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Abstract 

The cerebellum resembles a feedforward, three-layer network of neurons in which the “hidden layer” 

consists of Purkinje cells (P-cells), and the output layer consists of deep cerebellar nucleus (DCN) 

neurons. In this analogy, the output of each DCN neuron is a prediction that is compared to the actual 

observation, resulting in an error signal that originates in the inferior olive. Efficient learning requires 

that the error signal reach the DCN neurons, as well as the P-cells that project onto them. However, this 

basic rule of learning is violated in the cerebellum: the olivary projections to the DCN are weak, 

particularly in adulthood. Instead, an extraordinarily strong signal is sent from the olive to the P-cells, 

producing complex spikes. Curiously, P-cells are grouped into small populations that converge onto 

single DCN neurons. Why are the P-cells organized in this way, and what is the membership criterion of 

each population? Here, I apply elementary mathematics from machine learning and consider the fact 

that P-cells that form a population exhibit a special property: they can synchronize their complex spikes, 

which in turn suppress activity of DCN neuron they project to. Thus, complex spikes can not only act as a 

teaching signal for a P-cell, but through complex spike synchrony a P-cell population may act as a 

surrogate teacher for the DCN neuron that produced the erroneous output. It appears that grouping of 

P-cells into small populations that share a preference for error satisfies a critical requirement of efficient 

learning: providing error information to the output layer neuron (DCN) that was responsible for the 

error, as well as the hidden layer neurons (P-cells) that contributed to it. This population coding may 

account for several remarkable features of behavior during learning, including multiple timescales, 

protection from erasure, and spontaneous recovery of memory. 
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Ever tried. Ever failed. No Matter. Try again. Fail again. Fail better.  ---Samuel Beckett 

 

Introduction 

During electrophysiological recording from Purkinje cells (P-cells), listening to the sound of spikes as 

they are reported by an electrode, one cannot help but be impressed by the complex spike. Whereas 

the simple spikes appear ordinary and common, raindrops falling on the roof, the complex spike is more 

like lightening, a thunderous event that makes the P-cell pause its production of simple spikes. Indeed, 

after generating a complex spike, a P-cell requires 10-20 ms of recovery before it resumes production of 

simple spikes (Thach, 1967).  

The significance of complex spikes in the life of a P-cell is illustrated by the fact that persistent 

stimulation of climbing fibers, the sole source of complex spikes, can lead to excitotoxic damage of P-

cells (Slemmer et al., 2005). Indeed, sustained increase or decrease in the rate of complex spikes above 

or below baseline damages the P-cells (O’Hearn and Molliver, 1997). Thus, survival of a P-cell depends 

on its ability to regulate production of complex spikes to around baseline (De Schutter, 1995; Mauk and 

Donegan, 1997). 

Complex spikes arise from climbing fibers that originate from cells in the inferior olive (Eccles et 

al., 1966). The olive cells receive inhibitory projections from neurons in the deep cerebellar nuclei (DCN) 

(de Zeeuw et al., 1988), and excitatory inputs from other regions of the brain (Saint-Cyr and Courville, 

1982). In analogy to an artificial neural network, activity of DCN neurons are a form of prediction (Doya, 

1999), allowing the olive cells to compare this prediction to the actual observations. Indeed, a complex 

spike is often generated after unexpected occurrence of a broad class of sensory inputs (Andersson and 

Armstrong, 1987; Ju et al., 2019), motor actions (Welsh et al., 1995), or rewarding events (Heffley et al., 

2018).  

Thus, as a first approximation the signal in the climbing fiber is the difference between what was 

reported to the olive from a non-cerebellar region (the observation), and what was produced by the 

cerebellum (the prediction). Said in another way, neurons in the inferior olive are in position to compare 

the desired response that they have received from a non-cerebellar region with the actual output of a 

DCN neuron, and produce an error signal that reflects the difference between the two (De Zeeuw et al., 

1998; Kitazawa et al., 1998; Simpson et al., 1996; Soetedjo et al., 2008). From a machine learning 

perspective, this signal is termed a prediction error.  

Prediction errors are fundamental to learning in artificial neural networks. In such networks, the 

rules of learning stipulate that the error associated with a given output neuron must be conveyed to 

that neuron, as well as to all other neurons that project directly or indirectly to it. However, in the 

cerebellum, this basic rule is violated in at least two ways. First, the DCN neurons receive a rather weak 

signal from the olive (Lu et al., 2016), a signal that weakens further as the animal reaches adulthood 

(Najac and Raman, 2017). In comparison, the middle layer neurons (the P-cells) receive an 

extraordinarily strong signal from the olive. Second, despite the fact that each P-cell projects to about 4 

DCN neurons (in mice) (Person and Raman, 2012a), a P-cell receives only a single climbing fiber. This 

makes it so that a P-cell contributes to potentially erroneous outputs of 4 DCN neurons, but receives 

error information from only one olivary neuron. 
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The weak olivary input to the DCN is puzzling because it suggests that the error signal from the 

olive will have difficulty acting as a teacher for the output layer neurons. The single climbing fiber to a P-

cell is also puzzling because it implies that the error signal is not a fair reflection of the entire error 

space, but rather biased to provide only a limited view. 

To illustrate the implications of these puzzles, imagine you are playing basketball and shoot 

from the free throw line and your ball misses the basket. If you are looking at the basket as the ball 

passes to one side, say to the right, that event will produce an increase in probability of complex spikes 

of P-cells that prefer rightward prediction errors in the visual space (Herzfeld et al., 2015; Soetedjo et al., 

2008; Soetedjo and Fuchs, 2006). That same error will reduce probability of complex spikes in P-cells 

that prefer leftward prediction errors. However, the rightward error will have no consequence for the 

complex spikes of P-cells that prefer upward or downward errors. As a result, each P-cell receives a 

limited view of the error space: some care about rightward errors and some care about leftward errors, 

but none care about all parts of the error space. In addition, because the olivary projections to the DCN 

are weak (Lu et al., 2016), learning from error faces a formidable obstacle: how can the DCN neurons 

that contributed to your movement learn about their erroneous output?  

Thus, when we view the cerebellum from the perspective of machine learning, two puzzles 

emerge. It is surprising that the error information from the olive is conveyed strongly to the middle layer 

(the P-cells), but not the output layer (the DCN). Furthermore, it is surprising that the olivary signal to a 

P-cell consists of a single input that is biased toward a specific part of the error space.  

Here, my aim is to use mathematics of machine learning to consider these puzzles and ask why 

the cerebellum might be organized in this way. I will suggest that the very limited distribution of output 

from a single olive cell to a handful of P-cells organizes the P-cells into populations that share the same 

teacher (De Zeeuw et al., 2011; Heck et al., 2013): P-cells that learn from the same teacher may project 

together as a population to a single neuron in the DCN. This organization of P-cells may serve a critical 

function: it allows the olive to not only convey error information to a small group of P-cells, but through 

synchronous production of complex spikes, also convey the same error information to the DCN neuron 

that was responsible for the error (Chaumont et al., 2013; Tang et al., 2019).  

The result is a framework in which P-cells provide two different functions. Like a typical neural 

network, P-cells produce simple spikes that drive activity of the output layer neurons. Unlike a typical 

neural network, the P-cells are organized into populations that through synchronous complex spikes can 

provide error information to the DCN, inducing plasticity. As a result, each olivary cell is the teacher to a 

handful of P-cells (Gao et al., 2012), and those P-cells are the teachers for the DCN neuron that 

produced the erroneous output (Medina and Mauk, 1999). 

This error-dependent organization of P-cells into populations may have interesting 

consequences on how the cerebellum learns from error. Because an error may be preferred by some P-

cell populations, increasing their probability of complex spikes, while the same error will be anti-

preferred for other populations, decreasing their probability of complex spikes, the differing sensitivities 

to error, as reflected in the differing rates of plasticity associated with the presence vs. absence of a 

complex spike (Herzfeld et al., 2018; Yang and Lisberger, 2014a), are likely to produce multiple 

timescales of adaptation, some fast, others slow.  
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In addition, the personalized view of error afforded to each P-cell may provide protection from 

erasure. That is, behavior becomes easier to learn than to unlearn. Rather than countering plasticity in  

the P-cells that learned from error, reversal of error will engage learning in a separate population of P-

cells, possibly in a different olivocerebellar module. As a result, organizing P-cells into populations that 

share a common preference for error may be responsible for a paradoxical aspect of behavior: 

spontaneous recovery of memory (Criscimagna-Hemminger and Shadmehr, 2008; Kojima et al., 2004; 

Sarwary et al., 2018; Smith et al., 2006). 

My analysis relies on the assumption that the olivary input to the cerebellum reflects the 

erroneous output of a DCN neuron. Although this assumption is consistent with anatomical (de Zeeuw 

et al., 1988) and physiological data (Soetedjo et al., 2008), it remains a speculation because there are no 

simultaneous recordings from olive projecting DCN neurons and the feedback that they receive from the 

olive. Indeed, the assumption that climbing fiber activity reflects a prediction error is not universally 

accepted (Horn et al., 2004), and faces challenges including the fact that the probability of complex 

spikes poorly encodes the magnitude of prediction error (Catz et al., 2005), and the fact that cerebellar 

dependent learning can take place without obvious modulation of complex spikes (Hewitt et al., 2015; 

Ke et al., 2009). In some cases, modulation of simple spikes alone is sufficient to produce a form of 

learning (Nguyen-Vu et al., 2013). Cognizant of these observations, I will develop the theoretical 

viewpoint based on the assumption that olivary input provides an error signal, and then consider its 

limitations. 

 

Prediction errors of the cerebellum 

The anatomy of the cerebellum resembles a feedforward network (Fig. 1A) (Raymond and Medina, 

2018). Like an artificial neural network, inputs (mossy fibers) bring information to the first layer of 

neurons (granule cells), which distribute them to the second layer (P-cells), which in turn project to the 

 

Figure 1. A feedforward network as a simplified model of the cerebellum. A. In an artificial neural network with 
three layers, the third layer provides the predictions, which are compared to observations and then fed back via an 
error signal to units in layers 2 and 3. B. In the cerebellum, the 3-layers are comprised of granule cells, Purkinje 
cells, and deep cerebellar nucleus neurons. The predictions of the cerebellum are conveyed via GABA-ergic DCN 
neurons to the inferior olive, which in turn provides the cerebellum with an error signal. This signal is conveyed 
strongly to the P-cells, but weakly to the DCN neurons (dashed line). The predictions of the cerebellum are also 
conveyed via non-GABA-ergic DCN neurons to the rest of the brain. C. A single P-cell projects to both GABA-ergic 
and non-GABA-ergic DCN neurons. However, the error signal sent from the olive to the cerebellum depends 
directly on the GABA-ergic DCN neurons, not the non-GABA-ergic neurons. Filled circles are inhibitory synapses, 
triangles are excitatory synapses. 
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output layer (DCN neurons) (Fig. 1B). To be sure, this resemblance is an approximation. The input from 

the granule cells to the P-cells is direct, as well as indirect (via molecular layer interneurons). P-cells send 

a few collateral axons to neighboring P-cells (Witter et al., 2016), and at least in some lobules, P-cells 

also send a few collaterals to granule cells (Guo et al., 2016). As a result, there is a degree of synchrony 

among neighboring P-cells (Sedaghat-Nejad et al., 2019), a synchrony that remains even when chemical 

synapses are inactivated (Han et al., 2018). Finally, vestibular nuclei are targets of P-cells in the flocculus 

and paraflocculus. Despite these complications, a feedforward network is a useful approximation, 

particularly from the P-cell layer to the output layer, which is the focus of our analysis.  

In a typical artificial neural network, all cells in each layer connect to all cells in the next layer. 

