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Abstract 
 
 

The first goal of this thesis is to apply theoretical and experimental methods to 

investigate the mechanisms of human motor learning. By comparing behavioral results 

with theoretical predictions, the second goal is to identify components of learning that 

can be further improved. Specifically, the acquisition, retention, and self-directed 

strategies of motor learning were studied. 

Previous learning studies have shown that spacing learning sessions in time 

increases the efficacy of verbal skill acquisition. I showed that an increased rate of 

acquisition in motor adaptation was also observed when the temporal separation of 

training trials was increased by a few seconds. I hypothesized that each instance of 

training movement spawns a memory trace of the experience from which the learner 

continues to sample until another movement was made. I showed that indeed the learner’s 

sensitivity to error (trial-to-trial learning rate) increases with the rest period after a 

movement with a time constant of about 4 seconds. An alternative theory hypothesized 

that time passage increases the learner’s uncertainty about the task, and the trial-to-trial 

learning rate should increase with the uncertainty. The fact that the trial-to-trial learning 

rate was a monotonically increasing function of post-movement time contradicted the 

pre-movement time dependency as predicted the uncertainty-based model.  

In learning a motor task, a learner does not only need to estimate the optimal 

parameters for that task, but also learn the structure of the task itself. However, most 

motor learning literatures do not vary the task structure. Secondly, learning task structure 

often takes place at the same time as task parameter estimation. I introduced a novel 
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paradigm that varied the task structure: adaptation to a gradually or a suddenly introduced 

dynamical perturbation of the same magnitude. By measuring the passive decay of 

adaptation in naïve and experienced learners, the manifestation of structural learning 

independent of parameter estimation could be observed. I showed that gradual training 

promoted retention of adaptation in naïve but not necessarily experienced learners. 

However, the gradualness alone was sufficient to promote retention in re-training 

sessions suggesting that a prior of the task structure was acquired at the first exposure and 

continued to influence people’s motor adaptation and retention properties in subsequent 

learning sessions.  

In real life, we are often faced with the problem of having to learn by ourselves. I 

explored the interactive component of motor learning and the optimality of the strategy 

people use in selecting the sequence of movements in motor adaptation. I found that the 

strategy was stereotypical. While people benefit from repeating movements that were 

previously underperformed, they suffered from a suboptimal strategy to also repeat 

movements that were already well-performed previously. We showed that this latter 

result violated the theoretical predictions of an optimal, unbiased active learner who 

constructs a strategy based on his uncertainty about a task component. Therefore, it may 

be possible to supplement and enhance human motor learning strategies by a designed, 

machine-based “coach.” 

 

Advisor: Dr. Reza Shadmehr 
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CHAPTER 1  
INTRODUCTION 

1.1 Computational Learning Theories and Motor 
Learning 

While it is generally true that practice makes perfect, how we practice, influences 

the efficiency and level of success in learning to move better. The elucidation of the 

neural basis of learning, however, remains one of the biggest challenges in neuroscience. 

The recent advancement in computational neuroscience, fortunately, offers a systematic 

approach to gain an understanding of our motor learning mechanisms through 

mathematical models and theoretical predictions. This new knowledge comes with an 

opportunity to test the theories that could potentially enhance motor learning. 

Better motility is a matter of survival. Darwin’s theory of evolution tells us that a 

species adapts to changes of the environment to gain an advantage in survival. Life has evolved to 

give rise to various ways to cope with the dynamic challenges posed to it. The ability to adapt is 

the primary tool in the game of survival. One of these adaptations is the development of organs 

such as the eye and the limb, to passively sense and actively manipulate the environments. In 

order to connect, interpret and control these interactions, the nervous system was evolved. 

Together, they allowed our ancestors to be better at survival – so well that their actions seem 

second-nature. Take an arm reaching for an object, for example. We can unimpressively aim and 

extend our hand for a cup of coffee, seemingly without too much thought dedication. Moving 

skillfully – as simple as reaching for an object -- however, requires monumental undertaking of 

the nervous system. When engineers and computational neuroscientist attempted to simulate 

biologically inspired robotic arms, they realized that the nervous system must face a plethora of 

problems. First, the brain must transform sensory information to a motor plan, therefore requiring 

accurate transformations of co-ordinate systems that are too computationally complex. Second, 
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conduction speed of the biological nervous system is slow, which inherently introduces 

nonlinearity and instability to the motor system that is loaded with inertial dynamics. Lastly, the 

environment can change and unpredictable disturbances take place. It’s impossible to evolve 

specialized organs fast enough to deal with minute-to-minute changes in the environment. 

Therefore, the control program, the nervous system, like life itself, not only needs to adapt as 

well, it needs to adapt in a timely fashion. 

To explain how the nervous system overcomes these difficulties, computational 

neuroscientists posit that the nervous system, like a computer controlling a robotic 

skeleton, can theoretically employ several control strategies. One of these strategies is 

feedback control. The nervous system can simplify the complexity of co-ordinate 

transformation by only requiring the motor system to minimize the difference between 

the feedback signal from the proprioceptive and visual sensory system and a pre-defined 

desired motor plan. An early model that adopted this idea was the equilibrium point 

hypothesis which postulated that a limb acts like a spring moving toward a final, desired 

position known as the equilibrium point (Feldman, 1986; Shadmehr and Arbib, 1992; 

Bizzi, 1993; Giszter et al., 1993). A second strategy is that, since the feedback signal 

comes after a delay, the nervous system must be able to generate predictions (feed-

forward) of the skeletal dynamics based on lagged sensory feedback (Miall, 1995). Being 

able to generate predictive outputs of dynamics implies that the nervous system must 

either have a lookup table or an inverse model of the skeletal dynamics (like Newtonian 

equations of mechanics) with lagged sensory information as input. The combination of 

inverse and feed-forward controls constitutes the concept of internal model in motor 

control, in that the nervous system develops a model of expected dynamics of the limb 

and environment. We now know that the equilibrium point hypothesis is not sufficient to 

explain motor behaviors because our movement trajectories predictably change 

depending on task demands (Shadmehr and Mussa-Ivaldi, 1994). The latest development 

in the control theory of motor system is the incorporation of optimal control(Todorov, 
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2004). In this control regime, the reference trajectory, or desired trajectory can be 

generated as a function that minimizes task cost whether it is effort, time, end point error 

or some other arbitrary variable such as financial incentives associated with the 

movement. The proposed anatomical sites of motor plan generation of the limb in the 

nervous system also moved from the spinal cord level as suggested by the equilibrium 

point hypothesis to higher levels in the central nervous system at the sensory-motor 

cortex, parietal cortex, basal ganglia, and cerebellum(Nezafat et al., 2001; Diedrichsen et 

al., 2005). 

While these computational theories helped to explain motor control, additional 

treatments was needed to explain the nervous system’s ability to adapt to surprise 

changes in the kinematics or dynamics of the environment or tool. There has been a great 

deal of interests invested in how the motor system adapts as revealed by psychophysical 

experiments involving repetitive movements. Our current understanding of motor 

learning has benefited from studies of repetitive movements in perturbation-adaptation 

tasks.  In these tasks, the subjects are asked to compensate for a kinematical or dynamical 

perturbation during movements to move as normally as possible (Shadmehr and Mussa-

Ivaldi, 1994; Krakauer et al., 2005; Michel et al., 2007).  

Interestingly, learning of the perturbation-adaptation task has features that 

resemble the physiology of the nervous system. Spatial generalization in joint angle co-

ordinates was observed when trained subject moved in a new region of the 

workspace(Gandolfo et al., 1996). Kinematics errors in one trial affected differentially 

subsequent movements. The trial-to-trial generalization was the greatest when the 

subsequent movement was in the same direction, and smallest when it was 90 degrees 

away. The pattern of spatial generation resembles the tuning curves of some Purkinje 

cells in the cerebellum (Coltz et al., 1999, 2000). Spatial generalization has been shown 

to be strong when perturbation is given according to movement speed, and less so when 

perturbation is given according to the workspace region(Hwang et al., 2003). Therefore, 
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the progressive adaptation of internal model appears to be most sensitive to movement 

velocity. Biologically inspired model have been developed to demonstrate the feasibility 

of reproducing the behavioral learning pattern using physiological signals from the 

proprioceptive apparatus – mostly sensitive to muscle stretch speed -- as inputs(Hwang 

and Shadmehr, 2005; Hwang et al., 2006b). 

 

1.2 Spaced versus Massed Training 
As a result of the perturbation-adaptation studies, computational neuroscientists 

made strides in advancing the mathematical tools to help us explain motor learning. It is 

currently thought that an internal expectation (internal model) of the perturbation is 

formed based on which compensatory motor commands are computed and this internal 

model is updated when an error is observed.  As people repeat these movements through 

training, they update their internal model on a trial-to-trial basis to better approximate the 

perturbation and aggressively achieve better compensation. Therefore, it should be 

possible to measure learning on a trial-to-trial basis, far before adaptation has reached its 

steady-state (Donchin et al., 2003). 

These models of motor adaptation treat sequential motor adaptation trials as 

discrete learning events taking place in a time-invariant setting. It is not clear whether 

motor learning is a discrete process because most motor control studies do not vary these 

temporal variables. In fact, an important property of memory is that learning depends not 

just on the number, but also the temporal distribution of training trials. This property was 

first reported by Ebbinghaus on the study of memory(Ebbinghaus, 1964).  In his study, he 

described a training protocol known as spaced training in which trials are separated by 

periods of rest as opposed to a traditional protocol in which trials are given without rests 

(massed training). Counter-intuitively, Ebbinghaus found that he could cut the number of 

repetitions required to memorize a list of words in half if he spaced the repetitions in 
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time.  Spaced training also results in improved performance in other memory tasks.  In 

the motor tasks, trials that were spaced in time produced faster adaptation rates.  This 

implies that at least in the tasks studied, motor error had a time-dependent influence on 

internal models. 

Specifically the temporal structures of training are largely ignored because in 

these models, time-invariance is assumed in the control and adaptive scheme of the motor 

system. That is, the motor system always adapts the same way regardless of the 

distribution of training trials. By incorporating a dependency on the temporal variable in 

the current computational models as inspired by observations made in the behavioral 

learning literature, we can make new hypothesis how to increase learning based on a 

theoretical approach. 

Chapter 2 describes the observations that the brain benefited from the passage of 

time such that a given motor error produced a larger amount of adaptation with increased 

inter-trial interval.  A motor error produced a decaying error-trace from which the 

nervous system continued to sample and benefit was proposed and the effect of error 

experienced on one trial on the hidden state of the learner as it was expressed some 

seconds later in the subsequent trial was quantified.  I found that the effect of error grows 

as a function of time.  I estimated that with each trial, the brain forms an error trace that 

decays with a time constant of about 4 seconds. Lastly, an experiment to directly test the 

predictions of the error trace model was performed. Yet I still found that only the error 

trace model could account the empirical data. These results suggested that the brain 

continuously benefit from a movement experience in the period after the movement and 

before the next trial. 
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1.3 Learning the Structure of a Motor Task 
Learning a motor task such as tightening a small screw with a hexagonal socket 

involves identification of the goal of the task, learning structure of the task, and 

estimation of the parameters that describe the structure of the task. In this example, 

tightening the hex screw is the goal and the hex screw can be tightened by two different 

tools (i.e. two task structures). One may use a regular screw driver creating rotational 

torques on the screw driver by generating a shear force on the handle with the opposing 

fingers. Alternatively, one may elect to use a hex wrench (Allen key) and therefore 

generating the same torques by moving the perpendicular arm of the wrench sideways. 

With each tool, one has to learn how much force to apply to tighten the screw securely 

(i.e. task parameter estimation). 

In most motor learning literatures, however, the structure of the task is fixed (e.g. 

use only a screw driver or a hex wrench, but not both) and the goal of the task well 

defined (Shadmehr and Mussa-Ivaldi, 1994; Todorov et al., 1997; Lackner and Dizio, 

1998; Krakauer et al., 1999; Scheidt et al., 2000; Thoroughman and Shadmehr, 2000; 

Donchin et al., 2003; Lackner and DiZio, 2003; Smith et al., 2006; Kording, 2007). 

Motor learning in these studies then reduces to an optimal estimation of the parameter 

values of the task. The aforementioned example, however, clearly shows that this 

invariability in task structure is not necessarily true in general, even when the goal (e.g. 

tightening the screw) and the task parameters are fixed (e.g. the necessary amount of 

torque). Yet we have an amazing ability to identify and adopt different task structures to 

accomplish various motor goals in our daily life. Even more amazing is our apparent 

ability to retain the knowledge once the task structure is learned and apply this 

knowledge when the same task is presented again. Little of this structural learning ability 

has been studied or characterized. In fact, current motor learning models are essentially 

variations of parameter estimating models that treat every potential task as having a time-

invariant, well-defined, and a priori task structure. 
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Chapter 3 introduces a novel force adaptation paradigm to study the effect of 

variability in task structure on the retention of motor adaptation in a force adaptation task. 

Subjects were trained to counteract a perturbation force to make straight reaching 

movements. The task structure was varied, however, in that subjects were exposed to the 

perturbation either gradually over many trials or suddenly. As expected, experimental 

results showed that subjects responded differently to the two task structures in that their 

retained adaptation decayed passively at different rates after the perturbation was 

removed. In a subsequent retraining block, the gradualness of the first training alone was 

sufficient to promote higher retention of the adaptation regardless of the schedule of the 

retraining and despite of an extended intervening washout block intervening the two 

training blocks. Thus, I demonstrated that people indeed learns different task structures in 

an adaptation task and the knowledge of the task structure persists and influences how 

people react to further training of similar task structures.  

 

1.4 Self-directed Strategy in Motor Learning 
Another defining feature of human motor learning is that learning is most often 

accomplished autonomously. The autonomy requires an active role of the learner: the 

learner must initiate and direct his or her interactions with the task environment to seek 

out the things that help learning. The field of machine learning has realized this as 

important element of knowledge acquisition and has characterized optimal learning 

algorithms that seek out the most informative training examples at any point in 

time(Cohn et al., 1996). In contrast, the behavioral sciences have largely ignored this 

active aspect of learning. Most learning studies have a preset sequence of learning 

examples; that is, they treat the learner as passive systems. 

In Chapter 4, I provided the first systematic and quantitative description of active 

learning and its influence on performance in biological motor control. I asked the 
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questions what factors guide human active learning strategies and whether human active 

learning follows an uncertainty-based algorithm as proposed as an optimal strategy in 

machine learning. In a force adaptation task, I found that human strategies were strongly 

and robustly influenced by the last movement error. Learners tended to repeat a task 

component in which they experienced a large error, a strategy that improves learning 

performance. However, even when participants performed perfectly on a component, 

they did not avoid repeating that same component. This behavior violated a strong 

prediction of the uncertainty-based optimal machine learning algorithms, and was indeed 

suboptimal as it led to poorer learning outcomes. Thus these results demonstrated the 

limitation of human active learning. Given the importance of interaction and active 

learning in every-day life, the novel systematic description of factors driving active 

choice during the learning process would make an important contribution to our 

knowledge on human and animal learning. Furthermore, the comparison to machine 

learning algorithms indicates the possibility of designing machine-based “coaches” that 

adaptively chooses new training examples to improve human motor learning in instances 

such as rehabilitation training. 
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CHAPTER 2  
THE EFFECTS OF INTER-TRIAL 
INTERVALS ON MOTOR LEARNING 

 

2.1 INTRODUCTION 
Learning depends not just on number of repeated exposures, but also the temporal 

distribution of the exposures.  Consider the distinction between massed and spaced 

training first coined by Ebbinghaus on the study of memory (Ebbinghaus, 1964).  In 

massed training, the trials take place in close temporal proximity.  In spaced training, 

trials are separated by periods of rest.  Ebbinghaus found that spacing training sets over 

time was more effective in allowing him to memorize a list of nonsense words to 

criterion with less practice than massing them in a single set.  Spaced training also 

improves rates of learning in other tasks (Han et al., 1998; Commins et al., 2003; 

Aboukhalil et al., 2004; Savion-Lemieux and Penhune, 2005).  For example, two recent 

studies examined this effect in the context of reach adaptation.  Bock et al. (Bock et al., 

2005) trained subjects to point in a novel visual feedback environment and observed that 

the rate of adaptation was faster if the trials were separated by 5 to 40s than by 1s.  

Similarly, Francis (Francis, 2005) noted that learning to control a novel tool (reaching 

while holding a robot arm in a force field) was faster if the trials were separated by 5-20s 

than 0.5s.  These results are not accounted for by current computational models of motor 

learning where adaptation is driven only by motor error (Scheidt et al., 2001; Donchin et 

al., 2003; Wainscott et al., 2005) because these models treat the spaced and massed 

training paradigms identically.  Rather, the results suggest that trial-to-trial effect of 

motor error depends on the inter-trial interval between the movements. 
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More recent computational models of motor learning suggest that motor error 

engages multiple adaptive processes of different timescales: one process strongly 

responds to error but has poor retention, and another has poor sensitivity to error but has 

better retention (Smith et al., 2006).  This model and its Bayesian variant (Kording, 2007) 

emphasize that passage of time is an important variable that influences content of 

memory.  Can such models help explain the massed vs. spaced training effects?    

