

resembled an actual foraging situation yet was significantly simplified, and thus were able to 

observe the effects of past, present, and future reward and effort on gaze time as they would be 

from the predictions of the model. We also observed movement vigor being modulated by past 

and future effort. We suggested an alternative explanation of how saccade vigor is modulated by 

effort justification. 
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In Chapter 4, we tested a hypothesis about how vigor could reflect the subjective value of 

a stimulus. We designed a task so that it contained both decision trials, from which we assessed 

choice behavior and inferred utility, and probe trials, in which we observed saccade vigor and 

reaction time. The results show that participants display faster saccades and quicker reaction 

towards targets with higher utility, regardless of their salience, which is the magnitude of gain or 

loss in this task. We also made a between-subject analysis and showed that the effects are 

affected by subjective value even with the stimulus of the same reward. 

All these chapters describe the modulation of peak velocity of saccades in decision 

making. As mentioned, the movement “module” of eyes has advantages in simplification, but 

due to its nature, several aspects cannot be tested. For example, we described saccade velocity 

being modulated by the effort required to hold the eyes, but it is unclear whether this applies to 

other forms of effort, such as movement effort, due to our inability to directly modulate the 

difficulty of eye movement (for example, we cannot apply a force field). In general, it would be 

interesting to test whether the same phenomena are observed for other movement modules, such 

as arm movements, walking, et cetera. We mention a few studies that showed that other types of 

movements are also modulated by reward (Rigoux and Guigon, 2012; Summerside et al., 2018). 

Other movement modules generally have more complicated neural circuits for the control of 

movement and involve many brain areas and muscles, but they enable scientists to test more 

various theories. 

While all chapters point to the fact that movement vigor is modulated by reward and 

effort, this is confined to simple task structures. Our current version of the theory is a simplified 

version and is difficult to apply to a more general situation. Optimal control theory is a general 

theory that explains how actions are selected and performed either with or in the absence of 
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reward (Körding and Wolpert, 2006; Diedrichsen et al., 2010). Unfortunately, no currently 

existing theory explains the mechanism of choice of movement speed, reaction, and trajectory, 

especially in the presence of reward. Well-coordinated studies between the fields of motor areas 

and decision making are expected to further reveal the nature of control of movements in such 

situations. 

In conclusion, these findings suggest that control of movement is significantly affected 

by components that decide humans’ choice behaviors. This work also has implications for the 

neural circuitry that governs movement vigor and decision making in humans. The various areas 

that are related to one of the two aspects affect each other, and our behavioral observations 

confirm the firing patterns and connections of these areas. Future work on movement vigor and 

its relationship to decision making will further enlighten our knowledge of the neural basis of 

both and hopefully facilitate related studies between the two fields of study. 
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