However, in the cerebellum (of mice) about 50 P-cells converge upon a single DCN neuron (Person and 

Raman, 2012b). That is, P-cells organize into small populations, and with their simple spikes they 

modulate the output of the DCN neurons. What determines membership of this population? To answer 

this question, let us consider this problem from the perspective of machine learning. 

Activities of DCN neurons represent the output of the cerebellum, but the nature of these 

outputs is diverse because the cerebellum projects to numerous sensorimotor (May et al., 1990; Noda 

et al., 1990) and reward related structures (Carta et al., 2019). We label the activation, i.e. firing rate, of 

each DCN neuron as 
( )d
ia , where the superscript d  refers to DCN neurons. Some of the DCN neurons are 

GABA-ergic and inhibit the olive (Bazzigaluppi et al., 2012; Lefler et al., 2014). Activity of these DCN 

neurons is labeled as 
( )d
ia −

. Another subset is non-GABA-ergic and send their axons to the brainstem, 

superior colliculus, red nucleus, thalamus, etc. It is with these non-GABA-ergic neurons that the 

cerebellum influences behavior. We label activity of the non-olive projecting DCN neurons as 
( )d
ia +

. 

Thus, in the output layer the superscript d  includes GABA-ergic as well as non-GABA-ergic projecting 

DCN neurons:  ,d d d− + . 

We assume that an olivary cell compares the output 
( )d
ia −

 that it receives from a DCN neuron 

with the observed event 
*
ia . For example, suppose the output 

( )d
ia −

 is predicting location of the visual 

information that should be present following conclusion of a saccadic eye movement. In this case, the 

actual location of the visual event 
*
ia  is conveyed from the superior colliculus to the olivary cell that 

receives the cerebellar output. If the cerebellar output does not match the actually observed collicular 

activity, then the olivary cell responds, producing spikes in its cerebellar projections (Kojima and 

Soetedjo, 2018, 2017). Because the collicular activity reflects not only the position of the visual stimulus, 

but also its reward value (Ikeda and Hikosaka, 2003), the difference in the predicted reward value of the 

stimulus as compared to the observed value will also be an error signal that is conveyed to the 

cerebellum (Heffley et al., 2018).  

Thus, given output 
( )d
ia −

 from the GABA-ergic DCN neurons, we assume that the activity in the 

inferior olive neuron that projects back to the DCN and the rest of the cerebellum (De Zeeuw et al., 

1997) is an error signal that conveys the difference between what was observed (excitatory input to the 

olive from an extracerebellar region), and what was predicted (inhibitory output from the DCN to the 

olive).  
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Notably, this error is only associated with activity of GABA-ergic DCN neurons 
( )d
ia −

. Let us label 

this error signal as 
( )d
ie −

: 

 
( ) * ( )d d
i i ie a a− −= −  (1) 

In the above equation, the error signal depends on the activity 
( )d
ia −

of GABA-ergic olive-projecting DCN 

neurons, but not directly on the activity 
( )d
ia +

 of the non-GABA-ergic, non-olive projecting DCN neurons. 

This produces our first puzzle:  

Puzzle P1. Even though non-GABA-ergic DCN neurons are responsible for conveying output of the 

cerebellum, the error associated with their activity is not directly a part of the olivary signal back to the 

cerebellum. How do non-GABA-ergic DCN neurons receive information regarding the error in their 

activities? 

The consequence of computing error information based on the activity of GABA-ergic DCN 

neurons, and not the other output neurons, can be illustrated by an experiment by Kim et al. (1998). The 

authors presented rabbits a tone followed by an air puff, teaching them to blink just before arrival of the 

air puff. In naïve animals the air puff alone produced complex spikes in P-cells. Early in training with the 

tone+air puff trials the P-cells continued to produce complex spikes following the air puff, but late in 

training tone+air puff no longer produced complex spikes: as performance improved and errors were 

reduced, so were the complex spikes. Now the authors took the well-trained animals and injected a 

GABA antagonist into the inferior olive. This effectively eliminated the efficacy of the DCN input to the 

olive. However, blocking the DCN input re-introduced the complex spikes during tone+air puff trials. 

That is, although the animal continued to blink in response to the tone, the olive nevertheless signaled 

prediction errors to the cerebellum. This suggests that even when non-GABA-ergic DCN neurons are 

correctly predicting an output 
( )d
ia +

, if the inhibitory input to the olive is suppressed, the error signal to 

the cerebellum returns. 

To consider this puzzle, let us further develop the mathematics associated with training our 

network. A generic DCN neuron’s activity 
( )d
ia

 
depends partly on the inputs that it receives, and partly 

on its internal state. The inputs are the weighted activities of neurons that project to it. This includes 

inputs from P-cells (via simple spikes that act on inhibitory synapses), and inputs from mossy fibers (via 

excitatory synapses), as shown in Fig. 1C. We approximate the inputs to a generic DCN neuron via the 

following equation: 

 ( ) ( ) ( ) ( ) ( )
, ,

,

d d p d m
i i j j i k k i

j k

z w a w a b= + +  (2) 

In the above equation, ( )p
ja  is the activity of P-cells that project to a given DCN neuron i , 

( )m
ka  is the 

activity conveyed via mossy fibers to that neuron, and ib  is the internal bias of that neuron (making it 

possible for the neuron to fire despite having inhibitory inputs).  
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Notice that in Eq. (2) we omitted the influence of projections to the DCN neuron from the olive. 

This is because the axons that bring olivary input to the cerebellum fire at rates that are two orders of 

magnitude smaller than P-cells and mossy fibers. Furthermore, in the adult animal (mouse), the 

excitatory post-synaptic currents (EPSCs) that are produced in a typical DCN neuron following activation 

of olivary axons are remarkably small (Lu et al., 2016). For example, activation of olivary axons can 

produce an EPSC event with an amplitude of 2 pA in a P-cell, 0.4 pA in the DCN neuron of a juvenile 

mouse (Najac and Raman, 2017), and only 8x10-3 pA in the DCN neuron of an adult mouse (Lu et al., 

2016). Therefore, in the adult animal the input to the DCN from the olive is weak. This fact simplifies our 

equation, but also introduces a second puzzle:  

Puzzle P2. Given that the olive’s input to the DCN is weak, how does a DCN neuron receive 

information about the error in its output?  

To summarize, an error signal is needed to teach the DCN neurons. We assumed that this error 

signal was computed in the olive. However, projections from the olive to the DCN represent the error 

made by only a subset of output neurons: GABA-ergic olive projecting DCN neurons. Furthermore, the 

axons that project from the olive to the DCN have weak synapses (in adulthood), and are essentially 

silent as compared to mossy fiber and P-cell axons that converge on the same neurons. How can the 

olive be an effective teacher for the DCN?  

 

The problem of teaching a deep cerebellar nucleus neuron 

The purpose of learning in a neural network is to minimize a loss function, typically the sum of squared 

errors. For our network, the sum of errors is a function of all output neurons, i.e., both olive-projecting 

and non-olive-projecting DCN neurons:  

 ( )
2

( )d
i

i

J e=  (3) 

To minimize this loss, we need to change the activity of both the GABA-ergic DCN neurons 
( )d
ia −

, and 

the non-GABA-ergic DCN neurons 
( )d
ia +

. This is done by changing the weights associated with the inputs 

that these neurons receive, as well as their internal biases, i.e., their intrinsic excitability.  

The activity (firing rate) of a generic neuron in our network is related to its inputs and internal 

biases via a non-linearity, for example a sigmoidal function:  

 ( )( ) ( )d d
i ia z=  (4) 

To change the synaptic weight of a given input to a neuron in the output layer, we compute the gradient 

of the loss function with respect to that weight. For example, the weight change for a GABA-ergic DCN 

neuron is negatively proportional to the following gradient: 
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( ) ( )

( ) ( ) ( ) ( )
, ,

( ) ( )
( )

( ) ( )
,

2

d d
i i

d d d d
i j i i i j

d d
di i

id d
i i j

da dzdJ dJ

dw da dz dw

da dz
e

dz dw

− −

− − − −

− −
−

− −

=

= −

 (5) 

The above expression has a simple meaning: the gradient of a DCN neuron’s input iz  with respect to its 

mossy fiber synaptic weights is positive (because those inputs are excitatory), and thus positive errors 

(e.g., olivary output above baseline) should increase the mossy fiber synaptic weights. In comparison, 

the gradient of iz  with respect to P-cell synaptic weights is negative (because those inputs are 

inhibitory), and thus positive errors should decrease those synaptic weights. Similarly, to change the 

intrinsic excitability of the DCN neuron, we compute the gradient with respect to the bias:  

 

( ) ( )

( ) ( ) ( ) ( )

( )
( )

( )
2

d d
i i

d d d d
i i i i

d
di

id
i

da dzdJ dJ

db da dz db

da
e

dz

− −

− − − −

−
−

−

=

= −

 (6) 

Aside from providing general rules for learning in the DCN, the above expressions state that the 

gradients of our loss function with respect to both weights and internal biases of a given DCN neuron 

are proportional to the prediction errors of that neuron. This implies an important anatomical 

constraint: if a DCN neuron projects to the olive, it must receive error information associated with its 

own output, not the output of some other DCN neuron. This leads to our first conjecture:  

Conjecture C1. A DCN neuron receives feedback from precisely the same olive neurons it inhibits.  

Indeed, olivary projections to the DCN are reciprocal: if a region in the olive projects to a region 

in the DCN, that DCN region also projects back to that specific region of the olive (Ruigrok and Voogd, 

2000). However, even if conjecture C1 were true, we still have DCN neurons that do not project to the 

olive (puzzle P1). Thus, we have no error signal with which to teach the non-GABA-ergic DCN neurons. 

 There are several ways to consider this problem. First, it is possible that as the non-GABA-ergic 

DCN neurons project to their destination, they synapse on GABA-ergic neurons, and those GABA-ergic 

neurons then project back to the olive. In this way, the olivary cell would indirectly receive the output of 

the non-GABA-ergic DCN neuron. However, this introduces a delay in communication, and importantly, 

imposes a timing difference in the comparison of outputs with observations for some DCN neurons 

(non-GABA-ergic) with respect to others (GABA-ergic). Given that timing of complex spikes depends on 

the precise internal state of olive neurons (Negrello et al., 2019), which oscillate at 4-5 Hz (Khosrovani et 

al., 2007), and plasticity in P-cells depends on timing of the complex spikes (Herzfeld et al., 2018; 

Suvrathan et al., 2016), a timing difference may not be a good solution. 

A different way to consider puzzle P1 is to note that a single P-cell projects to only 4-5 DCN 

neurons (Person and Raman, 2012a), and critically, this small group of DCN neurons includes both GABA-

ergic, as well as non-GABA-ergic neurons (De Zeeuw and Berrebi, 1995; Teune et al., 1998). Therefore, 



9 

 

for each GABA-ergic DCN neuron that projects to the olive with activity 
( )d
ia −

, there are one or two non-

GABA-ergic DCN neurons that receive input from the same P-cell. In order for the non-olive projecting 

DCN neuron 
( )d
ia +

 
to receive the appropriate error signal, it can pair its activity with a “sister” DCN 

neuron that projects to the olive 
( )d
ia −

.  The two sister DCN neurons would have to receive inputs from 

the same P-cells and mossy fibers so that their activities are similar (Fig. 1C).  

If a relationship between a pair of non-GABA-ergic and GABA-ergic DCN neurons existed such 

that 
𝑑𝑎𝑖

(𝑑+)

𝑑𝑤
𝑖,𝑗
(𝑑+) =

𝑑𝑎𝑖
(𝑑−)

𝑑𝑤
𝑖,𝑗
(𝑑+), then we can compute the gradient of the loss function with respect to the weights 

of the non-olive projecting DCN neurons:  

 

( ) ( )

( ) ( ) ( ) ( )
, ,

( ) ( )
( )

( ) ( )
,

2

d d
i i

d d d d
i j i i i j

d d
di i

id d
i i j

da dzdJ dJ

dw da dz dw

da dz
e

dz dw

+ +

+ − + +

+ +
−

+ +

=

= −

 (7)  

The above expression implies that a non-olive-projecting DCN neuron shares the error signal with its 

“sister” olive-projecting DCN neuron. From this equation we arrive at our second conjecture: 

 Conjecture C2. The prediction error conveyed by an olive neuron must result in plasticity in at 

least one olive projecting GABA-ergic neuron, and one non-olive projecting, non-GABA-ergic neuron. 