Here we begin with an experiment that confirms the previous findings that reach 

adaptation in force fields is indeed faster (i.e. require fewer trials) when the inter-trial 

interval (ITI) is increased from 4 to 14 seconds.  We demonstrate that the multiple-

timescale model under a Bayesian formulation can account for this result.  Since time 

passage increases the Bayesian learner’s uncertainty about his environment, and 

increased uncertainty promotes his incentive to adapt, longer ITIs lead to less number of 

trials required for adaptation.  The model predicts that the learner will learn more from a 

trial that immediately follows a long delay than one that immediately follows a short 

delay.   

To test this prediction, we performed another experiment where ITIs were 

randomly distributed.  However, we found results inconsistent with the predictions of the 

Bayesian model.  People learned more from a trial that preceded a long delay, not a trial 

that followed a long delay.  Therefore, the improved adaptation rates in spaced trials were 

unlikely to be a result of increased uncertainty. Rather, our results suggest that movement 

errors produced a trace that continued to benefit the learner during the ITI.  It appears that 

this trace has a time constant of about 4 seconds.   

 

2.2 METHODS 
We reconsidered a well-studied reach adaptation task (Shadmehr and Mussa-

Ivaldi, 1994) and asked whether spaced training benefited rates of adaptation.  Subjects 
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held the handle of a two-joint, planar manipulandum equipped with torque motors, rotary 

encoders and force transducers and reached to visual targets.  Subject’s upper arm was 

supported by a sling restricting their movements to the same horizontal plane as the 

manipulandum.  During “field trials,” the torque motors of the manipulandum perturbed 

the movement of the subjects by a viscous curl-force field: 

 

 
0 13

;
13 0

V F Vx
⎡ ⎤

= =⎢ ⎥−⎣ ⎦
 (2.1) 

 

In Eq. (2.1), force F is in Newton, and hand velocity x  is in m/s.  No forces were 

applied during “catch trials” and trials in the null training set. 

 

2.2.1 Behavioral Training 
 All procedures were approved by the Johns Hopkins Medicine Institutional 

Review Board.  Subjects gave consent prior to their participation in the study.  All 

subjects were healthy and right-handed.  They were naïve to the purpose of the 

experiment, and had never participated in any experiment with our device before.  

Participants were seated in front of a flat-screen monitor situated at eye level (Figure 2.1).  

With their right hand they grasped the handle at the end of the manipulandum to navigate 

a cursor (a white dot) on the screen.  Subjects were trained to maintain the cursor at the 

center of the screen as indicated by a yellow crosshair until a 1 cm2 green target box 

appeared which also served as the “go” signal.  They were also told to “aim for the target 

as it appears and try making a straight point-to-point movement to the target in a fast and 

smooth fashion.”  The yellow crosshair vanished as soon as subject started to move.  

The green target box could appear at any one of the eight locations spaced on an 

invisible circle of 10 cm radius centered at the crosshair.  The sequence of the target 

locations was determined pseudo-randomly with all eight possible target locations visited 
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with equal probability.  After completion of the movement, the green target box turned 

magenta when the tangential peak speed exceeded 0.55 m/s or cyan when the speed 

faltered below 0.20 m/s respectively.  If the movement duration surpassed 0.57 sec or fell 

under 0.43 sec, the box turned red or blue.  If the movement profile met the above 

parameters, it was considered ideal and the target box exploded.  Distinctive audio 

feedback was also given for magenta, blue and exploding target boxes.  The 

manipulandum subsequently returned the subject’s hand to the origin at the center of the 

screen. 
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Figure 2.1 Experiment design.  
a. Experiment 1 protocol.  Inter-trial 
intervals (ITI) were constant within 
a movement set (Sets A, B, C, D).  
Shaded blocks indicate that the 
force field was on for all but catch 
movement trials in that set.  b. 
Experiment 2 protocol. ITIs were 
randomly varied during field 
training sets.  c. Experiment 3 
protocol.  Field trials (solid triangle) 
were sandwiched between pairs of 
channel trials (open triangle) and we 
varied the time between the field 
trial and the subsequent channel 
trial. 

2.2.2 Performance Measure 
Movement errors were measured as the signed perpendicular displacements (PD) 

of the reach at peak speed with respect to a straight line to the target.  We grouped 32 

movements into one movement bin and averaged the errors in field and catch trials to 

arrive at fieldPD  and catchPD .  Next, we computed a learning index (LI) (Criscimagna-

Hemminger et al., 2003; Hwang et al., 2003): 

 

 catch

catch field

PDLI
PD PD

=
−

 (2.2) 
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The denominator of this expression is a measure of limb compliance; smaller 

stiffness gives rise to larger differences in errors between catch and field trials.  The 

numerator is a measure of change in motor output with respect to null trials.  Therefore, 

the ratio is a measure of learning, normalized with respect to limb compliance.  As 

subjects learn to predict the forces, their movement errors in field trials decrease while 

errors in catch trials increase.  Thus, we would expect the learning index to grow and 

plateau as the subjects adapt.  Complete adaptation would result in a learning index of 

one.  However, catch trials cause unlearning (Thoroughman and Shadmehr, 2000) and 

prevent the index from reaching one.  The ratio of field trials to catch trials (i.e. 5/6) 

dictates the theoretical limit of learning index, which is 0.83.  In our experience, the 

highest actual learning performance is slightly below this number (Criscimagna-

Hemminger et al., 2003).  Movements were excluded if they did not meet the following 

criteria: maximal tangential speed was between 0.20 and 0.55 m/s, movement duration 

was between 0.3 and 1.2 s, and the total movement trajectory length was less than 20 cm. 

 

2.2.3 Experiment 1: constant ITI 
In this experiment we sought to replicate the results of Francis (Francis, 2005) and 

Bock et al. (Bock et al., 2005).  The experiment was divided into four sets (Figure 2.1a), 

each containing 192 reach trials: set A (null baseline), set B (field), set C (null washout), 

and set D (field).  In sets B and D, the field was randomly removed in 1/6th of the trials 

(catch trials).  Short breaks of five minutes were given between sets.  Subjects (n=24) 

were randomly assigned to two counter-balanced groups.  One individual did not follow 

instructions and was excluded from data analysis.  Both groups performed the same 

sequence of movements in each of the four sets with one difference: in set B of the first 

group, after the hand returned to the center location the target presentation was delayed 

by 10s while target presentation in all other sets was delayed by only 0.5s (sets A, C, D).  



 15

In the second group, target presentation was delayed by 10s in set D and by 0.5s in all 

other sets (sets A, B, C).  We defined ITI to be the time between the onsets of 

consecutive reaching trials and it included all delays and movement time.  Thus, the 

presentation delays resulted in mean ITI of either 4 or 14s.  

Because we found that longer ITI produced significantly faster rates of adaptation, 

we considered two general models that might account for the data. 

 

2.2.4 Model 1 (Bayesian multi-rate model): Motor 
adaptation as optimal inference at multiple rates 

One way to account for time-dependent changes in motor performance is to 

envision that the learner is a Bayesian estimator that assumes that motor error arises from 

multiple causes: some perturbations go away quickly but tend to be highly variable (fast 

system, e.g., fatigue), while other perturbations tend to go away slowly and tend to be 

less variable (slow system e.g., disease).  We recently formalized this idea and 

demonstrated that a multiple-system model can account for a large body of data in 

saccade and reach adaptation (Kording, 2007).  The principal idea in this model is that 

movement error results in a credit assignment problem for the nervous system. To solve a 

credit assignment problem, we need to determine how to vary the contributions of the 

two systems to a common task:  what is the timescale of perturbation that is most likely 

responsible for the current error?  Is the perturbation likely to go away quickly, or is it 

likely to be sustained?  If it is likely to be sustained -- as with spaced perturbations -- the 

learner should increase his error sensitivity for slower timescales. To show how such a 

model will be affected by ITI, suppose that the learner assumes that the perturbations (for 

example, force f imposed on the limb) are caused by a linear combination of two sources, 

each with its own states, timescale and noise properties: 
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In the above equations at each iteration n, the learner’s state (represented by 

variable z) is a reflection of two underlying sources: one system (represented by state 1z ) 

for the fast perturbations and another (represented by state 2z ) for the slow perturbations.  

0ε  is the noise in our sensors that measure the perturbation, and 1ε  and 2ε  are noises 

associated with the fast and slow perturbations (we assume that 1 2 1a a< <  and 1 2σ σ> ).  

The learner’s “knowledge” on each trial is a sum of contribution of the fast and slow 

systems with associated noises.  It is convenient to rewrite Eq. (2.3) in vector format as:  
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In Eq. (2.4), [ ]1 1T =x  and A and Q are diagonal matrices with components 

described in Eq. (2.3).  On trial n, given that the learner has observed the last 1n −  trials, 

it will have a prior estimate ( )1ˆ n n−z  and a predicted perturbation ( )1( )ˆ ˆ n nn Tf −= x z .  The 

optimal way that it can distribute the error ( ) ( )ˆn nf f−  to each of the two potential sources 

is described by the gain ( )nk (the Kalman gain).  The mean of the posterior estimate will 

become:  
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In Eq. (2.5), ( )1n nP −  is the prior uncertainty matrix, describing the variance 

covariance of each component of z.   

Now if during an iteration of the model, the learner makes a movement, it will 

make an observation, and therefore the posterior uncertainties will change: 

  

 ( ) ( ) ( )1( )n n n nn TP I P −= −k x  (2.6) 

 

During model iterations where the learner is not allowed to make observations, 

the posterior estimate will not change:  

 

 
( ) ( )

( ) ( )

1

1

ˆ ˆn n n n

n n n nP P

−

−

=

=

z z  (2.7) 

 

However, regardless of whether the learner makes an observation or not, at the 

next iteration the prior uncertainty will change:  

 ( ) ( )1n n n n TP AP A Q+ = +  (2.8) 

 

We see that uncertainty decreases when an observation is made (Eq. (2.6)), but 

can potentially increase between iterations (Eq. (2.8)) due to Q.  We assume that the 

learner updates the uncertainty with each iteration.  Assuming that each iteration takes a 

constant amount of time, the longer ITIs allow more iterations than shorter ITIs.  

Consequently, longer ITIs (i.e. after more iterations) can produce increased uncertainty.  

This in turn produces higher sensitivity to error (Eq. (2.5)), which can result in an 

increased rate of trial-to-trial adaptation.  As a consequence, this model predicts that 

longer ITIs have the potential to produce faster rates of adaptation. 
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2.2.5 Model 2 (Error trace model):  Adaptation as 
continuous integration of motor error   

Model 1 assumes that adaptation in response to error is an instantaneous process 

that completes by the next iteration.  A different way to view adaptation is to imagine that 

it is a process that is initiated with the experience of error, but continues as long as the 

error memory trace is available.  Let us assume that the error trace is an exponentially 

decaying function of the form ( )( ) 1 exp /n r
r

τ−y  where ( )ny is the error experienced at 

trial n at time tn+1, τ is the time variable and r is the time constant for the temporal decay.  

Suppose that the learner continuously learns from the error trace that was initiated at the 

time of trial n until the new error trace at trial n+1 interrupts this process, the learner’s 

state at tn+1 (immediately before experiencing the error in trail n+1) becomes: 

 

 
1( )

1
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n

tn n
n n t

tt t d
r r

τ τ+

+
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The integral in Eq. (2.9) can be simplified: 

 ( ) 1
1( ) ( ) 1 expn n n

n n
t tt t

r
+

+

⎛ − ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟
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z z y  (2.10) 

 

In this model of adaptation, a movement is like a point process that resets the 

previous error trace and replaces it with the most recently acquired sample.  As ITIs 

increase, the contribution of error, i.e., the exponential term in Eq. (2.10), increases.  As a 

result, the system learns more from an error when the trials are spaced in time.   

2.2.6 Predictions of the two models 

Models 1 and 2 both predict that longer ITIs will affect rates of adaptation, but 

their mechanisms are different.  In Model 1, when a trial is followed by a long delay, 

parameter uncertainties can increase, which in turn increases the sensitivity to error in the 
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trial that follows the long delay.  In other words, longer ITIs signal the learner to pay 

attention.  In Model 2, when a trial is followed by a long delay, the error that was 

experienced in the preceding trial is integrated over a longer time interval.  In other 

words, longer ITIs allow more samplings from the error. This increases the sensitivity to 

error in the trial that preceded the long delay.  Therefore, the key experiment is one that 

measures the learner’s sensitivity to error in trial n, as a function of the time that either 

preceded or followed that trial.  

2.2.7 Experiment 2: variable ITI 

This experiment (Figure 2.1b) consisted of three sets (each with 192 trials) 

separated by short breaks: set A (null), set B (field), and set C (field).  During the null 

training set, presentations of targets were delayed by 0.5 seconds as in Experiment 1.  

During the field sets, 1/6 of the trials were catch trials.  However, unlike Experiment 1, 

the delay before target presentation was pseudo-randomly selected to be 0.5, 5, 10, or 

20s.  An equal number of different delays for a given movement were presented in each 

set..  Since an ITI also included the time for movements (that were remained relatively 

constant for each participant), imposing this ‘go’ signal delay resulted in mean ITIs of 4, 

9, 14, and 24s.  

We recruited a new group of naive subjects for this experiment (n=31).  To assess 

sensitivity to error and the influence of ITI, we fitted the trial-by-trial movement errors to 

a state space model (Wainscott et al., 2005).  The state space model included a hidden 

state for each of the 8 directions of movement.  We estimated a trial-to-trial 

generalization function from the direction in which error was experienced to all possible 

directions.  This generalization function was a measure of sensitivity to error.  The 

models predicted that changing the ITI would affect this sensitivity.  In particular, Model 

1 predicted that the sensitivity to error experienced in trial n should increase as a function 
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of the delay that preceded that trial.  Model 2 predicted that the sensitivity to error 

experienced in trial n should increase as a function of the delay that followed that trial.  

2.2.8 Experiment 3: variable ITI with channel trials 
and random forces   

The results of Experiment 2 were consistent with predictions of Model 2 but not 

Model 1.  To test the assumptions of Model 2 more directly, we performed a final 

experiment.  In this experiment, we measured state of the motor system directly through 

the use of “channel trials” (Scheidt et al., 2000; Hwang et al., 2006b; Smith et al., 2006).  

In a channel trial, the robot restricts the hand’s motion along a straight line to the target. 

While it prevents errors during the reach, it allows us to measure how much force the 

subject expected to experience for that trial.  This expectation is equal to the force that 

the subject produces against the channel wall.  Previous work had found that during reach 

adaptation, these forces gradually approximate the force field that the robot produces 

during free movements (Hwang et al. 2006).  Our idea here was to use channel trials to 

measure the change in the expected force as a function of error in the previous reach trial. 

Experiment 3 (Figure 2.1c) consisted of three sets (each 192 trials), separated by 

short breaks: set A (null baseline), set B (random field), and set C (random field).  We 

recruited a new group of naïve subjects (n=28).  Unlike Experiments 1 and 2, however, 

there were only two targets: either up or down with respect to the center position.  In the 

field sets subject were given, in a pseudo-random order, a clockwise curl-force field (Eq. 

(2.1), +V, 3/8 of the movements), a counter-clockwise curl-force field (-V, 3/8 of the 

movements), or a “channel trial” in which movements perpendicular to the target 

direction were prevented by a stiff one-dimensional spring/damper (2 kN/m, 45 Ns/m).  

The seamless production of the channel force was based on the hand position in the 

center start box and unperceivable to participants unless they purposely tried to move in 
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the perpendicular direction. Such movements were not observed, and participants 

reported that they were not aware of this force pattern at all. 

We were interested in the change in the force exerted by the subject against the 

channel walls when two channel trials were separated by a trial in which there was a 

movement error. There were 34 such channel-force-channel trial triplets dispersed 

pseudo-randomly in set B and 35 in set C.  In the triplet, between the first and the second 

movement, the ITI was kept at a constant 4 s.  Between the second and the third 

movement, we varied the ITI in a random fashion identical to the Experiment 2 design.  

Thus, for each triplet we looked at the difference in the force output in the first and third 

movements (both were channel trials) as a function of the time passed since the error 

experienced in the second movement.  Model 2 predicts that when one experiences a 

reach error in trial n, on trial n+1 one will produce a force against the channel walls that 

is proportional to this error, and this sensitivity will grow as a function of the time 

between trial n and n+1. 