These two DCN neurons should be coupled in the sense that their activities should always be roughly 

equal. 

 At this writing, we do not know how the non-GABA-ergic DCN neurons receive their error 

information. Conjecture C2 provides the possibility that if the activities in the two DCN neurons were 

identical, then the olivary signal that reflects error for one DCN neuron can also be the signal that 

teaches the other DCN neuron. Unfortunately, even if conjectures C1 and C2 were true, we still have 

puzzle P2: how can a DCN neuron learn about its error when it does not receive an effective signal from 

the olive? 

 The trivial answer is that perhaps DCN neurons have essentially static weights and internal 

biases and do not learn from their errors. But this is clearly not the case, as evidenced by the work of 

Mauk and colleagues (Ohyama et al., 2003; Ohyama and Mauk, 2001), De Zeeuw and colleagues (Boele 

et al., 2013; Carulli et al., 2020), and Nagao and colleagues (Shutoh et al., 2006). For example, in a 

classical conditioning task in which rabbits hear a tone and learn to close their eyes in anticipation of an 

aversive stimulus, training produces plasticity in the P-cells (Jirenhed and Hesslow, 2016), as well as the 

DCN, as evidenced by the fact that after conclusion of training, disconnection of the P-cell input to the 

DCN (via GABA antagonists) produces the conditioned behavior, albeit at an earlier time with respect to 

the tone onset (Medina et al., 2001). Furthermore, this training coincides with mossy fiber axonal 

growth and synaptic genesis in the DCN (Boele et al., 2013), as well as changes to the extra-cellular 

matrix of molecules that surround the synapses that contact DCN neurons (Carulli et al., 2020). Thus, 
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experience of error leads to plasticity in the P-cells as well as the DCN. But given the weak olivary input 

to the DCN, how is this possible? 

 Let us consider two scenarios. On the one hand, perhaps error information is not conveyed from 

the olive to the DCN, but from the simple spikes of P-cells to the DCN. In this scenario, the olive does not 

play a role in computing error information for the purpose of teaching the DCN. Rather, the P-cells 

indirectly receive error information from the mossy fibers, and through their converging simple spikes 

teach their downstream DCN neurons.  

Indeed, the synapses that P-cells make upon a DCN cell can undergo plasticity based on the 

history of the P-cell’s simple spikes (Telgkamp and Raman, 2002). Furthermore, the synapses that mossy 

fibers make upon a DCN neuron can also undergo plasticity: when a period of excitation (150 ms) in the 

DCN neuron precedes a period of strong inhibition (250 ms), excitatory synapses strengthen (McElvain 

et al., 2010; Person and Raman, 2010; Pugh and Raman, 2008). Thus, the sequential pattern of 

excitation from the mossy fibers and inhibition from the P-cells can, in principle, serve as a teacher for 

changing the synaptic weights of the inputs onto DCN neurons (De Zeeuw et al., 2011). 

Alternatively, it is possible that error information is conveyed from the olive to a population of 

P-cells via climbing fibers, and then through synchrony of complex spikes the P-cells convey occurrence 

of the error event to the DCN. In this scenario, climbing fiber activity not only guides plasticity in a P-

cells, but also organizes the P-cells anatomically into populations that share a common error signal. The 

resulting temporal synchrony in the complex spikes of the population produces a period of suppression 

in the DCN neuron, which may result in plasticity in the mossy fiber and P-cell synapses that act on that 

DCN neuron. Let us consider these two possibilities in detail. 

 

Possibility 1: transmitting error information to the deep nucleus via simple spikes 

Modulation of P-cell simple spikes alone can drive learning in the cerebellum. Nguyen-Vu et al. (2013) 

considered the vestibular ocular reflex (VOR), a behavior in which a vestibular input is paired with a 

visual stimulus. Usually, P-cells in the flocculus have simple spikes that reflect both the vestibular 

stimulus and the visual feedback, while complex spikes reflect retinal error. The authors hypothesized 

that modulation of simple spikes alone could produce learning in the cerebellum independent of 

complex spikes. To test for this, they used optogenetics in mice to stimulate P-cell activity, generating 

simple spikes that were paired with the vestibular stimulus in the absence of visual input. During 

training, a sinusoidal vestibular stimulus was presented in the dark while each side of the cerebellum 

was stimulated during ipsiversive or contraversive turning. Pairing optogenetic pulses of stimulation 

with ipsiversive turning produced learning that reduced the VOR gain, while pairing with contraversive 

turning produced learning that increased the VOR gain. Because optogenetic pulses likely synchronized 

production of simple spikes across populations of P-cells, the work illustrated that production of 

synchronous simple spikes was sufficient to produce learning, a role that had generally been ascribed to 

complex spikes. 

The results of Lee et al. (2015) extended this work, demonstrating that synchronized patterns of 

simple spikes produced DCN plasticity. Using optogenetic pulsed stimulation of P-cells in the forelimb 

region of the anterior cerebellum of mice, they found that onset of P-cell inhibition was followed by an 
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arm movement (raising the arm upward), whereas offset of a period of P-cell excitation produced a 

similar movement. They then paired excitation or inhibition of P-cells with an auditory tone and made a 

remarkable observation: the animal raised its arm when the tone was presented without P-cell 

stimulation. Notably, optogenetic stimulation of P-cells induced simple spike synchrony, and this 

coincided with structural changes in the mossy fiber inputs to the DCN. Thus, synchronized P-cell simple 

spikes produced plasticity in the DCN. 

Ke et al. (2009) asked whether learning could be induced with error driven changes in simple 

spikes but without significant changes in complex spikes. They trained monkeys in the VOR task by 

rotating their heads but manipulated the visual input so that there was a difference in how the visual 

target moved as compared to how the background visual scene moved. This novel stimulus appeared to 

reduce the complex spike response to error (retinal slip). However, the simple spike response with the 

novel stimulus resembled the response during natural gain-down training. Following training with the 

novel stimulus they assessed learning by measuring eye movements in response to head movements in 

darkness and found that the VOR gain had adapted. Whereas changes in complex spikes accounted for 

roughly 65% of the adaptation, 35% was driven by changes in simple spikes. 

Correlates of an error-like variable (target with respect to eye position) in simple spikes were 

first noted by Kase et al. (1979) who trained monkeys in two tasks, one in which they actively pursued a 

sinusoidally moving dot with their eyes, and another in which they fixated but the dot moved 

sinusoidally. They recorded from P-cells along the vermis of lobules VI-VII and found that 14/89 cells 

showed simple spike modulation both during active pursuit, and during fixation as the target moved 

with respect to the fovea. 

More recently, correlates of error were found in simple spikes as monkeys were trained to use a 

robotic arm to move a cursor and track a moving target that traced a random path. Ebner and 

colleagues (Hewitt et al., 2015, 2011; Popa et al., 2012; Streng et al., 2018) recorded from hundreds of 

P-cells in the intermediate and lateral regions of lobule IV-VI and used linear regression to first account 

for the variance in the simple spike rate with respect to motion of the arm, and then determined how 

much of the residual simple spike rate could be associated with error, that is, the instantaneous distance 

between the hand-held cursor and the target. The regression with respect to error generally exhibited 

two peaks: one at a lead (-223 ms prediction about a future error), and the other at a lag (+227 ms 

feedback about the past error) (Popa et al., 2017). The r-squares for the delayed response of simple 

spikes to error were greater than the r-squares for the prediction of future error. The coefficient of the 

linear fit that predicted the error was often negative of the coefficient that responded to that error. 

To check that the simple spikes were indeed responding to visual error and not to another 

confounding variable, Streng et al. (2018) introduced a delay between position of the cursor and the 

position of the hand. When the cursor was not delayed, simple spikes were correlated with error at 

approximately -250 ms and at +200 ms. However, in the visual delay block, the peak of the correlation in 

the negative range shifted by 100 and 200 ms, but did not shift in the positive range. This means that 

the simple spikes predicted hand position (not cursor position) with respect to the target with a lead of 

around +250 ms. Importantly, simple spikes responded to error with a 200 ms delay and this delay 

remained stable even when there was an artificial delay in cursor feedback. The results provided further 

evidence that simple spikes were modulated following an error event. 
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Thus, simple spikes not only can carry error information, but that information is also sufficient to 

induce adaptation in the DCN, particularly if the simple spikes are synchronized. However, Eq. (5) and 

Eq. (6) impose a stringent requirement: the network must transmit the error that has been made by a 

single DCN neuron specifically to that DCN neuron. This means that if the P-cells that converge on a DCN 

neuron carry error information, that information must be the difference between the DCN neuron’s 

output and the desired output. At this writing, it is unclear how the P-cells through their simple spikes 

might convey this specific error signal.  

 

Possibility 2: transmitting error information to the deep nucleus via complex spikes 

If we assume that the olivary information regarding the error that the DCN neuron has made is not 

conveyed to the DCN neuron directly (via a projection from the olive), we are left with the possibility 

that the DCN neuron becomes informed of its error through an indirect pathway. The obvious indirect 

pathway is from the parent P-cells (Lang et al., 2017; Medina, 2011).  

A complex spike is a significant event at the soma of a P-cell, generating multiple spikelets. 

However, the P-cell’s axon transmits this event to the DCN via ordinary spikes (Ito and Simpson, 1971): 

typically one axonal spike at the onset of the complex spike (with near 100% probability) and another 

one at the final somatic spikelet (about 60% probability) (Khaliq and Raman, 2005; Monsivais et al., 

2005). Thus, the information in the climbing fiber is transmitted from a P-cell to the DCN as a sequence 

of one or two ordinary spikes. This makes it unlikely that a DCN neuron could dissociate between a 

complex spike and a simple spike. If synchronous simple spikes can produce plasticity in the DCN (Lee et 

al., 2015), perhaps synchronous complex spikes can also accomplish this feat. 

When the inferior olive is electrically stimulated, at 5-10 ms latency there is occasionally a single 

spike in a DCN neuron (Bengtsson et al., 2011; Hoebeek et al., 2010). This is likely due to the direct 

excitatory projections from the olive to the DCN. This occasional spike is then followed by suppression of 

DCN activity that lasts around 50 ms (Fig. 2) (which can be followed by a rebound burst of activity). The 

suppression is present in many DCN neurons, including output neurons that do not project to the olive 

  

 

 

 

Figure 2. Effect of inferior olive stimulation on DCN 
neurons (interposed nucleus) in an anesthetized rat. 
Neurons in the inferior olive were stimulated while an 
electrode recorded activity of an excitatory neuron that 
projected to the red nucleus. Stimulation of the inferior 
olive produced a 50 ms pause in the activity of the DCN 
neuron. From Hoebeek et al. (2010), used by 
permission.  

 



13 

 

(e.g., non-GABA-ergic neurons that project to the red nucleus) (Hoebeek et al., 2010). If we view olivary 

stimulation as an artificial means to provide error feedback to the cerebellum, then that error leaves its 

impression not via a strong EPSC in the DCN neuron, but surprisingly, via a strong suppression. 

A series of experiments by Lang and colleagues (Blenkinsop and Lang, 2011; Tang et al., 2019, 

2016) provided critical clues regarding how the activity in the olive produced the suppression in the 

DCN. Blenkinsop and Lang (2011) inserted an array of electrodes into the anesthetized rat’s cerebellar 

cortex along with a single electrode into the DCN. This allowed them to simultaneously record from 8-34 

P-cells and 1-2 DCN neurons. In order to determine if one of the P-cells was connected to one of the 

DCN neurons, they identified complex spikes in each P-cell and used that event to align the spikes 

recorded from the DCN neuron. The result was a complex spike-triggered response in the DCN neuron 

(Fig. 3A).  

In about 100 cases the spike-triggered response suggested that one of the P-cells was connected 

to one of the DCN neurons. In 70 of the 100 putative P-cell DCN neuron pairs the occurrence of a 

complex spike was followed by a suppression in the DCN, a suppression that lasted from 50-100 ms (Fig. 

3A, right top subplot). In 24 pairs, the complex spike in the P-cell was coincident with a brief increase in 

firing rate of the DCN neuron, and then suppression (Fig. 3A, right bottom subplot). The authors 

interpreted the small increase as the effect of the weak projections from the olive to the nuclear 

neuron. Therefore, a single axon from the olive could project both to a DCN neuron, and to the P-cell 

 

Figure 3. An olivary neuron that projects to a P-cell receives input from the DCN daughter neuron of that P-cell. A. 
Electrode array recordings from multiple P-cells and a single DCN neuron in an anesthetized rat. To determine if a 
P-cell projected to the DCN neuron, the complex spike in the P-cell was used as the trigger to align the spikes in the 
DCN neuron. The data on the right are from two instances in which the spike-triggered averaging suggested a P-cell 
to DCN projection. In 70% of the pairs the complex spike in the P-cell was followed by reduced activity in the DCN 
neuron (top right). In 21% of the pairs there was an initial spike in the DCN neuron followed by reduced activity. 
The P-cells that appeared connected to a single DCN neuron were usually clustered together along the rostra-
caudal axis of the cerebellum, as shown on the left with red-filled electrodes in the array. From Blenkinsop and 
Lang (2011) and Tang et al. (2019), used by permission. B. Optogenetic stimulation of P-cells is followed by 
production of a complex spike. P-cells were optogenetically stimulated while activity was recorded with an 
electrode. Stimulation resulted in intense production of simple spikes, which was then followed at a latency of 
about 100 ms with a complex spike. A model suggests that P-cell stimulation strongly suppresses the DCN neuron, 
which in turn removes inhibition from the olivary neuron. The olivary neuron has a membrane potential that 
oscillates due to presence of gap junctions (Zeeuw et al., 2003). Removal of inhibition allows the potential to reach 
threshold sooner, resulting in climbing fiber activity in the parent P-cell, and thus a complex spike. From Chaumont 
et al. (2013), used by permission. 
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that synapsed on that DCN neuron (Fig. 1C).  

If the error associated with a DCN neuron’s output is conveyed to it via its parent P-cells, then 

we should observe complex spikes in the parent P-cell following an error by the DCN neuron. There is 

indirect evidence for this from optogenetic stimulation of P-cells. A 50 ms period of P-cell stimulation 

results in synchronized production of simple spikes, but when the P-cell stimulation ends, at 80-150 ms 

latency the P-cells produce a complex spike (Chaumont et al., 2013) (Fig. 3B, top subplot). The 

interpretation is that when many P-cells are simultaneously activated, they inhibit their downstream 

DCN neurons synchronously, preventing these neurons from firing. This suppression of the DCN 

neuron’s activity removes a source of inhibition at the olive. The removal of that inhibition allows the 

olivary cells to reach threshold earlier and fire, resulting in a complex spike in the P-cells (Fig. 3B, bottom 

subplot). This interpretation is consistent with a closed loop in which P-cells project to a DCN neuron, 

which then projects to an olive neuron, which then projects back to the parent P-cell (Fig. 3B), termed 

an olivocerebellar module (De Zeeuw et al., 1997). 

Thus we potentially have the following anatomy (Heck et al., 2013): the olive neuron that 

computes the error associated with a GABA-ergic DCN neuron’s output conveys that error via a single 

climbing fiber to a P-cell. That P-cell then projects back to that specific GABA-ergic DCN neuron, which 

then projects to the olive neuron that computed the error (Fig. 3B). 

Conjecture C3. The error associated with a GABA-ergic DCN neuron’s output is computed by an 

olive cell and then sent via climbing fibers to a few P-cells which then project back down to that specific 

DCN neuron. 

This conjecture describes an olivocerebellar module (De Zeeuw et al., 1997), and is the result of 

roughly three decades of anatomical observations (Ruigrok and Voogd, 2000). A single axon from the 

olive projects to approximately 7 P-cells, all located at similar distances from the midline, most of which 

are clustered within a single lobule (Sugihara et al., 1999, 2001). Molecular markers, notably the 

respiratory enzyme aldolase C (commonly known as zebrin II), define about 20 longitudinal 

compartments in the cerebellar cortex, each receiving inputs from specific regions of the inferior olive. 

P-cells that are located in the same compartment, and have similar climbing fiber receptive field 

characteristics, project to the same small area in one of the DCNs (Apps and Garwicz, 2000). Indeed, 

Lang and colleagues (Tang et al., 2019) noted that the P-cells that project to a single DCN neuron were 

not randomly distributed, but clustered along the rostra-caudal axis of the cerebellum (Fig. 3A). Tracing 

studies have identified specific projections from the olive to each compartment in the cerebellar cortex 

(Apps and Garwicz, 2005). The olive projects to both GABA-ergic and non-GABA-ergic neurons in the 

DCN (De Zeeuw et al., 1997). There are no molecular markers that have thus far shown 

compartmentalization of the DCN. However, DCN regions are divided based on tracing of inputs from 

the olive (Sugihara & Shinoda, 2007). P-cells that are in a given compartment, and thus receive an input 

from a region in the olive, project to a region in the DCN that also receives inputs from the same olive 

region (Sugihara et al., 2009). Finally, as we noted in conjecture C1, olivary projections to the DCN are 

reciprocal: if a region in the olive projects to a region in the DCN, that DCN region also project back to 

that specific region of the olive (Ruigrok and Voogd, 2000). Thus, we have the anatomical basis of the 

closed olivo-cortico-nuclear circuit that connects a longitudinal compartment of P-cells to a small 

subarea in the DCN (Sugihara, 2011).  
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In our theoretical framework, this anatomy serves a critical purpose: by potentially 

synchronizing the complex spikes in a small group of P-cells that project to a single DCN neuron, the 

olive provides that DCN neuron with a reliable, life-long error signal, despite the fact that the olivary 

inputs to the DCN neuron weaken with development (Najac and Raman, 2017), and may not play a 

significant role in adulthood (Lu et al., 2016).  

Medina and Mauk (1999), building on ideas put forth by Miles and Lisberger (1981), had 

conjectured that whereas the climbing fiber input to the P-cell controls plasticity of parallel fiber inputs 

to that cell, it is the P-cell that controls the plasticity of mossy fiber inputs to its downstream DCN 

neuron. For this to happen, the mathematics require the P-cell to somehow communicate to its DCN 

neuron the fact that it has received an input in its climbing fiber. The results in Figs. 2 and 3 show that 

the signal from the olive to a P-cell can have a dramatic effect on the firing rates of nucleus neurons: 

following a single complex spike, there can be a 50 ms reduction in the firing rate of the DCN neuron. To 

be sure, some of these results are in the anesthetized state. Do they generalize to the awake, behaving 

animal?  

ten Brinke et al. (2017) trained mice to associate an LED with an air puff and recorded from the 

interposed nucleus. During training, most task-related DCN neurons increased their discharge in 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. During learning of a behavior, some DCN 
neurons show a transient pause that appear related to 
arrival of error information via a complex spike in their 
parent P-cells. Recordings are from P-cells and neurons 
in the interposed nucleus as mice learned to associate 
an LED with an air puff. The LED onset and the air puff 
both tended to produce complex spikes in P-cells, which 
coincided with a transient pause in DCN neurons. From 
ten Brinke et al. (2017), used with permission. 
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response to the LED, and this increase was causally related to production of the eye-blink. The LED 

onset, which was a random event (thus producing a prediction error) and the air puff, both tended to 

produce a single complex spike in a few P-cells (Fig. 4A). However, in DCN neurons, the LED onset and 

especially the air puff tended to produce a transient pause in spiking (Fig. 4B). The DCN neurons that 

produced the air puff-induced pause also tended to show greater facilitation in their spiking during the 

LED period, presumably driving the eye-blink response. Thus, during learning of a behavior, some DCN 

neurons showed a transient pause that appeared related to arrival of a complex spike in P-cells. 

However, we do not know if the P-cells in Fig. 4A project to the specific DCN neurons shown in Fig. 4B. 

Thus, we do not know if in this data set there is a causal relationship between P-cell complex spikes and 

suppression in DCN activity.  

Results of Tang et al. (2019) provide the needed evidence. They noted that in anesthetized 

animals, the P-cells that projected to a single DCN neuron tended to have higher levels of complex spike 

synchrony than P-cells that did not project to the same neuron (Fig. 5A). Indeed, when they 

simultaneously recorded from 6 or 7 P-cells that were putatively connected to a single DCN neuron, they 

found that if the complex spikes in the parent P-cells were not synchronous, a single complex spike by 

itself had little or no effect in the DCN neuron (Fig. 5C, subplot in which 1/7 P-cells had a complex spike). 

However, if by chance the complex spikes in some of the parent P-cells were synchronous, their 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effective transmission of the error signal 
to the nucleus requires complex spike synchrony. 
A. Groups of P-cells that project to a single DCN 
neuron tend to have higher levels of complex spike 
synchrony than groups of P-cells that do not 
project to the same neuron. From Tang et al. 
(2019), used with permission. B. Following a 
complex spike, there is a 10-20 ms period of total 
simple spike suppression in the P-cell. Data are 
from awake behaving marmoset. From Sedaghat-
Nejad et al. (2019), used with permission. C. Effect 
of a complex spike on suppressing DCN activity is 
greater if the event is synchronized among the 
parent P-cells. From Tang et al. (2019), used with 
permission. 
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simultaneous convergence produced a suppression (Fig. 5C, 4/7 P-cells had a complex spike). In the rare 

event that all 7 of the recorded P-cells happened to produce a complex spike simultaneously, the DCN 

neuron’s suppression was strong and long lasting (Fig. 5C, 7/7 condition). 

Note the similarity between the effect of a complex spike on a P-cell, and its effect on a DCN 

neuron: following a complex spike, both the P-cell (Fig. 5B) and the DCN neuron that it projects to (Fig. 

5C) can experience a long-lasting suppression of spiking activity. In the case of a P-cell, a complex spike 

is followed by 10-20 ms of total suppression of simple spikes (Fig. 5B). This is partly due to the fact that a 

climbing fiber that innervates a P-cell also sends an axon collateral to a nearby molecular layer 

interneuron, which in turn inhibits that P-cell (Jörntell and Ekerot, 2002). In the case of a DCN neuron, a 

complex spike in the parent P-cell is followed by a reduction in the firing rate of the nucleus neuron, 

lasting about 50 ms, but only if that there is temporal synchrony among the complex spikes.  

We are now in position to offer a tentative solution to puzzle P2.  

Conjecture C4. A DCN neuron is informed of its erroneous output via synchronous complex spikes 

in the population of P-cells that converge upon it.  

Around 50 P-cells project to a single nucleus neuron (in mice) (Person and Raman, 2012b). If 

these P-cells shared a common error signal from the olive, then they could solve an important problem: 

through simultaneity of their complex spikes, the P-cells could reliably transmit error information to the 

output layer. 

There is evidence for the idea that unexpected perturbations increase synchrony of complex 

spikes, and that synchronous complex spikes are essential for normal learning. Van Der Giessen et al. 

(2008) produced mice that lacked gap-junctions, which are prominently expressed in the inferior olive. 