2.2.9 Bootstrap methods for estimating the confidence 
limits 

We followed the procedures described in our previous publications (Donchin et 

al., 2003) which followed procedures laid out by Efton and Tibshirani (Efron and 

Tibshirani, 1993) to estimate the standard errors (Figure 2.4) in the model parameters in 

the analysis of experiment 2.  We re-sampled data from the 31 subjects with replacement, 

and estimated the parameters from the averaged sample. We iterated this procedure 200 

times, and the standard deviation of the 200 estimations of the parameters yielded an 

estimation of the standard error of the parameters. 
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2.3 RESULTS 

2.3.1 Experiment 1:  spaced training resulted in faster 
adaptation 

In experiment 1, we sought to replicate the results of Francis (Francis, 2005) and 

Bock et al (Bock et al., 2005).  We quantified the effect of massed versus spaced training 

in a within-subject design (Figure 2.1a).  Subjects were randomly assigned to train with 

either a long (13.60 ± 0.13s, mean±SD) or short delay (3.88±0.14s) before each trial.  We 

found that they showed better adaptation in the longer ITI set – compensation in field 

trials was stronger and after-effects in catch trials were larger (Figure 2.2a-c).  We 

measured performance with a learning index in each of the six 32-movement bins in each 

set.  Repeated-measure three-factor ANOVA analysis (ITI, set order, and movement bin) 

on the learning index showed no significant effect due to set order (F(1,21)=0.020, 

p=0.89).  We therefore combined data from the two groups and considered the effect of 

ITI on the learning (Figure 2.2d).  We found a significant interaction effect between ITI 

and movement bin (F(5, 105)=4.07, p=0.002).  Post-hoc analysis showed significantly 

better performance in bins 2, 3, and 4 within subjects (paired t-test, p<0.05 for each bin) 

for the long ITI set.  Therefore, adaptation rate was enhanced with the longer ITI. 

We checked whether the gains in performance with longer ITI might have been 

due to a fatigue-like process.  In our task, forces that counter the perturbing field are 

about one third of the forces that move the arm toward the target (Bhushan and 

Shadmehr, 1999).  Therefore, if the limb fatigues with short ITIs, forces that move the 

limb toward the target should show a positive correlation with respect to the time passed 

since last trial.  As a proxy for this force, we looked at the magnitude of peak velocity 

vectors parallel to the direction of the target – a measure highly correlated with fatigue 

(de Haan et al., 1989; Jaric et al., 1997).  If the limb fatigues with smaller ITIs, 

movements should become slower with smaller ITIs.  Peak velocity was not different in 
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the two ITI groups (two-tailed t-test, t = -0.22, D.F. = 44, p = 0.83).  In addition to the 

velocity measure, we would expect the fatigued group to show a lower performance due 

to inability to express learning. However, the two groups attained similar performance 

toward the end of training session (Figure 2.2d).  Together these results suggested that 

differences in performance were unlikely due to a potential for fatigue in the short ITI 

group. 
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Figure 2.2 Mean movement paths averaged across subjects, directions, and training 
sets in Experiment 1.  Shadings indicate the standard error of the mean trajectory 
averaged across subjects.  a. Mean movement paths in the early stage of training (field 
and catch trials).  b. Mean movement paths in the middle stage.  c. Mean movement paths 
in the late stage.  d. Comparison of learning performance between short and long ITI 
movement sets.  Each sequence of movement data was grouped into 32-movement bins 
and a learning index was computed for each bin.  Learning indices were averaged across 
subjects and sets of the same ITI. Within-subject performances were significantly 
different for bins 2, 3, and 4 (paired t-test, p<0.05 for each within-subject comparison).  
The presence of catch trials limits the theoretical ceiling of learning indices to 0.83.  
Error-bars are SEM. 
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2.3.2 Existing Models and predictions 
To account for the observation that performance during motor learning exhibited 

time-dependent changes such as savings and spontaneous recovery, our group had 

previously proposed a deterministic multi-rate model that suggests that motor output is a 

sum of at least two systems: a fast adapting system that rapidly forgets, and a slow 

adapting system that has good retention (Smith et al., 2006).  In this model, the learner’s 

state (represented by variable z) is a reflection of two underlying systems: one system 

(represented by state 1z ) is highly sensitive to errors and changes rapidly, but has a 

limited capacity and will tend to quickly forget.  Another system (represented by state 

2z ) has low sensitivity to error and changes slowly, but has large capacity and will tend 

to remember.  The learner’s “knowledge” on each trial is a sum of contribution of the fast 

and slow systems: 1 2z z z= + .  In this model, following an error ( )ny in trial n, the state of 

the learner { }1 2,z z changes deterministically as follows: 

 
( 1) ( ) ( )
1 1 1 1
( 1) ( ) ( )
2 2 2 2

           (fast system)

          (slow system)

n n n

n n n

z a z b y

z a z b y

+

+

= +

= +
 (2.11) 

 
 



 26

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Effect of ITI on the 
Bayesian and error trace models.  a. 
Simulation of the Bayesian multi-rate 
model.  The thin black line represents the 
perturbation observed by the learner, and the 
thick lines are the learner’s estimate of the 
perturbation when observations are made 
with either a long (black) or a short ITI 
(gray).  To produce these plots, Eqs. (2.5)-
(2.8) were simulated iteratively with 
observation noise 2

0 0.04σ = , state noises 
2
1 0.00008σ =  and 2

2 0.1σ = , and 
forgetting rates 1 0.999a =  and 2 0.4a = .  
We assumed that each iteration took a 
constant amount of time and defined a 
“trial” as an observation. For the short ITI, 
the learner made an observation on every 
other iteration of the simulation.  For the 
long ITI, the learner made an observation on 
every 20th iteration of the simulation.  
Longer ITI produced a faster rate of 
adaptation.  b. Evolution of parameter 
uncertainty in the long ITI scenario for 6 
consecutive trials.  The learner estimates the 
perturbation as a sum of two parameters in 
Eq. (2.3), 1z  (slow state) and 2z  (fast state).  
There is an uncertainty (or variance) 
associated with each parameter. Increased 
uncertainty due to a longer ITI prior to an 
observation (i.e. a “trial”) will result in 
increased sensitivity to error in the following 
observation and thus, faster rate of 
adaptation. When the learner makes an 
observation, the uncertainties decrease 
sharply.  Between trials, the learner cannot 
make observations but estimation of 
uncertainties change.  The uncertainty for 
the fast state rapidly increases and saturates.  
In contrast, the uncertainty for the slow state 
gradually increases.  c. Illustration of the 
error trace model. For simplicity, each 
observation / trial (circles) generates an 
exponentially decaying trace. An old error 
trace is replaced as soon as a new movement 
is made.  A long interval after an 
observation allows more time to integrate 
the error trace and therefore increases the 
sensitivity to the preceding error.  
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In Eq. (2.11) we have 1 2 1a a< <  and 2 1 1b b< < . In this equation, passage of time 

affects the learner through the variables 1a  and 2a .  Since these variables are less than 

one, passage of time always degrades memory.  Therefore, the model cannot explain the 

finding of improved rates of learning in spaced training. However, a variation of this 

model casts the timescales in a Bayesian framework (Eq. (2.3)).  In this framework, the 

learner keeps a measure of uncertainty about its knowledge.  Importantly, the passage of 

time between trials affects this uncertainty.  As its uncertainty escalates, the learner’s 

incentive to learn increases.  Figure 2.3a shows a simulation of this method of learning.  

We simulated 150 trials in two conditions: with a short ITI (two model iterations between 

observations), or a long ITI (twenty model iterations between observations).  The longer 

ITI produced faster rates of adaptation.  To see the reason for this, it is instructive to 

examine the parameter uncertainties in the long ITI scenario (Figure 2.3b).  With each 

observation (i.e. trial), the learner acquires information, and therefore its uncertainty 

declines.  During the interval between observations, the uncertainties increase.  Yet, the 

rate of this increase is different for the fast and slow states.  The faster state has higher 

noise, and so its uncertainty rapidly increases until it reaches an asymptote.  The slower 

state has less noise, and so its uncertainty slowly increases during the ITI.  Therefore, the 

longer ITI disproportionately affects the uncertainty of the slow state.  Increased 

uncertainty means an increased sensitivity to error that the learner experiences in the 

subsequent trial (Eq. (2.5)).  As a result, the Bayesian learner adapts faster with a longer 

ITI.   

The Bayesian model explains that the learner adapts faster in the longer ITI 

design because his uncertainty grows with passage of time.  Therefore, this model 

predicts that the sensitivity to error in trial n will become larger with increased time 

between trials n-1 and n. Experiment 2 was designed to test this prediction. 
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2.3.3 The link between trial-to-trial sensitivity to error, 
generalization, and overall learning rate 

 In the Bayesian model, Eq. (2.5)-(2.8) describe how the state of the learner 

changes on a trial-to-trial basis.  We showed that in simulation, an increased trial-to-trial 

sensitivity to error sufficiently expedites overall learning rate (Figure 2.3a).  The trial-to-

trial sensitivity to error, however, is not uniform across all movement directions. 

Gandolfo et al demonstrated that the amount of trial-to-trial sensitivity depends on the 

angular disparity between movement directions (Gandolfo et al., 1996).  That is, errors in 

one direction affect the states of the learner in other directions – a phenomenon termed 

generalization. Therefore, if increased ITIs increase trial-to-trial learning and in turn 

overall learning rate, the effect will produce a modulation of generalization as a function 

of ITIs.  

2.3.4 Experiment 2:  sensitivity to error in trial n 
increased with time between trials n and n+1 

In Experiment 2, the delay between movements was drawn from a multinomial 

random variable. The ITIs were 4, 9, 14 and 24 seconds (respectively, 4.14±0.17s, 8.63± 

0.14s, 13.63± 0.16s, or 23.70± 0.12s (mean±SD)).  We were interested in measuring the 

learner’s sensitivity to error in each trial as a function of the ITI.  To estimate this 

sensitivity, we used a state-space approach (Donchin et al., 2003).  For each subjects we 

measured the error *( )ny  in each trial n, force ( )nf produced by the robot at that velocity, 

and target direction ( )nL .  As the movement directions were identical between subjects, 

we averaged the movement errors and forces across subjects and arrived at a single 

sequence.   

To determine how the error in each trial affected the movement that the subject 

made in the subsequent trial, we fitted this sequence to a hidden state space model 

(Donchin et al., 2003; Wainscott et al., 2005).  The hidden states represented the 
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knowledge of the learner about the perturbation in each direction of movements.  Upon 

experience of an error in a given direction, we estimated how this error was generalized 

to other directions.  We also estimated how this generalization was modulated by the time 

spent between the trials.  The sequence of movement errors were fitted to the following 

dynamical system:  

 

 
( ) ( )

( ) ( ) ( ) ( )

( 1) ( ) ( ) ( )
1 1

n n n n

n n n T n
n n n n
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+ −
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In this model, z represents a vector of hidden states (learner’s knowledge about 

the perturbations for each of the 8 possible target directions).  By fitting the observed 

variables ( *( )ny , ( )nf , and ( )nL ) to Eq. (2.12), we estimated the unknown parameters D  

(the arm’s compliance), B (the generalization function), a (a time-dependent function that 

describes the deterioration of the state during the time between trials), and k (a time-

dependent function that modulates the generalization function as a function of time 

between trials).  The Bayesian model predicted that k would be a monotonically 

increasing function of ∆ , where 1n nt t −∆ = − .   

 Using non-linear optimization (the lsqnonlin function in Matlab with 

default settings), we fitted Eq. (2.12) to the measured data (F(35,349)=33.95, r2=0.7730, 

p< 0.0001). The resulting generalization function B (with standard errors of the mean 

estimated through a bootstrap procedure) is plotted in Figure 2.4a.  This function had its 

peak at 0o, and decreased with angular distance in a pattern similar to those recorded in 

other studies where ITIs were kept constant (Donchin et al., 2003; Wainscott et al., 

2005).  We found that the function a remained extremely close to 1 (Figure 2.4b), 

suggesting that there was little or no forgetting during the seconds that passed between 

trials.  Arm compliance D was consistent with previous measurements of limb 

compliance (Figure 2.4c)(Mussa-Ivaldi et al., 1985).  However, contrary to the 
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predictions of the Bayesian model, we found that k did not monotonically increase with 

the time that preceded the trial (Figure 2.4d, gray line).   

 

Figure 2.4 Sensitivity to error as estimated from Experiment 2.  Data from 
Experiment 2 were fitted to Eq. (2.12) and Eq. (2.13).  For Eq. (2.12), it is the 
pre-movement ITI that affects the sensitivity to error. For Eq. (2.13), it is the post-
movement ITI that affects the sensitivity to error.  The Bayesian model predicts 
that sensitivity to error should increase with pre-movement ITI.  The trace model 
predicts that sensitivity should increase with post-movement ITI.  Error bars are 
bootstrap estimates of SEM.  a. The generalization function B. This function 
quantifies the fraction of error experienced in trial n that affected motor output in 
trial n+1.  The function is parameterized with respect to the angular distance 
between trials n and n+1.  Error-bars are bootstrap estimates of the SEM (200 re-
samples). There were no significant differences in estimates of B for the two 
models.  b. Parameter a.  This parameter estimates the effect of time passage on 
the decay of memory.  A value of 1 indicates no decay.  c. Parameter D.  This 
parameter estimates limb compliance.  The estimates for the two models were 
nearly identical. d. Parameter k.  This parameter estimates the sensitivity to error 
in trial n.  For the pre-movement ITI model, the plot shows ( )k ∆ , where 

1n nt t −∆ = − , or 1n nt t+∆ = − .  To estimate ( )k ∆ , we arbitrary set 1k =  for 4s∆ =  
and found the remaining values with respect to this value.  e.  Cross validation of 
the error trace model.  We fitted Eq. (2.13) to the data in Experiment 2, resulting 
in the parameters shown in parts a-d, and then used these parameters to predict 
performance in Experiment 1.   
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2.3.5 The Error Trace Model 
Because the results of our fit were inconsistent with the Bayesian model, we 

considered an alternative model.  It is possible that in spaced training, adaptation rate is 

faster because errors produce a memory trace that decays with time but that the learner 

continues to benefit from the trace during the ITI period (Figure 2.3c), effectively 

continuing to learn from the error trace.  In this model, the time that is of importance is 

the period that follows a trial, not the time that precedes it (Eq. (2.10)).  The error trace 

model predicts that sensitivity to error in trial n should increase as a function of the time 

between trials n and n+1.  (In contrast, the Bayesian model predicted that the sensitivity 

to error in trial n should increase a function of time between trials n-1 and n.)  To test for 

this prediction, we slightly modified Eq. (2.12) to represent this idea, and then fitted Eq. 

(2.13) to the same data observed in Experiment 2: 
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The results produced a highly significant fit (r2 = 0.7733, F(35, 349) = 34.01, 

p<0.0001).  While there were little or no changes in the model parameters B, a, or D 

(Figure 2.4a-c), the important parameter k changed significantly: it now became a 

function that monotonically increased with ITI (Figure 2.4d).   That is, results of 

experiment 2 suggested that the sensitivity to error in trial n increased as a function of 

post-movement ITI, not pre-movement ITI.  This result was consistent with the error 

trace model but not the Bayesian model.   

Was the sensitivity to error significantly greater at longer ITIs?  To check for this, 

we asked whether the slope of the function ( )k ∆  in Eq. (2.13) was significantly greater 
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than zero. We first computed ( )k ∆  from each of the bootstrapped groups and then 

estimated the slope by fitting a straight line.  The p-value was estimated by counting the 

number of non-positive slopes and then dividing by the total number of bootstrapped 

samples.  We found a significantly positive slope (p < 0.005).  On average, the subjects’ 

generalization was 45% higher during those trials with the longest ITI with respect to 

those with the shortest ITI. 

What was the time constant of the error trace?  To estimate this time constant, we 

replaced the term ( )k ∆  in Eq. (2.13) with the exponential function in Eq. (2.10) and 

refitted the system of equations to the measured data.  We again found a highly 

significant fit (r2 = 0.77, F(29, 355) = 40.8, p<0.0001).  The fit estimated an error trace 

time constant of about 4 seconds (r = 3.77±0.6 sec).   

In summary, we found that improved performance in the spaced trials was due to 

increased error sensitivity as a function of the period that followed the movement, as 

would be predicted by the error trace model, and not the period that preceded the 

movement, as would be predicted by the Bayesian model. 

2.3.6 Cross validation of the error trace model 
To validate the error trace model, we performed two tests.  First, we asked 

whether the specific parameter values found in the random ITI of experiment 2 could 

explain the performances in the constant ITI of Experiment 1.  Second, we performed 

experiment 3 to specifically measure the change in motor output as a function of ITI. 

In our first test, we asked whether the model of Eq. (2.13) could predict the 

specific shape of the learning function that we had measured in the short and long-delay 

conditions of Figure 2.2d. We ran the dynamic system of Eq. (2.13) on the target 

sequence ( )nL  and force sequence ( )nf  of experiment 1, generating a sequence of errors 

in field and catch trials.  We then computed a learning index on this sequence of 

movement errors in the same way that we had computed the performance of our subjects 
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(Eq. (2.2)).  For simplicity, predicted and actual performance was computed on a single 

sequence of movements by first averaging data across subjects; the results were similar to 

that shown in Figure 2.2d.  Figure 2.4e shows performance of the predicted and the actual 

data from experiment 1.  There was an excellent correspondence between the predicted 

performance and the measured data. 

2.3.7 Experiment 3: Predictions of the error trace 
model 

 A crucial prediction of the error trace model is that when one experiences 

a motor error, the longer one waits, the larger will be the effect of this error on the motor 

output in the next trial.   To test this prediction, we employed force channels, first 

introduced by Scheidt et al. (Scheidt et al., 2000).   In a “channel” trial, the hand is 

guided and restricted along a straight line to the target.  The motor output that is relevant 

to the task is the force that the subject produces against the walls of this channel.  In a 

triplet of “channel-field-channel” trials, one can measure the change in motor output 

between the two channel trials as a function of the error in the intervening field trial.  The 

prediction of the error trace model is that this change should monotonically increase with 

the time period between the field trial (when error was experienced) and the second 

channel trial.   

In a channel trial n, let us label the force perpendicular to the direction of motion 

produced at maximum velocity as ( )nu .  Assume ( ) ( ) ( )ˆn n nu V x=  where ( )ˆ nV  is the 

subject’s best guess at the constant V in Eq. (2.1), and that ( 1) ( )ˆ ˆn nV V+ = since subject did 

not experience an error in trial n (as it was a channel trial).  Now in trial n+1 (field trial), 

the subject experienced a movement with error ( 1)ny + , and this results in adaptation:  

 
 ( )( 2) ( ) ( 1)ˆ ˆn n nV V s y+ += + ∆  (2.14) 
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In Eq. (2.15), the learner’s trial-to-trial sensitivity to error is labeled with variable 

s.  This sensitivity is a function of time between trial n+1 and n+2, that is: 2 1n nt t+ +∆ = − .  

Thus, for any channel-force-channel triplet, we have: 
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We fitted this equation to each triplet in experiment 3 and estimated sensitivity to 

the error experienced in movement n+1 as a function of the time interval between 

movements n+1 and n+2 (Figure 2.5).  (We kept the time interval between movements n 

and n+1 constant in this experiment).  The ITIs between movement n+1 to n+2 were 4, 8, 

13 and 23 seconds (or more precisely, 3.66 ± 0.05 s, 8.23 ± 0.06 s, 13.30 ± 0.05 s, and 

23.37 ± 0.07 s (mean±SD)).  There was a significant effect of the time interval between 

movements n+1 and n+2 (one-way ANOVA, F(3, 81) = 3.156, p = 0.029), and one-tailed 

t-tests revealed that the sensitivity was significantly higher for longer ITIs than shorter 

ones (Figure 2.5). It should be noted that the relationship between regressed error 

sensitivity and ITI appeared to be linear rather than exponential. It is not clear whether 

the linearity was a result of the regression or the randomness of the perturbation given. 

However, consistent with the general predictions of the error trace model, we observed 

that when one experienced an error, one learned more from that error if one waited longer 

before the next trial.   
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Figure 2.5 Results of Experiment 3.  Sensitivity to random errors in trial n+1 as a 
function of time between trial n+1 and n+2.  (The time interval between trials n and 
n+1 were kept constant at 4 s.) The parameter for sensitivity s was estimated via the 
change in the motor output u in channel trials n and n+2 (Eq. (2.15)).  To arrive at 
this figure, Eq. (2.15) was fitted to the data for each subject, resulting in an estimate 
of ( )s ∆  for each subject.  The values shown are the mean±SEM. 

2.4 DISCUSSION 
Two previous reports had demonstrated that reach adaptation required fewer 

training trials when trials were spaced in time (Bock et al., 2005; Francis, 2005); a 

finding that we reproduced in experiment 1.  (In terms of absolute time, long-ITI sessions 

took longer to complete.) These data demonstrate that the motor system is affected by not 

only motor error, but also time.  How does time affect the way the brain learns from 

motor error? 

We considered two models of motor adaptation that are sensitive to passage of 

time: a Bayesian multi-rate model (Eq. (2.5)) and an error trace model (Eq. (2.10)).  Our 

previous work suggested that motor errors result in an adaptive response in at least two 

“systems”: a fast system that rapidly learns but has poor retention, and a slow system that 
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is less sensitive to error but hardly forgets (Smith et al., 2006).  Unfortunately, this model 

could not explain the results of experiment 1.  A Bayesian variant of this model recasts it 

in a probabilistic framework (Kording, 2007).  It hypothesizes that spaced training leads 

to improved rates of adaptation because during the time between trials 1n −  and n, the 

brain becomes uncertain about its internal model.  The increased uncertainty results in 

increased sensitivity to subsequent motor errors.  The model predicts that if one could 

measure error sensitivity on each trial, one would find that the sensitivity to error in trial 

n increases as a function of the time between trials n-1 and n.  In experiment 2, we tested 

and found results that were inconsistent with this prediction: the sensitivity to error in 

trial n monotonically increased with the time period that followed that trial, not the period 

that preceded that trial.  Therefore, spaced training improved rates of performance not 

because time delay made the learner more sensitive to the error in the next movement, but 

because it made the learner learn more from the error in the last movement. 

To account for this result, we proposed that the error might be represented by a 

trace that exponentially declined with time, effectively allowing the nervous system to 

learn from the trace for as long as it was available.  Results of experiment 2 suggested 

that the error trace had a time constant of 4 sec.  To test the model more directly, we 

performed a final experiment where movements experienced random errors, but were 

sandwiched between “channel” trials from which we could measure change in motor 

output from error.  Consistent with the trace model, we found that the sensitivity to error 

experienced in trial n increased with the delay between trials n and n+1. 

We assumed that the error trace was “reset” by the next trial.  We also considered 

the possibility that the error trace lingered beyond the immediate next trial.  If the time 

constant of such a “lingering” trace is more than a few seconds, one expects that the 

generalization function will be independent of the ITI.  This was inconsistent with our 

results in the second experiment. 
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We believe cognitive strategies had minimal effect in our data. We examined the 

effect of conscious policy versus an implicit memory in a recent report and found that 

there was a high probability that subjects would become conscious of the force field 

pattern when the number of targets was small (3) and the forces were consistent  (Hwang 

et al., 2006a).  Furthermore, in that experiment we did find that subjects who became 

conscious of the force pattern had a small but significant boost on learning versus those 

who did not.  In the current experiment, we designed our procedures to minimize this 

effect.  First, we had 8 targets rather than 3.  Second, we performed a control experiment 

where forces were random.  Importantly, we observed that the effect of ITI in the random 

experiment was consistent with the ITI effect in the constant force field experiment.  

Furthermore, we asked subjects what they were thinking during the inter-trial intervals in 

post-experimental questionnaires (experiment 3). No subject was aware of the force 

pattern (as it was random) and only one subject in 28 answered that they were attempting 

to come up with a cognitive strategy. Since participants were required to manually keep 

the cursor centered during the wait, the vast majority answered that they were tying to 

focus on centering the cursor.   

The idea that adaptation might take place during the time between trials is a 

common theme among computational models of learning where events produce an 

eligibility trace for synaptic plasticity.  For example, Sutton and Barto (Sutton and Barto, 

1981) suggested that a stimulus or error signal that excites a neuron may produce an 

eligibility trace on the neuron’s synapses that acts as a low-pass filter of that input.  When 

the input is removed, the trace declines exponentially in time.  As long as the error and 

stimulus traces are available, their coincidence results in modification of the synapse 

associated with the stimulus.  If each new error or stimulus cancels the trace of the 

previous input, such models predict that the effect of a given error should grow with the 

ITI between trials.  The results of experiments 2 and 3 are consistent with this 

framework.   
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For the reaching task considered here, a candidate area where such computations 

may be performed is the cerebellum (Smith and Shadmehr, 2005).  An eligibility trace (or 

in our terms, sensitivity to error) may be represented by the concentrations of second-

order messenger chemicals.  Several studies suggest that parallel fiber activity is 

responsible for the graduate rise of this trace (Kettner et al., 1997; Raymond and 

Lisberger, 1998).  Similar proposals have been suggested for timed learning in delayed 

conditioning of eye blinks (Fiala et al., 1996); parallel fiber activity leads to increased 

phosphorylation of receptors over time and in turn, reduces Purkinje cell firing during the 

interval between the sustaining conditioned stimulus (CS) and the onset of unconditioned 

stimulus (US).  Interestingly, it has been observed that delayed conditioned response can 

be learned if CS precedes the US by up to 4 seconds (Gormezano, 1966) – suggesting 

that such persistent phosphorylation of Purkinje cell receptors would have similar time 

course put forth here in the error trace model. 

From a neurobiological perspective, synaptic changes that are produced by spaced 

training produce memories that are dependent on protein synthesis (Tully et al., 1994; 

Maldonado et al., 1997; Josselyn et al., 2001; Locatelli et al., 2002; Scharf et al., 2002; 

Comas et al., 2004).  Indeed, cellular response in animal models to spaced stimuli may 

prime additional memory traces and give rise to resistance to memory interference in 

different temporal phases (Isabel et al., 2004).  However, such cellular processes 

generally occur on a much longer time scale than what we examined here.  The structure 

of our model might imply that the error trace is kept in some kind of buffer that continues 

to benefit the learner.  Any mechanism with which the influence of the error on the next 

trial can grow as a function of ITI will produce the same result.  What might be the neural 

basis of such a mechanism?   

Neurons that are stimulated with longer ITIs produce larger LTP (Scharf et al., 

2002) and are more resistant to de-potentiation.  Staddon et al. (Staddon and Higa, 1996; 

Staddon et al., 2002) and Fusi et al. (Fusi et al., 2005) proposed a cascade model of 
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synaptic plasticity that can account for this.  For example, in the model of Fusi et al. (Fusi 

et al., 2005), a given synaptic strength is supported by a synaptic state that may be 

shallow or deep in its cascade.  The probability of transition in the synaptic state depends 

on the depth of that state: the deeper the state, the more resistant it is to change.  If we 

imagine that it takes time for the internal state of the synapse to transition from one depth 

in its cascade to another, and that the time needed increases with the depth of the state, 

then events that can cause synaptic change are more effective when they come spaced in 

time.  At short ITI, only those synapses change that have a shallow internal state.  With 

increased ITI, one engages not only the shallow state synapses, but also has a higher 

likelihood of causing state change in the deeper state synapses.  Neural models of 

adaptation that rely on such synapses should exhibit the ITI dependent patterns of 

generalization that we found here.  

There are a number of limitations to our error trace model of motor adaptation.  

By itself, the model cannot account for much of the rich body of data that was recently 

highlighted in Smith et al. (2006).  For example, if there is an error trace, at this point we 

do not know how that trace affects the fast and slow systems that were inferred from that 

study. To account for that data, one idea is to combine the error trace model with the 

Bayesian model (Kording, 2007) so that the effect of an observed error is a memory trace 

that decays in time.  It has been suggested that uncertainty of a task variable is encoded in 

the lateral intraparietal area (Platt and Glimcher, 1997; Schall and Thompson, 1999) and 

acetylcholine and norepinephrine have been suggested to play crucial roles in forming the 

context-dependent priors during learning (Yu and Dayan, 2005; Dayan and Yu, 2006).  

Our data does suggest that this uncertainty is not changing during the delay period 

between trials.   
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CHAPTER 3  
LEARNING OF THE TASK 
STRUCTURE AS REVEALED BY 
MOTOR RETENTION  

3.1 INTRODUCTION 
The ability to modify our motor outputs allows us to interact with the 

environment quickly and efficiently. This ability includes adaptive responses to changes 

in the environment (e.g. swimming in water), changes in the medium between the 

environment and our body (e.g. using tools), and changes in our body (e.g. natural 

growth). Many studies have established that the brain constructs an internal model -- an 

approximation of the state of the reality (i.e. the environment, the medium, and the body) 

-- upon which motor actions are planned and executed. Any errors caused by the 

discrepancy between the internal model and reality then are used as the main driving 

signal for the brain to modify its model.  

Adapting to these changes, however, is a complex task. Changes can take place at 

a different frequency and pace, depending on the structure of task. Natural growth, for 

example, slowly changes the inertial properties of our limbs and trunk. On the other hand, 

tool use such as handling a hammer can change the inertial characteristics of the end 

actions almost instantly. Within a particular task structure, changes can also take place at 

a different magnitude. For example in handling a hammer, the hammer can be a light or 

heavy. Therefore, there are two objectives the learner needs to accomplish. The first is 

learning the task structure (e.g. adapting a gradual or sudden disturbance). The second is 

estimating the task parameter (e.g. the weight of the hammer). 

In most computational motor control literature, the task structure is kept constant 

over time. In these studies, the adaptation problem simplifies to the optimal estimation of 
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the task parameter. Various computational models have been proposed to explain the 

trial-to-trial adaptation to perturbation in this regard with some success (Thoroughman 

and Shadmehr, 2000; Scheidt et al., 2001; Donchin et al., 2003; Smith et al., 2006; Huang 

and Shadmehr, 2007). These models are state-space models that assume time-invariance 

in the task structure. One of these models is the time-invariant two-state model mentioned 

previously in Chapter 2 (Smith et al., 2006). The two-state model comprises two time-

invariant sub-controllers that estimate the expected amount of perturbation in their 

corresponding states with different trial-to-trial rates: a fast sub-controller that learns 

from errors quickly and forgets quickly, and a second, slow sub-controller that learns 

from errors slowly and forgets slowly. The contributions of the states of the two sub-

controllers are combined as the basis (internal model) to produce the motor output. In this 

model, the trial-to-trial learning and forgetting rates are independent constants. As a 

result, the model is not sensitive to the structure of the task. Indeed, we will show that the 

two-state model cannot account for the structural learning sensitive data described in the 

current study. 

While a substantial number of literature have addressed the problem of optimal 

estimation of the task parameter when the task structure is fixed, little is known on 

whether or how the human motor system responds to a variable task structure within a 

controlled experimental session. In the current study, we introduced a novel paradigm 

that fixes the structure of a force adaptation task within a movement training block, but 

varies the structure across two training blocks separated by a washout block. To avoid 

confounds, we looked at the passive retention of the adaptation after training. By varying 

the gradualness at which participants were exposed to changes in their limb dynamics, we 

investigated the effects of varying training schedules (i.e. task structures) on motor 

adaptation and passive retention.  

Given a training block of a single task structure, the time-invariant two-state 

model predicts that a sudden experience of errors would drive the fast sub-controller 
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more. Given another training block of another single task structure, a gradual experience 

would drive the slow sub-controller more. Thus, adaptation may show a fast or slow 

decay depending on the temporal history of errors within a block. Since a single task 

structure is used in a single block, the two-state model’s insensitivity to task structure is 

masked. However, motor learning is often done in multiple sessions with intervening 

time not specifically used for training and it is not clear how motor adaptation is retained 

after multiple training sessions with intervening washout periods. If our motor system, for 

instance, behaves invariably with time such as suggested by the time-invariant two-state 

model, the motor system does not change the rate of adaptation and retention based on 

prior training experiences. In such case, the retention response should be the same after 

first training and retraining if the washout period is sufficiently long. This is because in a 

time-invariant model, the sub-controllers are always sensitive to errors; therefore the 

learner would actively de-adapt when the source of the errors are removed such as during 

washout. In contrast, prior experience with training may help motor retention by priming 

the motor learning mechanisms. In such scenario, the motor system changes the rate of 

adaptation and retention based on prior experience with training. Therefore, retention 

behaviors in subsequent training behaviors may depend on how the first training was 

given. 

We considered an aim-and-punch task where human subjects made rapid hand 

movements toward one of two targets while holding a robotic handle that produced a 

viscous perturbation pushing the hand orthogonal to the motion. We measured the decay 

of their adaptive response following matched performance. We also measured the 

response following a wash-out and retraining block. We found that the first gradual 

training did induce greater retention as predicted by the two-state model. However, the 

current motor learning model could not account for the behavioral data after retraining. 

Importantly, we showed that the gradualness of the first exposure to perturbation alone 

was sufficient to promote retention of future adaptations. Together, these observations 
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suggested that the human motor retention process receives a top-down control based on 

the history of training, and the structure of the learning process is not time-invariant as 

previously assumed.  

 

 

3.2 METHODS 

3.2.1 The aim-and-punch game 
We used an aim-and-punch game to examine the influence of training schedules, and in 

turn, error histories on the properties of motor memory.  The goal of the game was to 

become as proficient as possible at striking through one of two targets with a rapid 

center-out movement. Participants held the handle of a robotic manipulandum (Hwang et 

al.). Game graphics were projected onto an opaque, horizontal screen directly on top of 

the hand and manipulandum. The hand position of the participants was displayed as a 

small square cursor (5 mm x 5 mm) on the screen at all times and as the game proceeded, 

a sequence of targets (5 mm x 5 mm) were displayed. In all trials, the closer the hand 

cursor came to passing through the target, the greater the number of reward points the 

participant received. Four critical accuracy levels were established: 5.16°, 4.49°, 3.61°, 

and 2.48°. For each additional accuracy level achieved, the movement was award one 

additional point in that trial for up to a maximum of 4 points. Participants received point-

based financial incentives. 

 

3.2.2 Participants 
All participants were right-hand-dominant and used their right hand to perform 

the movements. Procedures and protocols were approved by the Johns Hopkins Medicine 
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Institutional Review Board and participants gave their written consent prior to the 

experiments. 