Gap-junction deficient mice showed impaired ability to learn to time their eye blink response to the end 

of a tone (at which point an air puff was directed to the eyes). Instead, the mice tended to close their 

eyes in response to the onset of the tone. The authors examined complex spike timing in the P-cells of 

lobule VI in the posterior lobe and found that in response to an air puff, the wildtype mice produced a 

single complex spike that was timed at around 30 ms average latency. In contrast, in the gap-junction 

deficient mice the air puff produced complex spikes that were distributed more widely in time with two 

peaks, one at 30 ms and another at 101 ms latency. Later work demonstrated that lack of gap junctions 

reduced the probability that complex spikes would be produced synchronously among P-cells in 

response to a perturbation during locomotion (De Gruijl et al., 2014).  

In summary, it is possible that the olivocerebellar module, i.e., the loop from a P-cell to a DCN 

neuron to an olivary neuron back to the same P-cell, serves a fundamental purpose: it allows the olive to 

convey the error in the output of a DCN neuron to a small group of P-cells, thus generating synchronous 

complex spikes which can then suppress activity in the DCN neuron that produced the erroneous 

output. 

 

Plasticity in the DCN 

De Zeeuw et al. (2011) had conjectured that the complex spike induced suppression of activity in DCN 

(and the rebound that followed in some DCN neurons) played a key role in control of DCN plasticity. 
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Indeed, Raman and colleagues (Person and Raman, 2010; Pugh and Raman, 2008) had observed that a 

sequential pattern of excitation followed by inhibition in a DCN neuron produced long term potentiation 

(LTP)  in the mossy fiber synapses: when a period of excitation (150 ms) in the DCN neuron preceded a 

period of strong inhibition (250 ms), mossy fiber synapses strengthened. Similarly, in the medial 

vestibular nucleus (a DCN analogue for some regions of the cerebellar cortex), vestibular nerve synapses 

(a mossy fiber analogue) on the vestibular nucleus neurons exhibited LTP when nerve stimulation 

coincided with nucleus neuron hyperpolarization (McElvain et al., 2010). In addition, Zhang and Linden 

(2006) had found that a period of mossy fiber excitation alone led to long term depression (LTD) of the 

mossy fiber synapses.  

Thus, we have a potential mechanism with which the error in the output of a DCN neuron can 

cause plasticity in that specific DCN neuron: 
( )d
ie −

 is detected by an olive cell and sent via climbing fibers 

to a population of P-cells whose synchronous complex spikes produce a suppression of spiking in the 

DCN neuron. If that suppression is preceded by a period of excitation from mossy fibers, the result is an 

increase in the weight of the mossy fiber synapses on the DCN neuron. On the other hand, without this 

suppression there may be a decrease in the weight of the mossy fiber synapses. 

Complex spike induced suppression of spiking in the DCN neuron must also affect the strength 

of the P-cell synapse onto the DCN neuron. Mechanisms of plasticity in the P-cell synapses in the nucleus 

are poorly understood, but there is some evidence that this plasticity depends on activation patterns 

that resemble the suppression of DCN activity that follows a complex spike. Aizenman et al. (1998) 

found that in slices from the cerebellum of juvenile rats, following 200 ms of hyperpolarization that 

suppressed the nuclear cell’s spiking, there was rebound depolarization (i.e., a burst of spikes). The 

amount of this rebound depolarization dictated the direction of plasticity in the P-cell synapse: if the 

rebound was missing or weak, the synaptic strength was reduced. It is noteworthy that in vivo, 

generation of a complex spike in the parent P-cell not only leads to a period of suppression of spiking in 

the DCN neuron, this suppression is occasionally followed by a burst of spiking (Hoebeek et al., 2010). 

Results of Aizenman et al. (1998) imply that the magnitude of this rebound depolarization influences 

direction of weight change in the P-cell synapses upon the DCN neuron. 

In summary, DCN neurons provide the output of the cerebellum and must be informed of their 

errors. However, most of these neurons do not project to the olive, one of the locations where error 

may be computed. Furthermore, those that do project to the olive receive olivary projections that 

progressively weaken through development. As a result, at present we do not know how a DCN neuron 

learns to change its erroneous output. However, synchronous complex spikes in the parent P-cells can 

produce a 50 ms period of suppression in the DCN neuron. If the suppression is preceded by a period of 

excitation, the synaptic inputs from the mossy fibers to the DCN neuron strengthen. If the suppression is 

followed by rebound spiking, the synaptic inputs from the P-cells to the DCN neuron strengthen. Thus, 

control of plasticity at the DCN may be via synchronous complex spike activity among the population of 

P-cells that project onto it, providing an indirect pathway that communicates the error information from 

the olive to the DCN neurons.  
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Membership criterion for P-cell populations 

We are now in position to make a guess regarding the membership criterion for the P-cell population: in 

order to transmit the error signal reliably from the climbing fiber to the DCN, there is a need for complex 

spike synchrony, which is more likely if the population of P-cells that project to a given DCN neuron 

share a similar error signal from the olive. Furthermore, for the error signal to be a teacher for the 

downstream DCN neuron, it must be generated by olivary neurons that compute the error in that DCN 

neuron’s output. 

The ideal scenario would be the following. Suppose that an olive neuron computes the error 

associated with a given DCN neuron, i.e., receives an inhibitory synapse from that DCN neuron. The olive 

neuron’s axon to the cerebellum should split and synapse on every one of the 50 P-cells that project to 

that DCN neuron. However, a single olivary axon projects to only about 7 P-cells (Sugihara et al., 1999, 

2001). Therefore, the population of P-cells that project to a nucleus neuron is bigger than what a single 

olive neuron can serve.  

A typical DCN neuron receives inputs from approximately 8 olivary axons (Najac and Raman, 

2017). If we imagine that each of these axons is a collateral from an olivary axon that travels to the 

cerebellar cortex and becomes the climbing fiber for 7 P-cells, then the olive to nucleus convergence 

ratio (8:1) combined with the olive to P-cell divergence ratio (1:7) produces roughly 56 P-cells that 

receive information about the error made by a single nucleus neuron. In a remarkable coincidence, 

about 50 P-cells converge on a single nucleus (in mice) (Person and Raman, 2012b). We thus arrive at 

our conjecture regarding the membership criterion for a P-cell population (Fig. 6A): 

Conjecture C5. The population of P-cells that project onto a DCN neuron is composed of those P-

cells that receive climbing fibers from the olivary neurons that also receive projections from that specific 

nucleus neuron. 

 

Figure 6. Membership criterion for population of P-cells. A. It is possible that the population of P-cells that project 
onto a single nucleus neuron is composed of those P-cells that receive climbing fibers from the olivary neurons 
that also project to that specific nucleus neuron. B. A single P-cell projects to about 4 DCN neurons, which include 
both GABA-ergic and non-GABA-ergic cells. Efficient learning requires that the error signal that the P-cell receives 
represent only these errors. Here, the GABA-ergic DCN daughters of a given P-cell converge their axons on a single 
olive neuron, and that olive neuron serves as the teacher for the parent P-cell, providing it with its single climbing 
fiber. The olive cell in turn sends excitatory projections to all the DCN daughters of the P-cell. 
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In summary, a handful of olivary cells send axons to a single nucleus neuron, and each olivary 

cell also sends climbing fibers to a handful of P-cells. Perhaps through development, the olivary cells 

guide those P-cells to project to the same nucleus neuron (Najac and Raman, 2017). In this scenario, the 

P-cell population that projects to a single DCN neuron would consist of P-cells that receive a climbing 

fiber from one of those olivary cells. If most of these olivary cells also receive a projection from that DCN 

neuron, then the olivary cells are in position to compute the error (Eq. 1) in the DCN neuron’s output 

and provide that information via climbing fibers to the 50 P-cells that represent the parent of the DCN 

neuron. The P-cells would transform the error information into a complex spike, which if synchronized 

with other P-cells in the population, would result in a brief suppression of the DCN neuron’s activity that 

was responsible for the error. This in turn would produce plasticity in the DCN neuron’s mossy fiber and 

P-cell synapses. If these conjectures are true, then the responsibility to teach a DCN neuron would be 

relegated to the population of P-cells that converged on that DCN neuron.  

 

An appropriate error signal for a P-cell 

The next step is to ask how we should teach the neurons in our middle layer, i.e., the P-cells. This may 

seem like a trivial task because each P-cell receives a climbing fiber, thus endowing it with a powerful 

channel to receive error information. Indeed, both the presence and absence of complex spikes 

synchronous with simple spikes produces parallel fiber plasticity (Jörntell and Ekerot, 2002). However, if 

we consider this question mathematically, we arrive at another useful inference. 

Due to its placement in the middle layer, a P-cell does not have a direct role in producing an 

output from the cerebellum, and is not directly responsible for any error. Rather, it projects to a handful 

of DCN neurons that produce outputs, and thus contribute to our loss function (Eq. 3). Importantly, 

because a P-cell projects to only 4 or 5 DCN neurons (Person and Raman, 2012a), it contributes to errors 

made by only these specific output neurons. The mathematics require that the climbing fiber that the P-

cell receives must carry error information related to activity of the DCN neurons that it projects to.  

If this were an artificial neural network, we would send a P-cell a distinct error signal associated 

with each of the DCN neurons it projects to. However, a P-cell has only a single climbing fiber. Thus, we 

face a puzzle in how to teach the P-cells. 

 Puzzle P3. A P-cell contributes to the activity of multiple DCN neurons. Yet, it receives only a 

single climbing fiber. How can the P-cell learn to change its activity in order to reduce the errors 

associated with the DCN neurons it projects to? 

Suppose that P-cell k  has activity 
( )p
ka , where the superscript refers to the fact that this unit is a 

P-cell. This P-cell projects to neurons  1, ,j N=  in the DCN layer, contributing to their activities ( )d
ja . 

As a result, the gradient of the loss function with respect to activity of this P-cell is: 
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The above expression implies that the error that the P-cell must learn from is proportional to the 

weighted sum of the errors made by its downstream DCN neurons. Unfortunately, the P-cell receives 

only a single climbing fiber. Thus, this climbing fiber must represent the errors made by all the DCN 

neurons  1, ,j N=  that the P-cell projects to. 

 Among the 4 or 5 DCN neurons that a single P-cell projects to, some are GABA-ergic, projecting 

to the olive, and some are non-GABA-ergic, projecting elsewhere in the brain (Teune et al., 1998). A 

potential solution to our puzzle is an anatomy in which the GABA-ergic DCN neurons of a given P-cell 

converge their axons on a single olive neuron, and that olive neuron serves as the teacher for the parent 

P-cell, providing it with its single climbing fiber (Fig. 6B). Alternatively, the GABA-ergic DCN neurons of a 

given P-cell may converge their axons on different olive neurons that are electrically coupled, one of 

which provides the climbing fiber to that P-cell. 

For this to be an effective solution, the GABA-ergic and non-GABA-ergic DCN neurons of our 

single P-cell would have to be matched in their activity, which is indeed what we had conjectured earlier 

when we considered the problem of teaching the two groups of DCN neurons (conjecture C2). This 

conjecture raises the following requirement: the olive cell that provides the climbing fiber to a P-cell 

should be the same olive cell that receives inhibitory projections from every GABA-ergic DCN neuron 

that this P-cell projects to (Fig. 6B). This is consistent with the proposal that during development, the 

activity of the climbing fiber, and particularly the coincidence of complex spikes in the parent P-cell with 

the DCN neuron’s EPSCs from the olive, may be a guide in wiring the cerebellum (Lang et al., 2017; Lu et 

al., 2016).  

 

Figure 7. Activity of P-cells during a saccade. A. Saccades were made to various directions with various amplitudes 
and velocities. The red trace shows the eye velocity, and black bars indicate instantaneous firing rates of two P-
cells. Each row is a single P-cell. Some P-cells exhibited a burst during the saccade, while others exhibited a pause. 
However, the duration of modulation tended to outlast the saccade by 50 ms or more. B. Averaged activity of burst 
and pause type P-cells during a saccade. From Herzfeld et al. (2015), used with permission. 
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In summary, efficient learning in a P-cell requires that its climbing fiber should come from an 

olive neuron that is the recipient of synapses from a specific group of DCN neurons: those that are 

“daughters” of that P-cell.  