 

 

Figure 3.1 Experimental methods A: The sequence of prompts and hand 
movement in a trial. B: Experimental training schedules. The curves depict the 
progression of the perturbation strength through an experimental session. Positive 
values indicate clockwise, viscous force perturbation while negative values 
indicate counterclockwise, viscous force perturbation. For clarity, the curves are 
aligned at the start of each phase in each block. Gray dotted lines indicate the 
absence of those trials spanned by the dotted lines. Twenty percent of the null and 
force trials were randomly selected and replaced with channel trials. Blocks of 60 
channel trials after adaptation are highlighted with a pink background and a 
double-line. 
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3.2.3 Targets 
There were two possible targets positioned on an invisible circle of a 10-cm 

radius at 121.5o (toward the right shoulder) and 301.5o (away from the right shoulder).  

Hand position was displayed at all times as a 5x5 mm white square cursor. At the 

beginning of each trial, the robot brought the hand to the center mark – a stationary 5x5 

mm white crosshair directly ahead of the participants. Targets were then displayed as 

white squares – this was the “go” signal for the center-out punch. As the strike movement 

crossed the invisible 10-cm radius circle, a yellow dot appeared at the crossing point to 

emphasize the distance between the strike and the goal as a measure of reach error.  If the 

movement duration was too long (> 0.23 sec), a blue dot appeared instead.  Beyond the 

invisible circle an elastic force field acted as a “pillow” to absorb the strike. After each 

strike when the hand hit the pillow, subjects brought their hand back to their intended 

target.  At this point the center mark reappeared and the robot brought the hand back to 

the center. 

 

3.2.4 Force Perturbation 
Each training schedule consisted of three seamless phases in sequential order: a 

baseline phase, an adaptation phase and, with the exception of the -GLN schedule, a 

retention phase. In baseline phase trials, participants moved without external forces (“null 

trials”). To induce errors in adaptation phase trials, we applied a clockwise velocity-

dependent force that pushed the hand in a constant direction perpendicular to the hand 

movement (8 Ns/m) (“force trials”). To measure the force output of participants during 

the baseline and adaptation phases, we applied a spring/damper force that restricted the 

hand movement to a straight trajectory toward the target (spring coefficient = 2.5 kN/m; 

damping coefficient = 25 Ns/m) (“channel trials”). These pseudo-randomly distributed 

channel trials constituted 20% of the baseline and adaptation phase trials. To measure 



 46

participants’ retained motor outputs, such force channel was used for the entirety of the 

retention phase. In the -GLN training schedule, the perturbation force during the 

adaptation phase trials was counter-clockwise, and the retention phase was simply 

replaced with a block of null trials with channel trials embedded.  

 

3.2.5 Training Schedules  
Five groups of participants performed strike movements in five sequential blocks 

(Figure 3.1B). All groups were exposed to the perturbation in a training schedule in block 

2. After an intervening washout block, all participants were re-trained in block 4. The 

training schedule for each subject group is listed in Table 3.1.  
 
 

Table 3.1 Training Schedules of subject groups 
 Block 1 2 3 4 5 
Group 1 N SS  N GL  N 
2 N GL  N SS  N 
3 N GL  N GL  N 
4 N SS  N SS  N 
5 N -GLN N SS  N 

 

There were three possible types of adaptation training schedules for each block. 

Schedule “SS” started with 10 null trials, followed by a 20 force trials that suddenly 

introduced a viscous perturbing force to induce errors, and then ended with 60 channel 

trials. Schedule “GL” started with 10 null trials, followed by a 50 force trials that 

gradually introduced the viscous force perturbation, and then ended with 60 channel 

trials. The numbers of force trials in the SS and GL schedules were determined in a 

preliminary experiment to match the extent of adaptation. In contrast to the force training 

schedules, the null force schedule (“N”) consisted of 120 trials; 80% of which were null 

trials and 20% channel trials. For Group 5, the first training was performed with the “-
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GLN” schedule where force perturbation of the opposite direction (counter-clockwise) was 

gradually introduced over 50 force trials, followed by 60 null trials.  

 

3.2.6 Performance Measurement 
Since full compensation of the force perturbation on a particular trial required a 

lateral force proportional to the speed profile on the same trial, we computed an 

adaptation index (AI) on each channel trial found by linear regression of the measured 

lateral force onto the ideal force required for full compensation of the maximum 

perturbation(Smith et al., 2006). This index was zero if these forces were uncorrelated 

and one if they were identical. The index was always relative to the full compensation to 

the maximum perturbation to allow interpretations based on a single, consistent reference 

point throughout the entire experimental session. In the modeling results, we simplified 

the simulation by assuming a scalar perturbation and a scalar output by the model in each 

trial. Therefore, the simulated AI was simply the ratio of the scalar output normalized by 

the amount of scalar perturbation. 

 

3.2.7 The time-invariant two-state model 
In collaboration with Smith and Kording, one of the authors (Shadmehr) recently 

proposed a state space model that suggests movement error engages multiple adaptive 

processes of different time scales (Smith et al., 2006; Kording et al., 2007). We used this 

model as a springboard to consider the problem of motor retention; however, our 

behavioral results were inconsistent with the predictions of this model.  

A basic version of the time-invariant two-state model has two adaptive units with 

two distinct internal states; one has a high trial-to-trial sensitivity to error ( y ) (high 

learning rate, fb ) and a poor trial-to-trial retention rate fa  of its state ( fz ) while the other 

has a low trial-to-trial sensitivity sb  to error and a high trial-to-trial retention rate sa of its 
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state ( sz ) (Eq.(3.1)). Therefore, the state of the fast process responds quickly to errors 

while the state of the slow process responds slowly to errors. The overall motor output of 

the learner for a given trial n, is the sum of these two states that responds to error 

differently (Eq. (3.2)). Importantly, since a  and b  are both constants, the learner 

described by this model is time-invariant. 
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It predicted that the gradual training schedule GL would result in the highest 

retention during the first channel phase following adaptation, and that after a sufficient 

number of the 120 wash-out trials (six times the number of SS phase trials and 2.4 times 

the number of GL trials), retention responses after retraining would be similar to those 

after the first trainings. That is, over-compensation to disturbances would be reduced at a 

rate that is faster than passive decay. 

 

 

3.2.8 Statistical Analysis 
Unless otherwise indicated, Student’s T-tests and Repeated Measure ANOVA 

were used in the statistical comparison of the data groups. When Mauchly’s test of 

sphericity failed, we applied the Greenhouse-Geisser correction in the ANOVA analyses 

for within-subjects comparisons as needed. All analyses were performed using Matlab or 

SPSS for Windows (R11.5, SPSS Inc.). 
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3.3 RESULTS 
 

3.3.1 Fixed task structure within block: First exposure 
to perturbation by gradual training induces better retention 
of adapted response 

The time-invariant two-state model has a slow learning unit and a fast learning 

unit; each responds to errors at a time-invariant rate to produce a summed adapted 

response. Since the slow process has a higher retention rate of its memory (state), a 

gradual training schedule (GL) (Figure 3.1B, Group 2, Block 2) would promote the 

adaptation of the slow state than a sudden training schedule (SS) (Figure 3.1B, Group 1 / 

Block 2). To assess the adaptation amount, we computed an Adaptation Index (AI, see 

Methods) for each 10-trial bins (Figure 3.2). Complete compensation equaled an AI value 

of one, while zero compensation equaled 0. Figure 3.2A depicts the predictions of the 

time-invariant two-state model using the parameter values given in the human subject 

study (af = 0.59, as = 0.992, bf = 0.21, bs = 0.02, (Smith et al., 2006)). The relative 

contributions from the two processes are plotted in Figure 3.2B. To show the passive 

decay of adaptation, feedback was given to the simulating learner as if it was making 

perfect adaptations ( ( ) 0ny ≡ , i.e. “channel trials”). Since errors were artificially 

prevented in channel trials, retention of adapted response during the channel phase 

largely depended on the retention rates of the two processes with the fast state quickly 

decayed to zero. Therefore, the end retention was contributed mainly by the slow process. 

Indeed, the gradual training schedule (GL) produced higher retention after training than 

the sudden training schedule (SS). 

To probe the difference between the effects of conventional sudden (SS) and 

gradual (GL) training on motor retention, we randomly assigned 16 participants into two 

corresponding groups (Group 1 and Group 2) in a force adaptation task. The task goal 
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was to make a quick punching movement going through a displayed target. During the 

adaptation phase, a velocity-dependent, clockwise force acted to redirect the movement 

laterally. Thus, participants must learn to compensate for the perturbing force in the 

opposite lateral direction to make their goal. After 50 gradual adaptation trials, Group 2 

achieved a compensation amount (AI = 0.53 ± 0.13 mean ± SD) similar to that of Group 

1 after 20 sudden adaptation trials (AI = 0.58 ± 0.09). The peak values were not 

significantly different between the two training groups (two-tail t-test, t(14) = 0.894, p = 

0.39), suggesting that similar percentages of the ideal force were produced by both 

groups (Figure 3.2D).  

After both groups had attained similar behavioral adaptation, they underwent 60 

channel trials in which their movements were restricted to a straight path toward the 

target by a stiff spring-damper force “channel.” In these trials, angular errors were kept 

very small (absolute error = 0.0087 ± 0.0075 rad, mean ± SD) when compared to those in 

the absence of the force channel. These trials allowed us to examine the timeline of decay 

of the participants’ motor output without the obfuscation of error-driven de-adaptation. 

Despite having the same amount of adaptation at the end of training, gradual training 

group showed markedly better retention ratio than the sudden training group in both their 

AI (Figure 3.2C) and raw motor outputs (Figure 3.2D). Both gradual and sudden training 

groups’ motor outputs declined initially. However, participants in the gradual training 

group stabilized in the second half the channel trial block (AI = 0.30) while the motor 

outputs of the sudden training group participants continued to decay (AI = 0.14) (Figure 

3.2C).  Repeated-measure ANOVA analysis showed a significant main effect from the 

training schedule (F(1,14) = 8.634, p < 0.05). We fitted a single exponential function to 

estimate the time constant for the decays. As predicted by the time-invariant two-state 

model, the sudden training group (1/τ = 0.44 ± 0.32 trial-1) declined significantly faster 

than the gradual training group (1/τ = 0.08 ± 0.10 trial-1) (two-tailed t-test, t(14) = 2.95, p 

< 0.05). In 60 channel trials, participants in the sudden training group lost 76% of their 
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adaptation, while participants in the gradual training group lost merely 42% by 

comparison. The data suggested that even though behaviorally participants in both groups 

showed identical adaptation after training, the specific training schedules that were 

followed had a profound effect in the mechanism through which the force compensations 

were produced. 
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Figure 3.2 Adaptation and retention profiles of the gradually 
and suddenly trained groups in naïve learners. A: Predictions of 
the time-invariant two-state model in the gradual training schedule 
GL (red) or the sudden training schedule SS (blue). B: Relative 
contributions from the slow (solid black) and the fast processes 
(dashed black) of the time-invariant two-state model in 10-trial 
bins. Sum of the contributions are plotted in blue (SS) and red (GL). 
C: Adaptation and retention response in bins of channel trials 
averaged across subjects after gradual or sudden trainings. 
Adaptation Index is the linear correlation regression coefficient 
between subjects’ own force and the ideal force to compensate for 
max perpendicular perturbations in channel trials. Grey shades 
indicate SEM. D: Mean perpendicular ideal force to compensate 
for the full perturbation (blue), and the actual force produced by 
the participants in the first 10 (green) and the last 10 trials (red) in 
the adaptation phase and the channel (retention) phase of block 2. 
Triangles indicate the time when the hand cursor passes the target. 
Force profiles were averaged across subjects. Grey shades indicate 
SEM. 
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3.3.2 Motor adaptation to task structure was not 
completely washed out after 120 trials 

One interesting observation in the field of motor learning is the phenomenon of 

savings. In a setting where a learner learns a task twice, his learning rate is higher the 

second time around(Medina et al., 2001; Kojima et al., 2004; Lebron et al., 2004). It is 

not clear, however, how prior training experience affect the temporal profile to retained 

motor response especially after an intervening washout. The data thus far have illustrated 

the effect of gradual training on immediate retention of adapted motor response to an 

external perturbation in block 2. If gradual training and sudden training engage different 

learning mechanisms preferentially, how does having prior training affect retention after 

another retraining? 

The time-invariant model failed to produce savings after an extended washout 

block in simulation. During the extended wash-out block (block 3), both processes de-

adapted from over-compensation errors. The fast process, in fact, produced negative 

compensation while the slow process slowly de-adapted. By the end of the washout 

block, both fast and slow states were very near their naïve state at 0. Therefore, the 

learner should respond to the retraining as if the first training never took place. We 

simulated the model’s behavior after the first training and after retraining with the same 

training schedule (SS). Despite having adapted to the perturbation in a previous block, the 

model did not retain the re-adaptation more (Figure 3.3A). These qualitative observations 

did not change when we used best-fit parameter values obtained from fitting the model to 

our data (af = 0.85, as=0.988, bf = 0.08, bs = 0.04, r2 = 0.89, AIC = -5.02, F(4, 

2356)=4737, p < 0.001).  

Contradicting the predictions of the time-invariant model, the behavioral data 

showed that prior training experience had an influence on subsequent adaptation and 

future retentions, even after an extended washout block. As in the simulation, all 

participants performed in an intervening wash-out block where the perturbation force was 
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removed for 120 trials (Block 3). Averaged AI showed that there was no significant 

compensatory force produced across all subjects (one-sample t-test, t(7)=1.69, p = 0.14) 

at the end of the washout (Figure 3.3B). In block 4, Group 1 and Group 2 swapped their 

training schedules; Group 1 underwent the gradual training schedule while Group 2 the 

sudden training schedule.  

Since behaviorally the adapted response was washed out for every group, we 

expected their retention profile after retraining to be identical to that after the first 

training. Specifically, if participants’ adapted response had truly been reset to their naïve 

states (i.e. identical to block 1), retention profiles of subjects who re-trained with the 

sudden schedule (SS) in block 4 should be similar to the retention profiles after the 

sudden training in the absence of any previous training (block 2). However, Group 2’s 

retained motor response after a sudden training in block 4 was significantly higher than 

Group 1’s retained motor response after an identical training in block 2 (Figure 3.3B, C, 

two-way ANOVA, main effect on group number, F(1, 14) = 5.97, p < 0.05).  

 Taken together, these results suggested that despite the fact that behavioral 

motor outputs had been washed out successfully, the 120 wash-out trials with no force 

did not return the adaptive mechanisms and states back to their naïve status. Therefore, 

additional prior training with the gradual training schedule increased motor retention 

beyond temporal immediacy.  
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Figure 3.3 Comparisons between naïve and experienced re-adaptation and retention 
profiles after washout A: Predictions of the time-invariant two-state model on the effect 
of a prior gradual training experience, after washout, on future motor retention. B: The 
behavioral effect of a prior gradual training experience on future retention (red) as 
compared to that of naïve learners (blue). Grey shades indicate SEM across subjects. C: 
Mean perpendicular ideal force to compensate for the full perturbation (blue), and the 
actual force produced in the first 10 (green) and the last 10 trials (red) in the adaptation 
phase and the channel (retention) phase of block 4. Triangles indicate the time when the 
hand cursor passes the target. Force profiles were averaged across subjects. Grey shades 
indicate SEM. D: Predictions of the time-invariant two-state model on the effect of a 
prior short, sudden training experience, after washout, on future motor retention. E: The 
behavioral effect of a prior short, sudden training experience on future retention of 
gradual retraining (blue-dash) as compared to that of naïve learners of gradual training 
(red). Grey shades indicate SEM across subjects. 
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3.3.3 Prior training influenced the retention of adapted 
motor response following subsequent trainings – evidence 
of structural learning 

If adaptation was strictly a cumulative process, we would expect Group 1 to retain 

much of its adapted motor response in the channel phase of block 4 after gradual training 

(GS). If the wash-out process during block 3 was not complete, this could only mean 

more retained response after a retraining with the gradual schedule (Figure 3.3D).  

Neither behavior, however, was observed. Surprisingly, while Group 1 

participants did show a marginally higher retention in block 4 when compared to the 

itself in block 2, the increase was not significant (two-way ANOVA, no block order main 

effect, F(1,14)=0.972, p=0.34). After retraining with the gradual schedule, the adapted 

response plummeted to the same low level as it did after a naïve sudden training two 

blocks prior (Figure 3.3E). Similarly, despite the intervening washout block, Group 2’s 

retained motor response profile after the sudden training was not significantly different 

from its retention profile after the gradual training two blocks prior. Two-way ANOVA 

showed that there were no main within-subjects effects found in block order 

(F(1,7)=0.376, p = 0.559) nor a block ×  movement bin interaction effect with 

Greenhouse-Geisser correction (F(2.7, 18.7)=1.196, p=0.335). Thus, it appeared that the 

gradualness or suddenness of the first exposure to the perturbation set the retention 

behaviors when the participants were re-exposed to the perturbation. In other words, prior 

training influenced how participants retain a motor skill after retraining and this influence 

was dependent on the type of prior experience.  

We tested this hypothesis by looking at retention profiles of participants who had 

identical retraining schedules but different first training schedules before the washout. 

Since we had two types of retraining schedules (GS and SS), we performed two additional 
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experiments to make the comparisons. In the first comparison, we recruited 8 participants 

(Group 3) who first trained with a gradual training schedule (GS) in block 2 (different 

from Group 1) and then again trained with a gradual training schedule (GS) in block 4 

(same as Group 1). We found that participants who were exposed to the perturbation 

gradually (Group 3) retained significantly more adapted response than those who were 

exposed to the perturbation suddenly (Group 1) (Figure 3.4B). Two-way repeated-

measure ANOVA with Greenhouse-Geisser correction showed that there was a 

significant interaction effect between the prior training schedule and movement bin 

(F(2.7, 38.2) = 3.98, p < 0.05) and a nearly significant main effect of prior training 

schedule (F(1, 14) = 4.56, p = 0.051). We fitted a single exponential to the adaptation 

decay. Group 1’s motor response decayed significantly faster (1/τ = 0.028 ± 0.007 trial-1) 

than Group 3 (1/τ = 0.007 ± 0.003 trial-1) (two-sample t-test, t(14) = 2.68, p < 0.05). If 

Group 3’s higher retention was a result of savings, then we should see increased learning 

rate during the training phases in block 2 and 4. Indeed for Group 3, adaptation was faster 

in block 4 when compared to block 2 (two-way repeated measure ANOVA, block 

number main effect, F(1,13) = 7.67, p < 0.05). This observation supported that the wash-

out block did not return the underlying adapted response back to its naïve state. 

In the second comparison, we recruited a fourth group and focused on the effect 

of prior training schedules on the retention profiles after a second, sudden exposure (SS) 

to the same perturbation. Group 4 (n=11) first trained with SS while Group 2 first trained 

with GL in block 2; however, both retrained with SS in block 4. Again, we found that 

Group 2’s retention in block 4 was significantly better than that of Group 4 (repeated 

measure 2-way ANOVA, F(1,17)=5.56, p<0.05), which suggested that retention after 

retraining was affected by the trainees’ first exposure to the perturbation and the benefits 

of this first gradual training (GS) lingered beyond the washout block (Figure 3.4C). Since 

both Group 1 and Group 4 first trained with the SS schedule, their retention file after the 

first training were identical (two-way repeated measure ANOVA, F(1, 17)=0.131, 
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p=0.72) (Figure 3.4E). Since we observed that the gradual retraining did not increase 

retention in Group 1, we expected the same from Group 4 who repeated SS in retraining. 

Indeed, Group 4’s retention profile in block 4 were not significantly different from that of 

Group 1 after the first training (block 2) (two-way repeated measure ANOVA, 

F(1,17)=0.04, p=0.84) nor were them significantly different from that of Group 1 after 

retraining (F(1,17)=0.08, p=0.36) (Figure 3.4D). Also as expected, participants who 

repeated GS in retraining (Group 3) were significantly better in retaining adaptation than 

Group 4. Two-way ANOVA showed that there was a main between-subjects effect 

(F(1,17)=19.20, p<0.001). Therefore, in addition to the experience of a previous training, 

the type of prior training also influences motor retention as well. 
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Figure 3.4 The effects of the type of prior training experience on re-adaptations and 
retentions after washout. Grey shades indicate SEM across subjects. A: Predictions of the 
time-invariant two-state model on the effect of a prior short, sudden training (blue) or a 
gradual training (yellow), after washout, on future motor retention of gradual retraining. 
B: Behavioral effect of a prior short, sudden training (blue) or a gradual training (yellow), 
after washout, on future motor retention of gradual retraining. C: Behavioral effect of a 
prior gradual (red), short-sudden training (cyan) with the clockwise perturbation, or a 
gradual training with the counter-clockwise force perturbation (magenta), after washout, 
on future motor retention of short, sudden retraining. D: Behavioral effect of gradual 
retraining on retention when subjects were previously exposed to the perturbation with a 
short-sudden training. E: The behavioral effect of a prior gradual training experience in 
the counter-clockwise force field on future retention of an opposite force field (magenta) 
when compared to naïve retention profiles for the clockwise force perturbation (blue and 
cyan). Grey shades indicate SEM across subjects. 
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3.3.4 The learner is not time-invariant: prior training 
experience alters the structure of the learner 

It is possible that the assumption made by the constant-rate model that the learner 

is time-invariant was incorrect. For example, if the learner attributed the gradualness or 

suddenness of the first perturbation introduction as a fundamental characteristic of the 

novel environment he or she was encountering, the learner may change the way he or she 

respond to future exposures to the perturbation in the same environment. Namely, the 

learner not only adapted to the magnitude of the perturbation (i.e. estimation of the state 

of the perturbation by changing the learner’s internal state), but also adapted to the 

temporal structure of the perturbation by changing his or her own learning structure (i.e. 

estimation of the trial-to-trial coefficients, b and a) to match the gradualness or 

suddenness of the exposure. If the learner altered his or her structure as an adaptive 

response to the temporal structure of the first training structure, we should expect that a 

gradual training schedule, irrespective to the direction of its content (e.g. clockwise or 

counter-clockwise perturbation) would induce higher subsequent retention of retraining 

content.  

It was also possible that making movement in a block of 60 channel trials 

constituted an experimental context which gave rise to the observation that the retention 

performances after retraining seemed to correlate with prior retention profiles. If such 

was the case, replacing the first channel phase (block 2) with null trials should remove 

the context. The additional null trials would only serve to extend the washout period by 

50% which again, can only help to abolish the effect of any prior training history 

experienced in block 2, and thus lower retention. 

To verify these predictions, we recruited 10 participants (Group 5) who 

underwent the same training schedule as Group 2 with two alterations: the first training 

was now in the counter-clockwise force field (block 2) and the 60 channels at the end of 

block 2 were replaced with null trials (schedule –GSN). The null hypothesis here was, if 
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the learning structure was time-invariant or if participants used the first channel block as 

a context, final retention should be worse than, or at best, equal to the lower retention 

amount as seen (i.e. Group 1 block 2). We found that this was not true as retention in 

Group 5 after retraining was significantly better than naïve retention (Figure 3.4E). 

Repeated measure ANOVA showed a significant effect between Group 1 and Group 5 

(F(1,16)=6.317, p<0.05). Group 5 retention after retraining was not significantly different 

from Group 2 at all after (F(1,16)=0.222, p=0.644) (Figure 3.4C). Similarly, there was a 

significant difference between Group 4 and Group 5 retention after retraining 

(F(1,19)=5.34, p<0.05). These results directly contradicted with the idea that the learner 

structure was time-invariant. In fact, the structure must have changed to adapt to 

perturbations of different time scales. Despite a short, sudden retraining, the first gradual 

exposure to the perturbation was a key factor that led to the increase in retention observed 

in Group 2 when compared to naïve participants. 

To summarize, retention behaviors after retraining were complex. Table 3.2 

shows the results of the repeated-measure ANOVA analysis. The type of prior training 

schedule, and in turn, the temporal structure of the training biased the rate of retention 

decay after retraining. Consequently, the type of retraining schedule seemed to have little 

effect in dictating the rate of retention decay. 
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Table 3.2 Statistical comparison of the retained motor outputs after training / retraining 

  Block 2 Retention Block 4 Retention  
 Gr 1 2 3 4 1 2 3 4 5  

1  * * n.s. ~n.s. * ** n.s. * SS  
2   n.s. ** n.s. n.s. ~n.s. * n.s. GL  
3    ** n.s. n.s. n.s. * n.s. GL  B

lo
ck

 2
 

R
et

en
tio

4     n.s. ** ** n.s. ** SS  
1      n.s. ~n.s.1 n.s. n.s. GL  
2       ~n.s. * n.s. SS  
3        ** * GL  
4         * SS  B

lo
ck

 4
 

R
et

en
tio

n 

5          SS  
  SS  GL  GL  SS  GL  SS  GL  SS  SS  Sch 

 
 Repeated-measure ANOVA Between-Subjects Main Effect 
 Repeated-measure ANOVA Within-Subjects Main Effect 
** p < 0.01 
* p<0.05 
~n.s. 0.05 < p < 0.10 
n.s. p>0.10 
1 Significant mvt-bin x training schedule interaction effect 

 

 

3.4 DISCUSSION  
In the current study, we used a novel paradigm that fixed the structure of a force 

adaptation task within a movement training block, but varied the structure across two 

training blocks separated by a washout block. We looked at the passive retention of the 

adaptation after training.  In the first training block, the task structure could be considered 

fixed because naïve participants had not experienced any task-related perturbation. We 

observed the benefit of gradual training on the retention of adapted motor response in the 

first training block. After 20 to 50 training trials, participants were able to compensate for 

up to 65% of the perturbation force. We probed participants’ retention profile of motor 

outputs without allowing them to de-adapt by artificially eliminating their movement 
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errors. Participants who first underwent 50 trials of gradual training sustained their 

adapted response more than participants who trained with 20 trials of sudden training. We 

also verified that when the task structure was fixed, the time-invariant two-state model 

was able to account for the retention benefit of the gradual training observed in naïve 

learners by assuming simultaneous adaptation of a slow and a fast learning state. 

After an extended washout block, more complex retention behaviors were 

observed. Prior adaptation experience influenced the amount of retention after re-

adaptation regardless of the exposure rate of the retraining. Despite that behavioral 

adaptation had been cleared by the end of the washout block, participants showed 

increased retention response after retraining if the first training was gradual; participants 

showed lower retention after retraining if the first training was sudden and short. Clearly, 

the washout block did not return the participants to their naïve states prior to adaptation, 

despite the fact that their motor output was similar to their baseline output prior to any 

adaptation. Lastly, we demonstrated that gradualness of the first training alone was 

sufficient to promote retention of future adaptations, even if the retraining was in a 

dynamical environment different from the first. This was the first evidence that structural 

learning of the task took place, and estimation of task parameter could be washed out 

independent of estimation of the task structure. 

The result that the mere gradualness of the first exposure to the perturbation was 

sufficient to promote future adaptation retention was in contrast to the conventional view 

of the A-B paradigm which had shown anterograde interference when training in the 

opposite force field, “A,” immediately prior (e.g. counter-clockwise) hinders subsequent 

adaptation to the normal force field, “B” (e.g. clockwise)(Brashers-Krug et al., 1996). 

There was a protocol difference. In the present paradigm, we separated the two training 

blocks with a null block, and instead of the rate of the adaptation process, we were 

interested in the retention response after adaptation. The conventional view of the A-B 

paradigm which assumes time-invariance in the learner structure, however, would predict 
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that the final retention should be worse than, or at best, equal to naïve retention amount 

because of the anterograde interference. The presence of the washout block, therefore, 

might be a key signifying the termination of a force adaptation experience (Krakauer et 

al., 2005). 

The time-invariant two-state model was unable to account for these observations 

because the behavioral result would mean that the state of the slow process must be 

inhibited after and only after a short sudden training had previously taken place. The fact 

that gradualness of the training alone was sufficient to promote retention suggested that 

there is a third, top-down process that takes precedence of the two-state model. This top-

down process inhibits the slow process after a sudden training. For example, an early and 

abrupt exposure to large perturbations may draw the participants’ attention to the fact that 

their movement errors were more likely to be caused by an external source rather than an 

intrinsic variation in motor outputs. Attention to the perturbation source, and therefore, 

context may influence how well motor memories are retained (Kording et al., 2007; 

Michel et al., 2007). 

It is interesting to compare our results to several other studies that also gradually 

introduced perturbations. Indeed, recent studies of visuomotor adaptation tasks have 

shown that gradual exposure to kinematics errors led to greater after-effects when 

compared to sudden exposure of the perturbation (Kagerer et al., 1997; Michel et al., 

2007). In these studies, however, the error signal is the misalignment between 

proprioception and vision of the moving limb. Therefore, it was not clear adaptation 

occurred at the sensory or the motor plasticity level. Here we eliminated the discrepancy 

between proprioception and vision. Our results indicated that differential response errors 

of different time-scale occur at least at the motor plasticity level. 

Intuitively, if the environment (perturbation) consistently results in big movement 

errors, the variance of the environment may be too high for the learner to adapt. The 

learning rate of the slow process, however, minutely increased with the error size. This 
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agrees with the study of Smith et al. where the learning rate was shown to be inversely 

proportional with the trial-to-trial correlation of the perturbation(Smith, 2004). If the 

environment is not consistent, the best strategy is not to adapt to its minute-to-minute 

changes using the fast process; instead the learner slowly changes his adapted response 

using the slower process. 

In rehabilitation, tool use is common. For example, a stroke patient may practice 

making movements with a load to reclaim use of his arm. One of the problems facing 

rehabilitation therapy using assistive tools is that patients may show adaptation only with 

the rehabilitation aid (Krakauer, 2006). That is, patients made movement adjustment in 

association with the tool rather than their body. One interpretation of the slow and the fast 

process in the two-state model is that the slow process corresponds to changes in the 

body while the fast process responds to fast-varying changes in the environment or 

context. If this interpretation is true, then we should be able design rehabilitation 

programs that “fool” the patients to assign the error source to their own and therefore 

retain their regained motor skills better. 

 While the time-invariant two-state model allowed us to consider many short-term 

motor learning phenomena, the present study forces us to consider the global effect of 

prior experience and context when learning is concerned. Specifically, the initial delivery 

of training to naïve learners has a significant effect on how the content of the training is 

remembered in immediate and long-term future. The results of this study, therefore, 

exposed an imminent need to update our current thinking of motor learning to include 

models of structural learning such as algorithms employed by the Bayesian network. 
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CHAPTER 4  
SELF-DIRECTED STRATEGY IN 
MOTOR LEARNING: ACTIVE 
LEARNING 

4.1 INTRODUCTION 
A game like tennis involves a number of specific skills: the serve, the forehand, 

the backhand, etc.  A successful player needs to develop a high proficiency in each of 

these skills. While we may have a coach that closely supervises our training and tells us 

on which stroke to practice, most of our training time is spent alone:  we must 

autonomously choose the skill component to practice.  What factors influence our 

training strategy?  

In the field of machine learning, this problem is termed “active learning”.  

Available to the learner is a list of training examples; each example focuses on a different 

component of the task. There is no preset curriculum, nor is there an instructor; therefore 

the learner picks out its own curriculum, one practice example at a time. Examples can be 

repeated if necessary, but the ultimate goal is to improve in the task overall with a 

minimum number of examples. The learner may already know some elements of the task. 

Which example, then, is the best to pick next?  

Mathematically, we can summarize the active learning problem of a motor task as 

follows. A learner has to learn a task represented by a desired, but unknown 

function ( )y x . The task is consisted of P different skill components or behaviors ( 1... Px x ). 

For each component, the learner has a corresponding parameter ( 1... Pw w ) representing 

what the learner has learned about the task. In other words, the parameters constitute the 

learner’s model of the task. On trial n, the learner selects a component ( )nx and observes 

the result of its output ( )ˆ ny  and the correct answer ( )ny .  Using the learning gain ( )nK , the 
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learner updates the corresponding parameter by the difference between actual and desired 

output:   
 ( )( 1) ( ) ( ) ( ) ( )ˆn n n n n

x xw w K y y+ = + −  (4.1) 

 
  ( )( 1) ( ) ( ) ( ) ( )ˆn n n n n

x xw w K y y+ = + −     (1) 

In coached (passive) learning and most motor learning experiments, the 

environment (e.g. the teacher) instructs the learner which component ( )nx to train next.  In 

active learning, the learner itself needs to pick ( )nx  with the goal to maximizing overall 

performance by minimizing the expected squared error of the output. If we assume that 

the learner is on average unbiased, then the expected squared error across all components 

is equal to the sum of the motor variability 2σ  and the average uncertainty about the 

desired output.  
 ( ) ( ) 2 ( ) 2 ( ) 2ˆ ˆ( ( ) ( ) ) var( ( ) )n n n n

xx x x
E y x y x E y x Eσ σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = + = Σ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (4.2) 

 
 ( ) ( ) 2 ( ) 2 ( ) 2ˆ ˆ( ( ) ( ) ) var( ( ) )n n n n

xx x x
E y x y x E y x Eσ σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = + = Σ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (2) 

( )n
xΣ represents the uncertainty of  the parameters ( )n

xw  prior to movement n. A 

policy that reduces the overall uncertainty of the output on trial n+1 optimally is to 

choose an action ( 1)*nx +  where one is most uncertain from the list of all possible 

components (see section 4.1.1 for derivation and assumptions, (Cohn et al., 1996): 
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In this derivation we have assumed that the motor noise 2σ  is constant across all 

components, and that the amount of noise cannot be changed by learning. By practicing 

in a part of the task space where the estimated output has the highest uncertainty, one can 

minimize the expected squared error.   

We can ask the question whether people’s choice can be described using an 

uncertainty-based model; and if so, how the learner would estimate its own model 

uncertainty for the task.  For example, an algorithm that estimates the model uncertainty 

during learning is the Kalman filter. The Kalman filter updates the model using Eq. (4.1)

with a learning rate ( )nK  that optimally reduces the model uncertainty. Under this 

learning rule, the uncertainty of the model parameters will always be reduced for the 

component of the task that was practiced. Therefore, the estimated output variance (Eq. 