 

Population coding of P-cells 

Vernon Mountcastle used to start some of his lectures by reminding his students that “if you want to 

know what a neuron does, figure out what it is connected to.” That advice looms large in the motor 

system, where control is often via population coding: a few dozen neurons in a region of the brain 

project to a common output neuron, forming a population that encodes an aspect of behavior. In this 

population, activity of a single neuron is less important than the collective activity of all the neurons. 

Unfortunately, we currently have no method that can label the membership of this population in the 

living brain. Instead, the common technique is to collect neurons into pseudo-populations based on the 

statistical properties of their discharge, for example, via principal component analysis, a technique in 

which one assigns a weight to each neuron’s output, and then labels the weighted sum of all activities as 

the population response (Churchland et al., 2010).  

We can take an alternate approach in the cerebellum, one that rests upon an a priori hypothesis 

about the role of the teacher (inferior olive) in organizing the students (the P-cells and their downstream 

DCN neurons). Our hypothesis states that P-cells that receive similar error signals are likely to be part of 

the same population (Fig. 6A). Recent work has tested this idea by organizing P-cells in the oculomotor 

vermis of macaques into populations that share a common teacher: a common complex spike tuning 

with respect to visual error.  

Saccadic eye movements depend critically on the cerebellum, as evidenced by the deficits 

observed in patients with cerebellar damage (Leigh and Zee, 2015; Xu-Wilson et al., 2009) and monkeys 

with lesions (Barash et al., 1999; Kojima et al., 2010a; Takagi et al., 1998). Electrical (Keller et al., 1983) 

or optogenetic (El-Shamayleh et al., 2017) stimulation of P-cells does not usually evoke a saccade, but 

alters saccade trajectory at 10-15 ms latency. Given this evidence, one might expect that P-cell simple 

spikes should encode kinematic parameters of saccades (e.g., eye speed, amplitude, or direction). 

However, individual P-cells show little modulation of simple spikes with respect to saccade kinematics 

(Helmchen and Buttner, 1995). Indeed, simple spikes during saccades (Fig. 7A) present a bewildering 

assortment of responses, including P-cells that produce a burst, P-cells that produce a pause, and P-cells 

that do both (Kojima et al., 2010b; Ohtsuka and Noda, 1995). Most puzzling is the fact that simple spikes 

are modulated well beyond saccade end (Thier et al., 2000), as shown in Fig. 7B.  

These puzzles are not unique to saccades. Both the diversity of simple spike responses, and the 

fact that modulation of discharge outlasts the movement are also features of P-cell activity during wrist 

(Ishikawa et al., 2014; Mano and Yamamoto, 1980; Tomatsu et al., 2016) and arm movements (Hewitt et 

al., 2015). For example, Ishikawa et al. (2014) recorded from nearly 200 P-cells during wrist movements 

and found bursters, pausers, and P-cells that exhibited both bursting and pausing. They found that the 

discharge modulation outlasted the movement, exhibiting no obvious patterns with respect to 

movement direction. Given that the cerebellum is critical for precise control of saccades (Robinson et 

al., 1993) as well as arm movements (Becker and Person, 2019; Chen et al., 2006; Viaro et al., 2017; Vilis 
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and Hore, 1980), it is puzzling that simple spikes of individual P-cells are modulated long after the 

movement ends. 

A key to this puzzle may be population coding. Peter Thier and colleagues (Catz et al., 2008; 

Thier et al., 2000) were first to sum activities of all recorded P-cells into a population response. They 

focused on “bursters” and demonstrated that although duration of the population response was longer 

than movement duration, it correlated with saccade duration (Thier et al. 2000), as well as a linear 

combination of position, velocity, and acceleration during pursuit (Dash et al., 2012). We extended this 

approach by considering all task-related P-cells (bursters, pausers, etc.), and then applied the hypothesis 

that the inferior olive divided the P-cells into groups wherein all the P-cells within a group shared a 

common response to error.  

To measure the error response of each P-cell, we relied on the observation that if a saccade 

concluded but the target was not on the fovea, some P-cells were likely to produce a complex spike 

(Junker et al., 2018; Kojima et al., 2010b; Soetedjo et al., 2008; Soetedjo and Fuchs, 2006). To measure 

the tuning of complex spikes, we induced visual errors. Following fixation, a target was presented in the 

periphery. As the monkey made a saccade toward the primary target, we jumped the target to a new 

position (Fig. 8A). During the 50-200 ms period following completion of the primary saccade the visual 

error (target position with respect to fovea) induced a complex spike with a probability that depended 

on the direction of the error vector (Fig. 8B). At around 150 ms after completion of the primary saccade, 

the animal made a corrective saccade.  

The jumping of the target often resulted in a complex spike, and then a corrective saccade. 

Thus, with these data alone we cannot say whether the complex spike was associated with the 

unexpected sensory event, the motor event that followed (i.e., the corrective saccade), or both. 

However, further experiments that we will review below suggest that the unexpected sensory event 

alone (Kaku et al., 2009; Soetedjo et al., 2009), without the motor correction (Tseng et al., 2007; 

 

Figure 8. P-cells in the oculomotor vermis exhibit complex spike tuning with respect to visual error. A. Animals 
made a saccade to a target location and experienced a visual error following conclusion of the movement. The 
data show the simple (black dots) and complex spikes (red dots) of a P-cell in the period following saccade end. 
The center polar plot describes the probability of complex spike in the 50-200 ms period following saccade end. 
The direction of error that induced the greatest probability of complex spikes is noted by the red vector labeled CS-
on. B. Probability of complex spike during the time following saccade end. Data are averaged from 72 P-cells. C. 
Probability of complex spike was averaged across 72 P-cells, aligned to CS-on. From Herzfeld et al. (2015), used 
with permission. 
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Wallman and Fuchs, 1998), may be the main driver of the complex spikes. 

For each P-cell the emission of complex spikes depended upon the direction of error (Fig. 8C). 

The direction of error that produced the largest probability of complex spikes in the post-saccadic period 

for a given P-cell was labeled as CS-on. The complex spike tuning for all cells is plotted in Fig. 8C. We 

found that if the error was in direction CS-on, following saccade completion the probability of complex 

spikes peaked at around 100 ms, producing a response that was roughly twice the baseline. In contrast, 

if the error was in direction CS-on+180, the probability of complex spike decreased by roughly 40% 

below baseline. Importantly, the probability of a complex spike following saccade end was unrelated to 

direction of the preceding saccade. Rather, it was driven by the direction of the post-saccadic error. 

These results were acquired in macaques and then confirmed in marmosets (Sedaghat-Nejad et al., 

2019). Thus, in two primate species, P-cells in the oculomotor vermis exhibited a strong preference for 

direction of the visual error. 

This preference for error appears to be present in P-cells of other species as well. In the 

cerebellum-like circuit of the electric fish, MG-cells, which are analogous to P-cells, produce broad spikes 

that are analogous to complex spikes. An unexpected sensory input produces broad spikes in some MG-

cells, but suppresses the broad spikes in others (Muller et al., 2019). Thus, MG-cells in the electric fish 

also exhibit a tuning for error. 

After we organized the P-cells in groups that shared similar complex spike tuning with respect to 

the visual error, a remarkable pattern emerged. The simple spikes produced by the population of P-cells 

appeared related to eye velocity (Fig. 9A). That is, whereas individual P-cells exhibited great diversity in 

their responses, with activity that was modulated long after the saccade had ended (Fig. 7A), as a 

population the simple spikes appeared to be associated with motion of the eyes rather precisely. For 

example, when the saccade was in the anti-preferred error direction (CS-on+180) of the P-cells, the 

combined simple spikes of the population increased before saccade onset, had a peak discharge that 

scaled with peak velocity of the eye (Fig. 9A), and then exhibited a brief period of reduce activity that 

coincided with deceleration of the eyes. It is remarkable that this pattern was not present in the activity 

 

Figure 9. Simple spike population response of P-cells during a saccade. A. P-cells were organized into 50 member 
populations and their simple spike rates were summed as a saccade was made in direction CS-on+180. Saccades 
associated with three different peak velocities are shown. B. Simple spike population response are shown across all 
saccades made in direction CS-on and CS-on+180. C. Peak simple spike population response increased linearly with 
peak saccade velocity, but with a higher gain when the saccade was in direction CS-on+180. From Herzfeld et al. 
(2015), used with permission. 
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of any single P-cell but unmasked in the population.  

If saccade direction was aligned with the CS-on direction of the P-cells, the peak population 

response still correlated with peak eye velocity, but now with a lower gain (Fig. 9C), and without the 

reduced activity during the deceleration period. Therefore, the population response appeared 

modulated by velocity of the eye, with a gain that multiplicatively depended on direction of motion. This 

encoding is termed a “gain-field”: the magnitude of the population response increased linearly with 

speed, and was cosine tuned in direction, with a multiplicative interaction between speed and direction. 

Gain fields are also employed by cells in the posterior parietal cortex to combine two pieces of 

information, position of the eye in the orbit and position of the stimulus on the fovea (Andersen et al., 

1985). 

A limitation of this work is that it included P-cells from 5 monkeys, yet organized them into a 

single population. Future work will test whether P-cells in a single animal exhibit population coding that 

resembles the data shown in Fig. 9. 

In summary, in both macaques and marmosets, individual P-cells in the oculomotor vermis had 

simple spikes that were modulated for periods that lasted much longer than the saccade. The conjecture 

that the olive organized the P-cells (Fig. 6A) presented a hypothesis for population coding: P-cells that 

shared a similar error signal would group together to influence a DCN neuron. To find population 

membership, we measured each P-cell’s complex spike response to post-saccadic visual error. We 

assigned membership based on complex spike tuning, and then simply summed the simple spikes of the 

member P-cells. The resulting sum of simple spikes produced a population response that presented a 

consistent pattern. In direction CS-on+180, simple spikes increased by an amount that correlated with 

peak velocity of the eye, and then reduced activity as the eyes decelerated. In direction CS-on, simple 

spikes increased by a smaller amount during acceleration, and then returned to near baseline during 

deceleration. Hence, when the P-cells were organized into populations that shared a similar preference 

for error, their simple spikes as a population appeared to play a role in controlling the real-time motion 

of the ongoing saccade. This framework for forming P-cells into populations await testing and 

confirmation in other paradigms and laboratories. 

 

Superior colliculus and the origin of the error signal in the complex spikes of saccade-related P-cells 

Why do P-cells in the oculomotor vermis exhibit complex spikes that are tuned with respect to visual 

error? Recent experiments suggest that complex spike tuning reflects activity of neurons in the superior 

colliculus in response to events in the visual field (Kaku et al., 2009; Kojima and Soetedjo, 2018; Soetedjo 

et al., 2009). In this framework, activity in a specific region of the colliculus drives the contralateral 

inferior olive (Saint-Cyr and Courville, 1982), leading to production of complex spikes in a group of P-

cells (Soetedjo et al., 2019). To illustrate this process, let us consider an example. 

Superior colliculus is a topographic structure, organized into regions that respond to visual 

inputs with respect to the fovea (Mays and Sparks, 1980). Suppose we place a target at location “a” on 

the left of the screen and ask a volunteer to make a saccade toward it (Fig. 10A). During this primary 

saccade, we erase target “a” and replace it with a target at “b”, located a few degrees to the left of “a”. 