(4.2)) would be lowered after this particular ( )nx  was practiced. Together with Eq. (4.3), 

this leads to the prediction that, for optimal performance, the learner should avoid 

practicing the same components two trials in a row (i.e. ( 1)* ( )n nx x+ ≠ ).   

The standard Kalman filter reduces the model uncertainty with every learning 

instance independent of the error that was encountered. This would lead to the 

counterintuitive prediction that errors during active learning will not affect action 

selection.  However, there are versions of the Kalman filter that would increase the 

parameter uncertainty when a big error is observed. One example is a system where the 

output noise has a distribution that is not Gaussian but drawn from a mixture of 

Gaussians of identically zero means and different variances. In such case, an observation 

of a big error would lead to a reduced rate of learning from the large error (Kording and 

Wolpert, 2004), and an increase in model uncertainty. However, any versions of such 

model still would predict that a learner should decrease their model uncertainty when a 

zero error is observed; the general prediction that the learner should not repeat an action 

also holds true in this case. 
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To summarize, the uncertainty-based selection rule (Eq. (4.3)) predicts that an 

optimal learner should choose the component with the highest uncertainty to practice and 

therefore should not immediately repeat the same action. Here we have taken the first 

steps in quantifying the factors that affect human choices in active learning of a motor 

skill.  Can their choices be understood in the framework of uncertainty estimation? Do 

motor errors affect our choice of training?  

 

4.1.1 The best next choice 
Let us assume a task consists of P different skill components or behaviors 

( 1[ ... ]Px x ), each of which is based on a set of corresponding parameters 1[ ... ]Pw w=w . 

After an action on trial n, of a particular component, x(n), the system learns from the 

difference between desired ( )ny and produced output ( )ˆ ny . Thus, on each trial: 
 ( ) ( ) ( )ˆ n n n

xy w ε= +  (4.4) 

 ( )( 1) ( ) ( ) ( ) ( )ˆn n n n n
x xw w K y y+ = + −  (4.5) 

 

 
 ( ) ( ) ( )ˆ n n n

xy w ε= +        (4) 

 ( )( 1) ( ) ( ) ( ) ( )ˆn n n n n
x xw w K y y+ = + −      (5) 

The best next skill component ( 1)*nx + to train on trial n+1 is the component that, 

after learning, will reduce the expected squared error (over all components x) of the 

system on trial n+1.     

 ( )( ) ( )21 1( 1) 2ˆ n nn
x x xx x

E y y E σ+ ++⎡ ⎤ ⎡ ⎤− = Σ +⎣ ⎦⎢ ⎥⎣ ⎦
 (4.6) 

 ( )( )2( 1)* ( 1) ( 1) ( 1)ˆarg min |n n n n

x
x E y y x+ + + +⎡ ⎤= −⎢ ⎥⎣ ⎦

 (4.7) 
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  ( )( ) ( )21 1( 1) 2ˆ n nn
x x xx x

E y y E σ+ ++⎡ ⎤ ⎡ ⎤− = Σ +⎣ ⎦⎢ ⎥⎣ ⎦
    (6) 

  ( )( )2( 1)* ( 1) ( 1) ( 1)ˆarg min |n n n n

x
x E y y x+ + + +⎡ ⎤= −⎢ ⎥⎣ ⎦

   (7) 

If we keep track of the variance of ( )n
xw  in form of ( )( ) ( )varn n

x xwΣ =  and assume 

independence of the variance of producing or perceiving the output of the 

system ( )( )2 ( )ˆvar( | )nn ny wσ = , our new uncertainty of the model after perceiving behavior 
( )nx  is 

 ( )2( 1) ( ) ( ) ( )2 ( )21n n n n n
x xK K σ+Σ = − Σ +  (4.8) 

 

 ( )2( 1) ( ) ( ) ( )2 ( )21n n n n n
x xK K σ+Σ = − Σ +      (8) 

It should be noted that the uncertainty of the model parameter associated with the 

skill component x is independent of errors, but only the number of times the component x 

has been trained. The expected squared error over all components for the next trial is 
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For a constant learning rate 0 1K< < , it follows directly from Eq. (4.8) that the 

expected squared error will be reduced most, if we pick a behavior ( )*nx  , for which the 

corresponding skill component x and the associated parameter uncertainty ( )n
xΣ is highest. 

We also considered the result for non-constant learning rate. For a Kalman filter, 

the learning rate depends on the parameter uncertainty and measurement uncertainty 

itself. 
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With such flexible learning rate the updated parameter uncertainty becomes 
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Again, it can be easily seen that the variance is minimized when the learner picks 

the behavior for which the parameter uncertainty is maximal. It should be noted that we 

assume that there is negligible generalization between behaviors, and a homogenous 

variance for the output for each behavior.  

 

4.2 METHODS 

4.2.1 The hitting game 
Participants held the handle of a robotic manipulandum whose movement was 

displayed as a small cursor (Hwang et al.). Participants were instructed to make rapid 

center-out movements to punch through one of four targets displayed.  Subjects’ 

proficiency was rewarded with points in randomly distributed test trials. The closer the 

hand cursor came to passing through the target, the greater the number of points. 

There were four possible targets, arranged on an invisible circle of a 10-cm 

radius. The targets were positioned at -15o, 75o, 165o, and 255o.  Hand position was 

displayed at all times as a 0.5x0.5 cm white square cursor. At the beginning of each trial, 

the robot brought the hand to the center mark – a stationary 0.5x0.5 cm white square. 

Targets were then displayed as red squares. After a short, variable delay, the targets 
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turned white and the center mark vanished – this was the “go” signal for the center-out 

strike. As the strike movement crossed the invisible 10-cm radius circle, a yellow dot 

appeared at the crossing point to emphasize the distance between the strike and the goal 

as a measure of reach error.  If the movement duration was too long (> 0.23 s), a blue dot 

appeared instead.  Beyond the invisible circle an elastic force field acted as a “pillow” to 

absorb the strike. On some trials the robot perturbed the movement with a velocity-

dependent force field (see below), which deflected the movement in clockwise or counter 

clockwise direction. 

Because there were multiple targets present during active training trials, we 

needed to ascertain toward which target the subject was aiming.  Therefore, after each 

strike when the hand hit the pillow, subjects brought their hand back to the center of their 

intended target.  At this point the center mark reappeared and the robot brought the hand 

back to the center.   

4.2.2 Active, passive, and test training 
A trial was either a test trial or a training trial (Figure 4.1A). At the beginning of 

the experiment participants were instructed to pick their sequence of directions to train so 

that they would maximize their performance in the test trials. To further motivate 

participants to maximize their performance on test trials, we paid participants a monetary 

reward dependent on the amounts of points earned in the test trials.  It was made very 

clear that the score only reflected their performance in the test trials, but not their 

performance on the training trials.  

Test trials were randomly interspersed between the training trials (1 out of 4) and 

clearly announced with the word “test” on the screen immediately before the trial started. 

The computer pseudo-randomly picked the target among the 4 available to test the 

participants’ performance. On these trials (and only these trials), points were awarded 

based on performance. Performance was measured as the angular distance to the target at 
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the point where the cursor crossed an invisible circle of 10 cm. Four critical accuracy 

levels were established: 5.16°, 4.49°, 3.61°, and 2.48°. For each additional accuracy level 

achieved, the movement was award one additional point in that trial for up to a maximum 

of 4 points. 

Three out of four trials were training trials.  The Experiments were divided into 

blocks of 60 trials (experiment 1) or 160 trials (experiment 2); each block was either 

active training or passive training.  In active training trials, all four targets were 

available and the subject chose their target direction to aim.  In passive training trials, 

the computer pseudo-randomly picked the target among the four available.  The schedule 

of active and passive training trials is shown in Figure 4.1A (experiment 1) and Figure 

4.1B (experiment2).  

4.2.3 Experiment 1    
Our objective was to ask whether errors that subjects experienced during active 

learning affected the subsequent choices that they made.  To that aim, we considered two 

kinds of errors:  errors that were due to a consistent perturbation, and errors that were due 

to an inconsistent perturbation.  To produce errors in the shooting task, the robot 

produced a velocity dependent curl force field (Thoroughman and Shadmehr, 2000) 

(viscosity of 10 Ns/m) that perturbed the hand clockwise with respect to direction of the 

target, counterclockwise, or not at all.  

The perturbations of each block of trials followed one of two patterns (Figure 

4.1C). In the Constant-in-Null pattern, movements toward 3 of the 4 targets were 

unperturbed (Null, or “N”), while movements toward one target were perturbed with a 

consistent curl force field (Constant, or “C”). The C target was assigned pseudo-

randomly for each block.  The C target had a clockwise field for the first 30 trials of the 

block, and then the field switched to a counter clockwise field.  A good active learning 

policy would have been to find the C target and continue to train mostly on that target. 
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Figure 4.1 A. Experimental design. During active training sets, subjects chose a 
target to aim. During passive training sets, the computer chose a target for subjects. 
Participants were tested for their performance at a random direction chosen by the 
computer at random trials. B. Example experiment 1 protocol for one subject. Each 
subject performed 16 sets of movements with pseudo-randomly ordered conditions. C. 
Example experiment 2 protocol for one subject. D. Force-target association patterns. 
Unknown to subjects, each of the four targets was associated with a type of perturbation 
during a block.  
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In the Constant-in-Random pattern, again one target was picked to have a 

constant perturbation (C) that switched after 30 trials. In contrast to a Constant-in-Null 

block, however, a curl field was also presented during movements to the 3 remaining 

targets. These curl fields switched randomly between clockwise or counterclockwise 

fields (Random, or “R”).  In these movements, the field had a random viscosity with a 

uniform distribution from -10 to +10 Ns/m.  

 

4.2.4 Experiment 2 -- Perturbations of variable 
variances 

 To further explore the idea that the variance of the perturbations – i.e., the 

reliability of errors – influenced choices during active learning, we conducted a second 

experiment where the mean of the perturbations associated to the various targets were 

identical, but their variance differed (Figure 4.1B).  Once again, four targets were 

available.  At the start of each block (now 160 trials long), each target was assigned a curl 

field with a viscosity that had a mean of 10 Ns/m, but a variance that was either low (R1 

target, viscosity uniformly drawn from 6 to 14 Ns/m), medium (R2 target, viscosity 

uniformly drawn from 2 to 18 Ns/m), high (R3 target, viscosity uniformly drawn from -2 

to 22 Ns/m), and very high (R4 target, viscosity uniformly drawn from -6 to 26 Ns/m).  

Similar to Experiment 1, participants earned points only during the sparsely distributed 

test trials in which the computer randomly tested participants’ performance in one of the 

four targets. During these test trials, the viscosity was always 10 Ns/m (C targets).   

 

4.2.5 Softmax Regression Procedures 
We modeled the probability of choosing a target using a generalized linear model. 

We used a multinomial extension of logistic regression –softmax regression. The 

probability, p, of selecting a target of direction j (x(n)=j,  j=1…P) depends on the vector 
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( )nv , which in turn was a linear function of three factors: the bias (Өbias, 3 free 

parameters) modeled the preference of participants for particular targets, Өrepeat modeled 

the preference of each subject to repeat the last movement direction ( 1)n−x , and finally 

Өerror modeled the increase in probability to repeat the last movement direction, as the 

size of the last error increased.  
 ( ) ( 1) ( 1) ( 1)n n n n

bias repeat error yθ θ− − −= + +v θ x x  (4.12) 
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We fitted the parameters Өbias, Өrepeat, and Өerror by maximizing the log-likelihood 

of the data given our model using numerical methods (Matlab fminsearch).    

 

4.2.6 Participants 
Sixteen subjects participated in experiment 1 and another sixteen in experiment 2.  

For experiment 1, the experiment was counter-balanced across subjects for the order of 

the perturbations (Constant-in-Null and Constant-in-Random) and training conditions 

(active and passive).  Subjects were healthy, right-handed, and naïve to the purpose of the 
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experiment.  Procedures and protocols were approved by the Johns Hopkins Medicine 

Institutional Review Board and participants gave their written consent prior to the 

experiments.  

 

4.3 RESULTS 
We used a hitting-game to examine how the statistical properties of the training 

experience influenced the subjects’ strategy in active learning (Figure 4.1A-D).  The goal 

of the game was to become as proficient as possible at hitting a small target in one of four 

directions with a rapid center-out punch using a robotic manipulandum (Hwang et al., 

2003)(Figure 4.1A).  Participants were tested on randomly interspersed test trial, in which 

one direction was chosen at random for them. Their score and the financial incentive 

depended solely on the performance on these test trials. In between test trials, participants 

could train for directions of their choice (active learning) or a direction (passive learning) 

chosen randomly for them (Figure 4.1B). To induce errors, we applied a velocity-

dependent force that pushed the hand in a constant direction perpendicular to the hand 

movement (Thoroughman and Shadmehr). Movements toward the other targets could 

either be unperturbed (Constant-in-Null perturbation blocks, Figure 4.1D) or be perturbed 

by a random force perpendicular to the movement (Constant-in-Random blocks).  
 

4.3.1 Errors and last movement influence action 
selection during active learning 

If a human active learner estimates the uncertainty about the desired output and 

then choose to train on a component on which they are most unsure (Eq.(4.3)), they 

should have a tendency not to practice in the same direction as the last trial. Contrary to 

this prediction of uncertainty-based models, our participants repeated the movement 

direction on the last trial with a probability of 35% (±12%) of the trials (Figure 4.2A), 



 78

significantly higher than just choosing a direction at random (two-tail T-test, t(15)=3.46, 

p<0.01). When the participants decided to switch, they picked each of the other directions 

with equal probability. 

The probability of repeating a direction was also strongly modulated by the 

amount of error that the subject experienced in the previous trial. In figure 2B, we plotted 

the probability of repeating the last direction as a function of the absolute size of the error 

on the last trial. We found that probability of repeating a direction was an increasing 

function of the error size (one-factor ANOVA, F(9, 159)=5.51, p<<0.001).  Therefore, 

the larger the error in trial n, the more likely that the same direction would be repeated in 

trial n+1. This was the case for both blocks in which movement to the remaining targets 

were unperturbed (Constant-in-Null pattern) or perturbed by a random force field 

(Constant-in-Random pattern). 
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Figure 4.2 A. Probability of switching training directions from trial n to trial n+1. 
The abscissa indicates the direction and the magnitude of the switch; 0 target switch 
means that the same target in trial n was repeated in trial n+1. White bars indicate the 
average probabilities of each switch options. Error bars indicate S.E.M. across 
participants. B. Probability of repeating a target as a function of the size of the recently 
experienced error, separated by the type of force-target patterns. Dashed line is the 
average fit using the softmax regression model. Error bars indicate S.E.M. across 
participants. 

When there were little or no errors in a trial, the probability of repeating the target 

approached 25%, the rate of random selection. Under uncertainty-based models, the 

observation of a zero error should have decreased the uncertainty about the corresponding 
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task component.  This would have then lowered the learner’s probability of selecting this 

direction again below the probabilities of the other directions. While our data showed that 

error was a robust factor in encouraging repetition of a previously selected direction, a 

trial with a small error did not reduce the probability of the re-selection of the same 

movement direction below chance.  Participants, therefore, clearly violated a fundamental 

prediction of active learning models based on model uncertainty.  

To quantify these observations we estimated the contribution of error and the 

tendency to repeat a direction even in the absence of an error using softmax regression (a 

multinomial equivalent of logistic regression, see methods). The regression included a 

term to capture biases towards specific targets, a constant term for repeating the direction 

(Өrepeat) independent of error size, and a term that dependent on the absolute size of the 

last error (Өerror). From the estimated parameters, we were able to reproduce the sequence 

and trends of participants’ choices (dotted line, Figure 4.2B). While we did not find any 

significant bias toward any of the four targets (one-factor ANOVA, F(3, 60) = 1.04, 

p=0.38), nearly all participants showed a positive Өerror, indicating that they were more 

likely to repeat an action when a large error was encountered (two-tailed t-test, 

t(1,15)=3.6, p<0.01). Once we accounted for the size of the error, Өrepeat was not 

significantly different from zero, (t(1,15)=1.0, p=0.32).  

 

4.3.2 Relationship between learning strategy and 
performance 

How did the participants’ active learning strategies affect their performance? We 

looked at the correlation between strategy and performance on test trials after active 

learning and passive training. Since performance was determined largely by the overall 

proficiency of the participants, we subtracted the average errors during test trials of active 

learning blocks from the average errors of passive learning blocks for each participant. 
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The difference was then correlated with individual parameter estimates (Өrepeat and Өerror) 

from the softmax regression. A positive correlation meant that adapting these strategies 

hurt the participants’ performance while a negative correlation means they benefited their 

proficiency. 

 

 

 

Figure 4.3 Scatter plots of the values of model parameters (abscissa) against the 
difference of the sizes of test trial errors between active training blocks and passive 
training blocks (ordinate). The straight lines are the linear regression fits. Negative slopes 
indicate a positive relationship between participants’ sensitivities to a particular 
parameter in his/her active training strategy and test performance when compared to 
passive training. 