As the primary saccade ends, imagine that the cerebellum predicts that the target should be near the 
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fovea, and thus there should be activity among the foveal-related neurons in the rostral pole of the 

colliculus. However, the actual sensory consequence is different: the visual stimulus is a few degrees to 

the left of the fovea, and thus there is higher than expected activity in a group of neurons located in the 

right caudal superior colliculus (red region “b” in right colliculus, Fig. 10B), and lower than normal 

activity in a group of neurons in the left caudal superior colliculus (blue region in the left colliculus, Fig. 

10B). The presumed lower than normal collicular activity is a speculation based on the fact that caudal 

neurons in one colliculus inhibit the neurons on the contralateral side (Mascetti and Arriagada, 1981; 

Munoz and Istvan, 1998; Takahashi et al., 2005). Some of the affected neurons in the left and right 

superior colliculus project to neurons in the right and left olive, respectively (Saint-Cyr and Courville, 

1982). Hence, in this hypothetical framework, the collicular map of the visual space is at least partly 

responsible for the complex spike tuning of the P-cells in the oculomotor vermis. 

There is experimental evidence in support of the idea that unexpected activity on the colliculus 

is the source of the complex spikes that drive learning in the saccade task. Soetedjo et al. (2009) and 

Kaku et al. (2009) used sub-threshold stimulation following saccade termination to artificially produce 

unexpected activity in a small region of the colliculus. Their idea was to mimic collicular activity that 

would arise from a visual error and do this without eliciting the corrective saccade that would normally 

follow the visual error. For example, at around 80 ms following completion of the saccade, they 

stimulated a region of the superior colliculus that was associated with visual activity of magnitude 2o in a 

specific direction with respect to the fovea. They found that this sub-threshold stimulation led to 

saccade adaptation that corresponded to the direction and magnitude of this error vector. Their results 

established that unexpected activity in a small group of neurons in the superior colliculus following 

saccade end acted like an error, inducing learning. 

To test whether unexpected collicular activity was necessary for learning, Kojima and Soetedjo 

(2018) deactivated a small region of the colliculus using muscimol. Their idea was to eliminate the ability 

of the colliculus to communicate to the inferior olive the presence of an unexpected visual event, and 

thus block the error signal. Notably, they took advantage of the topographic map of the colliculus and 

focused the disruption on a specific vector in the visual space. They found that the disruption led to near 

elimination of learning. That is, the animals were unable to learn from that specific error vector.  

Finally, to test whether collicular activity is the source of complex spike tuning, Soetedjo et al. 

(2019) used sub-threshold stimulation of the colliculus while the animal was fixating and recorded from 

P-cells in the oculomotor vermis. They noted that stimulation at a particular location on the colliculus 

reliably produced a complex spike (at around 15 ms latency). They then recorded the complex spike 

tuning of each P-cell with respect to visual errors during a saccade task (as in Fig. 8A). Remarkably, when 

subthreshold stimulation of a particular region of the colliculus produced complex spikes in a P-cell, the 

direction of saccade that was encoded by that particular region tended to be aligned to the direction of 

visual error that was preferred by the P-cell. 
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These results suggest that a major source of complex spikes in the oculomotor vermis is 

unexpected activity in the superior colliculus, and that CS tuning of P-cells with respect to direction of 

visual error is likely derived from spatial organization of collicular neurons with respect to the visual 

space. 

 

Figure 10. Hypothetical relationship between preferred error of a P-cell and the projections of its DCN daughters. 
A. A model of activity in the superior colliculus as the subject views a fixation point and a target is presented at 
location “a”. During fixation, foveal related neurons in the rostral part of both colliculi are active. Presentation of 
the target “a” activates neurons in the caudal region of the right colliculus (orange, labeled “a”), which results in a 
saccade. A copy of the saccade related activity is sent via mossy fibers to the cerebellum. B. At saccade end, the 
target is expected to be on the fovea. Instead, the target is at location “b”. This produces activity in a region 
labeled “b” in the right colliculus, which in turn inhibits a region on the contralateral colliculus. The unexpected 
activity on the right colliculus engages olivary neurons on the contralateral side, which produce a complex spike 
among P-cells on the right of the oculomotor vermis. The unexpected reduced activity on the left colliculus also 
affected the contralateral olive, which reduces the complex spike probability for P-cells to the left of the vermis. 
Presence of complex spike for the right P-cells slightly depresses the parallel fiber synapses that were activated 
during the preceding saccade. The lack of complex spike in the left P-cells slightly increases the weight of the 
parallel fiber synapse. The P-cells on the right project to DCN neurons that project to burst generators that activate 
motoneurons that pull the eyes to the left. On the next saccade, presentation of the same mossy fiber input now 
produces a slight reduction in the simple spikes of P-cells on the right (with respect to the previous trial), which 
results in greater force production to the left. Similarly, the P-cells on the left side of the vermis produce slightly 
more simple spikes, and this results in production of slightly less right-ward force. Hence, if there is a 
correspondence between the preferred action of the DCN neurons and the preferred error of their P-cell parents, a 
prediction error results in learning that correctly compensates for the experienced error. That is, the DCN neurons 
project to a group of downstream neurons that can produce an effect that will remedy the specific error that is of 
concern to the parent P-cells. 
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Projections of DCN neurons and their relationship to complex spike tuning of the parent P-cells 

We do not need the cerebellum to make a saccade (or any other movement). The superior colliculus is 

quite capable of activating the brainstem burst generators and the downstream motoneurons to 

produce a saccade. However, without the cerebellum’s contributions the saccade is dysmetric, 

particularly for its horizontal component. For example, if a DCN (caudal fastigial nucleus) on one side of 

the cerebellum is disabled, the horizontal component of the saccade will overshoot the target when it is 

shown toward the same side (hypermetria), and undershoot the target if it is shown on the other side 

(hypometria) (Goffart et al., 2004; Guerrasio et al., 2010; Robinson et al., 1993). In particular, saccades 

to the side of the deactivated DCN are hypermetric and have a larger than normal amount of 

acceleration (Quinet and Goffart, 2007), while missing some of the deceleration commands that are 

needed to stop the eyes (Buzunov et al., 2013; Kojima et al., 2014). This is likely due to combined effects 

from both DCNs: the unaffected DCN produces unopposed agonist drive, while the lesioned DCN is 

unable to produce an antagonist drive (Bourrelly et al., 2018). Thus, the cerebellum adds something to 

the ongoing movement. What is it adding? 

To answer this question, consider that a P-cell may have a preference for a particular aspect of 

error (tuning of its complex spikes), but that error is not its direct responsibility. Rather, the error arises 

because of a miscalculation in the output of the DCN neurons that the P-cell projects to. Where do these 

DCN neurons project to? Are the projections related to the preferred error (i.e., CS-on) of the parent P-

cell?  

Eq. (8) provides a clue: the error signal that is conveyed via a climbing fiber to a P-cell must be 

associated with the olivary cell that computes the error in the output of the DCN “daughters” of the P-

cell. But P-cells do not respond equally to all errors. Rather, they are most concerned with a specific 

error, as evidenced by their complex spike tuning. Perhaps the DCN neurons should produce 

downstream effects that will alleviate the specific error concerns of their parent P-cells. 

In our example in Fig. 10A, we placed a target at location “a” and then jumped it to location “b”. 

This produced unexpected activity in certain regions of the colliculus. That activity was unexpected 

because it was not predicted by the GABA-ergic DCN neurons that inhibit the specific olive cells that 

these collicular regions project to. The larger than expected activity in the right colliculus leads to 

increase in complex spike production among the P-cell parents of the right DCN neurons, whereas the 

(hypothetically) smaller than expected activity in the left colliculus leads to suppression of complex 

spikes among the parents of the left DCN neurons.  

Thus, a single unexpected event that occurs after completion of a saccade (the target is not on 

the fovea) is a miscalculation by two distinct groups of DCN neurons. Their miscalculations are conveyed 

to their parents P-cells via climbing fibers. The change in complex spike probability (with respect to 

baseline) signals to the P-cell that the DCN neurons that it projects to failed to correctly anticipate the 

sensory consequences of the movement. Therefore, if these DCN neurons are to correctly predict the 

visual consequences of this saccade, they must learn to anticipate the activity that will take place in 

neurons which reside in the caudal region of the superior colliculus, and cancel it when it is conveyed to 

the inferior olive. If they did that, they would inhibit the olive neurons that these collicular neurons 

project to, anticipating their activity and returning the complex spikes to baseline. As a result, if a P-cell 
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exhibits a preference for leftward visual errors, this implies that its DCN daughters project to an olivary 

neuron that receives excitatory inputs from collicular neurons that encode a region to the left of the 

fovea (Fig. 10A).  

However, it is not enough for the cerebellum to merely learn to predict the sensory 

consequence of a movement. Rather, we need a mechanism with which to alter the motor commands 

and guide the saccade to the desired destination, placing the target on the fovea. That is, motor learning 

is not about eliminating sensory prediction errors by building more accurate predictors (termed forward 

models). Rather, motor learning aims to improve movements. This provides us with a clue as to where 

the non-GABA-ergic DCN daughters of a P-cell should project to.  

Conjecture C6. A DCN neuron should project to a group of neurons that can produce an effect 

that will remedy the specific error that is of concern to the parent P-cells. 

For example, if the saccade concludes but the target is to the left of the fovea (Fig. 10B), and 

there is a P-cell population that prefers this error, then the non-GABA-ergic DCN daughters should be 

able to do something constructive about eliminating this error. They could do that if their axons 

projected to neurons that indirectly engaged muscles that pulled the eyes horizontally to the left (Fig. 

10B), for example by projecting to burst generators that act on left-pulling abducens motoneurons. 

Similarly, for the P-cell population that prefers errors to the right, a constructive action would be for 

their DCN neurons to reduce the drive for right-ward pulling abducens motoneurons. With access to 

effectors, the non-GABA-ergic DCN neurons could profitably influence the saccade’s trajectory in a way 

that would help restore the complex spikes in their parent P-cells toward baseline.  

Now let us consider how presence of this leftward error at saccade end should produce trial-to-

trial learning. The leftward error increases probability of complex spikes for P-cells that prefer that error, 

slightly reducing their simple spikes on the next trial (push more to the left). The same error decreases 

the probability of complex spikes for P-cells for which this error is CS-on+180, slightly increasing their 

simple spikes on the next trial (push less to the right). As a result, on the next trial, as the target is shown 

at location “a” and the saccade is made, the cerebellum via its non-GABA-ergic DCN neuron adds a small 

leftward force to the ongoing motor commands, guiding it toward location “b”. If such an anatomy 

existed, the non-GABA-ergic neurons would be able to alter the saccade’s trajectory, reducing the 

sensory prediction error. 

The suggested correspondence between the error that concerns the parents and the 

downstream influence of the DCN neurons helps us understand why the population of P-cells show 

reduced activity when the saccade is decelerating toward the CS-on+180 direction, but not when it is 

decelerating toward direction CS-on (Fig. 9B). In the oculomotor vermis of the cerebellum, P-cells that 

are on the right side of the midline project to the right caudal fastigial nucleus. These P-cells tend to 

prefer errors that are to the left part of the visual space (Herzfeld et al., 2015), and thus have their CS-

on+180 to the right. According to conjecture C6, their DCN neurons indirectly affect effectors that 

produce a leftward force. When a rightward saccade is made, the P-cell population shows reduced 

activity during the deceleration period because this leads to increased activity in their DCN neurons, 

which in turn increases leftward forces, helping stop the saccade. 

If indeed the direction of CS tuning of a population of P-cells corresponds to the direction of 

action of their downstream DCN neurons (Fig. 10), then what might happen if the P-cells are artificially 
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stimulated during a saccade? If the P-cells are on the left side of the vermis, they would tend to have 

rightward CS-tuning (because their climbing fibers originate from olivary cells that receive input from 

the left superior colliculus). If these P-cells are stimulated, their higher than normal activity would 

suppress the left caudal fastigial nucleus, which would in turn produce less rightward force (than 

normal) during saccades, thus biasing all saccades to the left. This is precisely what has been observed 

during optogenetic stimulation of P-cells that were believed to be on the left side of the vermis (El-

Shamayleh et al., 2017). 