There was a strong positive correlation between Өrepeat and subsequent test 

performance (Figure 4.3). The more likely participants repeated a direction (after the 

influence of the error size has been accounted for), the worse was their test trial 

performance (one-tailed Spearman’s correlation, r=0.60, p<0.01). This means that the 

violation of the optimal active learning strategy indeed hurt the performance of the 

participants in the active compared to the passive learning condition. We also saw that 

error sensitivity had a positive effect on active test performance (one-tail Spearman’s 

correlation, r=0.48, p<0.05). Participants who sought to train in directions where their 
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errors were big performed better in subsequent testing (Figure 4.3). Importantly, two 

participants that displayed error avoidance (negative values for Өerror) showed poorer 

performance relative to their own performance after passive learning.  
 

4.3.3 Variance of the error signal 
One reason for participants to re-select the last direction even when their 

movement was perfect may be that they were trying to estimate the consistency of the 

observation. For example, if a participant found that for one target the perturbation 

changed randomly from trial-to-trial, a good active learning strategy would be to ignore 

this direction because training here could not lead to further improvement.  Did the 

variance of the perturbations affect the choices? 

To test this idea, we introduced a condition – Constant-in-Random perturbation 

pattern –where one direction was perturbed with a constant force field (“C” target), while 

the other three were perturbed with a random force field (“R” targets). To assess the 

influence of consistency, we attempted to match the absolute sizes of the errors of the 

movements toward all the directions. Since participants would adapt to the constant force 

field, we introduced a stronger force field to the constant target than to the random ones 

and flipped the perturbation direction after 30 trials (Figure 4.4A). As a result the errors 

for the constant target were large immediately after the onset of the block and after the 

switch, but lower than for the random targets in the end of each phase.  

To account for these remaining differences in error, we selected trials that had 

similar performance in C and R targets (blue dotted trials in Figure 4.4A; paired t-test for 

each trial and each participants, p>0.15). For these trials, we found that the probability of 

choosing a “C” target was not different from choosing an “R” target (Figure 4.4B, two-

tailed t-test, t(30)=-0.43, p=0.67). Therefore, variance of perturbations did not appear to 

influence choice. 
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Figure 4.4 A. Average error for the constant and random targets as a function of 
trial number in active training. Graph shows initial high errors for the constant target with 
subsequent learning. Dots indicate the trials that were picked in which the average 
absolute error size were matched for constant and random targets. The vertical bars 
indicate the S.E.M. across participants. B. Overall probability of visiting a constant-force 
target versus a random-force target for trials of matched absolute error sizes (dotted trials 
in Figure 4.4A). 

While we attempted to match the absolute error size in experiment 1, the average 

size of the force field was different. Furthermore, the number of trials in a block (60) 

might have been too small to allow participants to estimate variance for the different skill 

components.  To address these concerns and test for the influence of error variance more 

explicitly, we designed a second experiment in which the averages of the force 

perturbations were matched, and participants made substantially longer sequences of 

movements (160 per block).  The perturbations associated with each target were drawn 

from a distribution that had identical mean (10 Ns/m) – and we expected the means of the 

errors to be equal.  Each target in a block had a perturbation variance that was low, 

medium, high, or very high (Figure 4.5B, abscissa). We labeled the corresponding targets 
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R1, R2, R3, and R4 (Figure 4.1C). Participants adapted to the mean force field for 

equally for all four variance levels (Figure 4.5A). 

 

 

Figure 4.5 A. Average movement error separated by the variance of the perturbation 
(target R1=smallest, R4=highest variance). The vertical bars indicate the S.E.M. across 
participants. B. Overall probability of selecting a target direction with small (R1), 
medium (R2), high (R3), and very high (R4) perturbation variance. Plotted are the actual 
probabilities, simulated probabilities using parameters obtained from logistic regression 
of experiment 2, and simulated probabilities using parameters from experiment 1. 



 85

To determine whether the variance of the error influenced the choices during 

active learning, we first needed to account for the influence of the mean absolute error on 

choice since it increases with perturbation variance. We therefore used the same softmax 

regression approach to capture the strategies as for experiment 1. As in experiment 1, we 

found that the error size of the last trial posed a significant influence on the target 

selection of next trial (two-tailed t-test, t(15)=2.54, p<0.05). Participants also showed a 

slight tendency to repeat the last target even in the absence of error (two-tail t-test, 

t(15)=1.77, p=0.09), again violating the uncertainty-based models. From these parameter 

estimates we then predicted the probability to practice on targets of each variance level 

(Figure 4.5B). The observed probabilities were not significantly different from these 

values (two-factor ANOVA, F(3, 93) = 0.443, p=0.72). For cross-validation purposes, we 

also used the parameters fitted using experiment 1 data, and again, the probabilities were 

not significantly different (F(3,93)=1.123, p=0.334).  

In summary, the results of experiment 2 provided clear evidence that participant’s 

choices were influenced by the error of the last movement, but not by the variance of 

these errors over a number of trials.  
 

4.4 DISCUSSION 
The presented studies constitute to our knowledge the first systematic 

investigation into active learning strategies in humans. We used a task in which 

participants autonomously picked, trial-by-trial, a sequence of different skill components 

(movement directions) to practice to become proficient in the overall task. In this 

situation, we found two main factors dominating the choices made by the learners.  

First, nearly all participants repeated the last movement when a large movement 

error was made in the last trial. It is intuitively clear that this strategy should lead to better 

learning: big errors can indicate a mismatch between the current estimate of the force 
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perturbation and the desired output and therefore indicate the need to learn more. 

Participants who sought out movement directions with large errors were more successful 

in subsequent test trials; participants who avoided errors were comparatively less 

successful.  

The second and a surprise finding is that even after perfect movements (i.e. no 

errors), participants has a tendency to repeat the last movement direction. Current active 

learning algorithms in machine learning have the opposite behavior: making an 

observation near x reduces the model uncertainty in the neighborhood of x and therefore 

reduces the probability of re-selecting this component in the next training trial.  Humans 

did not follow this optimal strategy during active learning. When no error was observed 

in a movement direction – a situation in which the estimated uncertainty of the output 

should have been reduced, they did not avoid this movement direction. Thus, the 

uncertainty-based active learning models do not provide a good description of natural 

human behavior in the context of active learning. 

This strategy of re-selecting the target was sub-optimal, as it correlated negatively 

with subsequent performance. Indeed, as most participants showed this behavior, the 

performance after active learning was not better, or even slightly worse, than after 

passive learning, in which a trial was picked at random.  

The observation that alternating the practiced skill during training increases 

subsequent performance agrees with a host of behavioral studies that used passive, 

intermixing training schedules. In a task where participants were asked to learn to 

perform three different punch styles, Shea and Morgan (Shea and Morgan, 1979) showed 

that people who trained with a random schedule – practice trials on all three styles were 

conducted intermittently – retained their performance better after 10 minutes and after 10 

days, when compared to people who trained one style at a time. Similar results 

emphasizing the benefits of concurrent and intermixed training of several skills were 

found in pistol shooting (Keller et al., 2006), surgery training (Brydges et al., 2007), and 
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3D spatial orienting (Shebilske et al., 2006). Interestingly, in a task where participants 

were to complete an arm movement that consisted of three segments of distinct speeds, 

participants learned to time their movement segments more accurately when feedback of 

their accuracy was given for one random segment of the three, and less accurately when 

feedback was given for only one segment several trials in a row (Lee and Carnahan, 

1990). An uncertainty-based active learning strategy reduces the uncertainty of the 

desired output more when error feedback is obtained across the whole task space by 

quickly alternating from task component to component, than continuing the components 

one type at a time in blocks. 

Finally we found that, while participant’s choices were dependent on the absolute 

size of the last error, they were insensitive to the cross-trial variance of these errors. 

Under the assumption that this variance cannot be reduced through training, a better 

learning strategy would have been avoiding task components that have a very high 

variance because very little can be learned here. The results can imply one of two things. 

First, participants may not estimate the variance of the error signal over multiple trials. 

This is congruent with recent results that showed that variance of reward values does not 

influence decisions (Daw et al., 2006).  Alternatively, it may imply that participants were 

trying to reduce the variance of the errors for movement directions with high trial-to-trial 

perturbation variance. However, they were not successful in doing so as the behavioral 

results of experiment 2 showed that for the trial-to-trial variance in performance remained 

large for these movements (Figure 4.5A). 

Our results highlight that humans do not always choose the optimal learning 

strategy when given the chance to select their own training sequence. We showed that we 

can separate aspects of the strategy that improved and aspects that did not improve 

performance. Our findings open up the possibility to design adaptive algorithms that 

would lead to better learning than random training. Specifically, the present results would 

predict faster learning and better performance when movement directions are repeated 
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only when the last error was in that direction was large. Such adaptive training algorithms 

may play an important role in robot-based rehabilitation training after stroke or 

developmental disabilities.  
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CHAPTER 5  
FROM MODELS TO LEARNING 
IMPROVEMENT – A DISCUSSION 

Computational models of learning have become important tools for a critical examination 

of the underlying laws that govern motor learning, since, by definition, mathematical models 

cannot be self-conflicting and ambiguous. The goal of this thesis is to use theoretical models as a 

foundation to extend our current understanding of the computational procedures required to 

achieve each of these components. The thesis focuses on the computational steps that modulate 

with the temporal structure of training and the statistical characteristics of the learning history and 

seeks behavioral data that unambiguously verify the validity of these theoretical components of 

learning. Specifically, the thesis aims to apply novel understandings of motor learning to facilitate 

the enhancement of motor learning. In this thesis, I made attempts to identify components of 

motor adaptation acquisition, motor adaptation retention, and motor decision that allow for 

learning enhancement. 

In the hierarchy of motor system, it is thought that motor learning mechanisms supersede 

motor control mechanisms. However, it was not until the acceptance of the concept of a dynamic 

internal model that a link between control and learning was made. A fundamental principle of 

motor learning is that the degree of success relies on the amount of practice. In analogy to 

practice, therefore, it is the iterative updates of the internal model that completes the 

computational steps of motor learning. Motor learning involves the learner to first identify the 

structures of the task and second, estimate the optimal parameters necessary to describe the task. 

The former can be thought as a system identification problem. However, when the task structure 

is fixed, then in computational terms, motor adaptation is about finding the optimal parameter of 

the model of the task.  
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Previous models of learning adapt to change in the environment by a gradient descent 

algorithm in an attempt to minimize the error between the observation and desired motor output. 

In Chapter 2, I showed that this adaptation depends not just on error, but also on passage of time 

between the two movements.  It was observed that subjects learned a reaching task faster, i.e., 

with fewer trials, when the inter-trial time intervals (ITIs) were lengthened.  I hypothesized two 

computational mechanisms that could have accounted for this.  First, learning could have been 

driven by a Bayesian process where the learner assumed that errors are due to perturbations that 

have multiple timescales.  In theory, longer ITIs can produce faster learning because passage of 

time might increase uncertainty, which in turn increases sensitivity to error.  Second, error in a 

trial may result in a trace that decays with time.  If the learner continued to sample from the trace 

during the ITI, then adaptation would increase with increased ITIs.  The two models made 

separate predictions:  The Bayesian model predicted that when movements are separated by 

random ITIs, the learner would learn most from a trial that followed a long time interval.  In 

contrast, the trace model predicted that the learner would learn most from a trial that preceded a 

long time interval.  We performed two experiments to test for these predictions and in both 

experiments found evidence for the trace model.  We suggest that motor error produces an error 

memory trace that decays with a time constant of about 4 seconds, continuously promoting 

adaptation until the next movement. 

In Chapter 3, I showed that motor learning is more than estimating the proper scaling of 

motor outputs. Rather, motor learning also encompasses generating rules to describe the task 

itself. Here we used a similar force adaptation task with hand-punching movements to examine 

the retention of human adaptation to different task structure. The task structure was varied by 

gradually or suddenly introducing the force perturbation. We fixed the task structure within a 

training block, but varied the task structure across two training blocks separated by a washout 

block. In the first training when the participants were initially exposed to the perturbation with the 

task structure fixed, the gradualness of the first training significantly improved the retention of 
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adaptation. The current time-invariant two-state model of motor adaptation predicted that errors 

caused by overcompensation in the extended null-force washout block would actively engage the 

learner in de-adaptation and completely wash out adaptation. However, while this adaptation 

appeared to have washed out in an extended null-force block, we found that participants’ first 

experience with the perturbation continued to influence the rate of decay in their future retention 

when they were re-exposed to the perturbation in a subsequent retraining block. Despite the 

intervening washout block, the gradualness of the first training alone was sufficient to promote 

future retention of adaptation regardless of the rate of perturbation exposure in retraining even 

when the first training was in the opposite force field. Therefore, subjects generated separate sets 

of rules to describe the two task structure. Separate rules that govern the retention of adaptation, 

therefore, followed. As a result, the first exposure to the task created an acquisition and retention 

bias for subsequent learning scenarios. Together, these observations suggested that the structure 

of the learning process is not time-invariant as previously assumed and the human motor retention 

process possibly receives a top-down control based on the history of training. In practice, because 

the gradualness of first exposure to training promotes future retention of adaptation, we can 

exploit this structural learning bias to enhance learning.  

When we learn a new skill without a coach, we become “active learners”. We choose the 

specific component of the task to train on (e.g. iron, driver, putter, etc.). In Chapter 4, I asked 

what guides our selection of the training sequence.  How do choices that people make compare to 

choices made by machine learning algorithms that attempt to optimize performance? I asked 

subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They 

were instructed to choose their practice directions to maximize their performance in subsequent 

tests. I found that their choices were strongly influenced by motor errors: subjects tended to 

immediately repeat an action if that action had produced a large error. This strategy was 

correlated with better performance on test trials. However, even when participants performed 

perfectly on a movement, they did not avoid repeating that movement; they tended to repeat that 
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choice with the same or higher probability as other movements. This behavior led to sub-optimal 

performance. It also violated a strong prediction of current machine learning algorithms, which 

solve the active learning problem by choosing a training sequence that will maximally reduce the 

learner’s uncertainty about the task.  While I showed that these algorithms do not provide an 

adequate description of human behavior, these results suggested that it should be possible to 

improve human motor learning by helping people choose their training sequence. 

The individual features of motor learning identified in Chapter 2 and 3 can be 

used alone or in combination in motor learning applications – for example, rehabilitation 

in post-stroke recovery. Importantly, the principles identified in this thesis augment our 

understanding in how practice improves the degree the motor performance. Since most if 

not all motor learning paradigms rely on repeated movements, manipulation in the 

temporal distribution and task structure bias on the trial-to-trial practice schedule should 

be applicable across many training protocols. 

The introduction of the thesis mentioned that animals evolved to develop a 

sensory-motor system to sense, manipulate and interact with their surroundings. The 

results of the active learning study re-emphasize the interactive component of motor 

learning that is often ignored in the computational motor control literature. In Chapter 3, 

we observed that people can abstract task structures implicitly without given explicit 

description or instruction to do so. That is, people possess the ability to generate new 

rules to describe their environment even in a passive learning environment. It is natural to 

think, then, with the freedom to actively direct their learning strategies, such as in the 

case described in Chapter 4, animals have the tools to aggressively collect data about 

their environment. In Chapter 4, however, subjects needed to learn task structure while 

optimally estimate motor outputs. While unbiased human learners do not appear to be 



 93

optimal in their active learning strategy in this dual-task, whether people become more 

effective extracting structural information alone with active learning paradigms remains 

to be elucidated. When the sensory system is damaged (e.g. as a result of parietal stroke), 

it should be expected that the efficacy of the active learning component would be 

impaired. 

Another common theme among the studies presented in the current thesis is that a 

robotic manipulandum was used. In handling the manipulandum, the subject must learn 

not just the dynamical disturbances (usually in the form of a viscous curl force field), but 

also a change in the inertial properties of his or her arm because of the additional physical 

contact to the robot itself. In all studies, we have allowed time for the subjects to 

familiarize themselves with the handling of the manipulandum through introductory 

practice prior to manipulating experimental variables. The presence of after-effects after 

adapting to the viscous force field is strong evidence that the nervous system constructs a 

new mapping between limb state and muscle outputs, and it has been shown that learning 

of one movement type (e.g. direction) can generalize to another. If a common internal 

model serves to represent limb dynamics across movement tasks, adaptation in one task 

should be generalized to another. However, it is unclear whether a common internal 

model of limb dynamics is used not only across movement types but also across 

movement tasks. In the case of these studies, the internal model would also encompass a 

component that accounts for the dynamics of the robot arm that may not necessarily be 

appropriate for other tasks other than the original training. This identifiable differentiator 

would be important in rehabilitation therapy because it undermines the generalization of 

skills learned in one training task in clinics to new tasks at home. The results in Chapter 
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3, however, raise the possibility to promote generalization by providing structural 

commonality across tasks. This possibility is especially interesting in rehabilitation 

researches that investigate motor learning in patients with hemiparesis with robotic 

assistive devices.  
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