 Is there evidence for this conjecture outside of the oculomotor system? Ekerot et al. (1995) 

examined the part of the interpositus nucleus that received inputs from P-cells which responded with 

complex spikes when the cat’s forelimb was touched or pinched on the skin. To determine the complex 

spike tuning of the P-cells, in the decerebrated cat they recorded local field potentials from the 

interpositus neurons and noted that providing a noxious pinch on a specific forelimb skin area produced 

an excitatory response. They used this as a proxy for the complex spike tuning of the P-cells. They then 

electrically stimulated these interpositus neurons and observed multi-joint movements of the forelimb. 

The movements were likely generated because stimulation engaged DCN neurons that projected to the 

red nucleus, and then neurons to the projected to the spinal cord via the rubrospinal tract.  

When they compared the complex spike tuning of the P-cells (as inferred from the field 

potentials in the DCN) and the stimulation results, there was a general correspondence: the movement 

that was evoked from stimulation of a particular DCN region pulled the limb away, protecting the part of 

the skin which was pinched to produce the complex spike in the parent P-cells. For example, if the skin 

on the ventral forepaw was touched, generating potentials in a region of DCN that received input from 

P-cells that had a complex spike receptive field for that part of the skin, stimulation of that DCN region 

activated a palmar flexor of the wrist, producing a withdrawal of the forepaw away from the noxious 

stimulus. That is, the action produced by stimulation of DCN neurons appeared constructive in 

preventing the occurrence of the stimulus that produced complex spikes in the parent P-cells. 

In summary, from a theoretical perspective the error that is transmitted to a P-cell must reflect 

the miscalculations that are made by only the DCN neurons that it projects to. P-cells may exhibit a 

preference for a specific error vector. To remedy this error, it would be useful if the DCN neurons 

produced actions that could remedy the error concerns of their parent P-cells. In the case of eye 

movements, this means that the DCN neurons should project to a location where they can indirectly 

engage motoneurons that pull the eyes in a direction that is parallel to the preferred visual error vector 

of their parent P-cells. That is, there should be a correspondence between the actions that can be 

influenced by the DCN neurons, and the errors that concern their P-cell parents.  

 

Effect of complex spikes on changing behavior 

Because complex spikes are random events that may or may not occur after a given error, there is a way 

to test if there is a relationship between error tuning of a P-cell, and the downstream motor effects of 

the DCN neurons that the P-cell projects to.  

Suppose in trial n a saccade is made and an error is observed following conclusion of that 

saccade. If that error is in the preferred direction of a P-cell, in some fraction of trials that P-cell will 
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generate a complex spike, whereas in most trials it will not. Conjecture 6 predicts that if the complex 

spike did occur, it signaled the preferred error, which in turn produced plasticity in the P-cell and its DCN 

neurons. On trial n+1, the eyes should be pulled slightly in the direction specified by the CS-on vector of 

the parent P-cell.  

We tested this idea in Herzfeld et al. (2018). After saccade completion, an error was present or 

absent, and the P-cell produced a complex spike, or not. We measured trial-to-trial change in behavior 

via the difference in motor output (eye velocity) from the trial in which the error was experienced to the 

subsequent trial in which the same target was presented.  

We began with trials in which there was an error following saccade completion and the direction 

of that error was in the CS-on direction of the P-cell that was being recorded (Fig. 11A). In some trials, 

the P-cell did not produce a complex spike in the post-saccadic period (Fig. 11A, CS absent). In other 

trials, the P-cell did produce a complex spike (Fig. 11A, CS present). In both cases, in the subsequent trial 

 

Figure 11. The influence of P-cells on motor output. A. Analysis of trials in which the error was in the CS-on 
direction of the P-cell. Eye trajectory (velocity vectors as a function of time) was measured during the saccade in 
the trial in which the error was experienced, as well as the trajectory in the subsequent trial in which saccade was 
made to the same target. To measure change in behavior, the trial-to-trial difference in the 2D sequence of 
velocity vectors was projected onto the CS-on direction of the P-cell. Following experience of an error, the next 
trial exhibited an increase in the velocity vector along the direction of error. However, if the P-cell produced a 
complex spike, velocity on the next trial was larger in direction CS-on compared to when a complex spike was 
absent. B. Same as (A) except for trials in which there was no post-saccadic error (|error| < 0.25°). Even without an 
error, presence of a complex spike led to increased motor output along direction CS-on of the P-cell that had 
produced the complex spike. C. Same as (A), except for trials in which errors were in CS-on+180° of the P-cell under 
study. If the error was opposite the preferred direction, presence of a complex spike still biased behavior in CS-on 
direction of that cell. D. Trial-to-trial change following any error. The trial-to-trial change in velocity was projected 
onto direction CS-on (left) and CS-on+90° (right) of the P-cell. When a CS was present, change in motor output was 
only in direction CS-on. From Herzfeld et al. (2018), used by permission. 
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the motor commands pulled the eyes more in the direction of error, which in this case happened to 

coincide with CS-on of the P-cell under study (Fig. 11A, left panel). The actual errors were similar in trials 

that the complex spike had or had not occurred. Yet, the change in the motor output from trial n to n+1 

was significantly larger, i.e., the pull was stronger, if the P-cell produced a complex spike in the post-

saccadic period of trial n (Fig. 11A, left panel, difference). A similar observation has been made in a 

different task (pursuit) when visual error was in direction CS-on of P-cells in the flocculus region of the 

cerebellum (Yang and Lisberger, 2014a). 

Sometimes the movement was perfect: a saccade took place and the target was on the fovea 

(Fig. 11B). Despite this lack of error, on a fraction of trials the P-cell nevertheless generated a complex 

spike in the post-saccadic period. Remarkably, in the subsequent trial the eyes were again pulled in the 

CS-on direction of that P-cell (Fig. 11B, CS present). The change in behavior was the same whether an 

error was present or not (the difference curves are the same in Fig. 11A and Fig. 11B); what mattered 

was whether the P-cell received a complex spike or not. Therefore, even without an error, the presence 

of a post-saccadic complex spike in a single P-cell was followed by a change in behavior in the 

subsequent trial. The eyes were pulled in the CS-on direction of that P-cell. 

These results hinted that if a P-cell produced a post-saccadic complex spike, in the subsequent 

trial that P-cell and others in that population through their DCN neurons (indirectly) influenced a specific 

group of motoneurons, those that produced force along the P-cell’s CS-on direction. To test this 

hypothesis, we focused on trials in which error was in direction CS-on+180o (i.e., error was opposite the 

preferred error direction of the P-cell). Following experience of this error, the behavior in the 

subsequent trial changed in the direction of that error (Fig. 11C, left panel). Remarkably, the trial-to-trial 

change in behavior was significantly smaller if the P-cell had produced a complex spike. As a result, the 

difference between the trial-to-trial change in the motor commands that took place with and without a 

complex spike was always in direction CS-on, regardless of whether error was in direction CS-on (Fig. 

11A), CS-on+180o (Fig. 11C), or absent altogether (Fig. 11B). 

We therefore made our analysis blind to the error that the animal had experienced and instead 

labeled each trial based on whether the P-cell had or had not produced a post-saccadic complex spike. 

We found that if the P-cell produced a complex spike, the trial-to-trial change in saccade velocity was 

entirely in the CS-on direction of that P-cell (CS present, Fig. 11D), with no component along CS-on+90o. 

In contrast, if the P-cell did not produce a complex spike, the trial-to-trial change was in direction CS-

on+180o of that P-cell (CS absent, Fig. 11D).  

In summary, following production of a post-saccadic complex spike in a P-cell, in the subsequent 

trial the eyes were pulled along a vector that was parallel to the CS-on direction of that P-cell. Without a 

complex spike, in the subsequent trial the eyes were pushed away along that same vector. Importantly, 

this pattern was present even when there were no errors at the end of the saccade. This appears consist 

with the idea that there is a correspondence between the complex spike tuning of a P-cell, and the 

direction of action of the DCN neurons it projects to (Apps and Garwicz, 2005; Ekerot et al., 1995). 
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Do complex spikes encode prediction errors? 

The central assumption in our framework is that the inferior olive provides the error signal that serves as 

a teacher for the cerebellum. However, the idea that complex spikes signal a prediction error is 

controversial. For example, Horn et al. (2004) trained cats to reach and grasp a lever and then displaced 

the lever during some trials. They found no olivary neuron that discharged near the time of the error 

(when the paw would have grasped the lever), despite the fact that the neurons responded to taps on 

the paw.  

Another issue is that complex spikes are rare events that occur approximately once per second, 

producing a disparity between the richness of information conveyed by the simple spikes, and the 

poverty of the error signal transmitted by the complex spikes. Indeed, errors can double or halve in size 

without significant changes in the rate of complex spikes (Ke et al., 2009; Ojakangas and Ebner, 1992; 

Soetedjo et al., 2008). For example, in a saccade adaptation task, Catz et al. (2005) noted that the large 

errors at the onset of training produced only modest changes in complex spike probability among P-cells 

in the oculomotor vermis. Notably, while training produced reductions in error magnitude, the expected 

reductions in the probability of complex spikes did not materialize. Indeed, in tasks as diverse as arm 

movements, head movements, and eye movements, a consistent finding has been that error size can 

change without altering the probability of complex spikes (Ke et al., 2009; Keating and Thach, 1995; 

Soetedjo et al., 2008). From a machine learning perspective, it is quite problematic if the error signal is 

insensitive to error size. 

 Two clues shed light on this puzzle: the precise timing of the complex spikes, and the shape of 

their waveforms. Eccles et al. (1966) had stimulated the inferior olive and measured the complex spike 

response in P-cells, finding that an increase in the strength of olivary stimulation coincided with a 

reduction in the latency of the complex spike. This raised the possibility that complex spike timing might 

be an important variable with which the olive transmitted information about magnitude of error to the 

cerebellum. Indeed, experiments in slice preparations have noted that complex spike timing is a critical 

factor in determining the amount of plasticity at the parallel fiber to P-cell synapse (Suvrathan et al., 

2016). That work demonstrated that complex spikes that arrived at a precise temporal window 

produced a greater effect on the simple spikes by maximizing the change in the strength of the recently 

active P-cell synapses. 

A second clue is the shape of the complex spike waveform. Unlike simple spikes, complex spikes 

that are recorded near the dendrites of a P-cell have waveforms that have a variable number of 

spikelets (Davie et al., 2008; Monsivais et al., 2005), which in turn affects the duration of the complex 

spike and the subsequent rebound in simple spikes (Burroughs et al., 2017). Yang and Lisberger (2014b) 

measured the waveform of complex spikes in the flocculus during a visual pursuit task. They noted that 

when an error occurred during pursuit (retinal slip), duration of the complex spike was longer as 

compared to when the animal was fixating and no error was present. Importantly, when there was an 

error during pursuit, the trial-to-trial amount of learning was greater when the duration of the error-

induced complex spike was longer.  

We recently examined timing and duration of complex spikes by systematically varying the 

direction and magnitude of the error vector in the task shown in Fig. 8A (Herzfeld et al. 2018). While the 

probability of complex spikes was modulated by the direction of the visual error vector (Fig. 8B), 



34 

 

changes in error magnitude did not produce an appreciable change in the probability of complex spikes 

(Fig. 12A). For example, while error magnitude increased by 7 folds (from 1o to 7o), there were no 

significant changes in probability of complex spikes. Instead, error magnitude affected the timing of the 

complex spikes. When error magnitude was small, complex spike timing was distributed uniformly 

throughout the post-saccadic period (Fig. 12B). As error magnitude increased, mean time of the complex 

spike shifted earlier, from 130 ms to around 100 ms with respect to saccade end (Fig. 12C, left panel). In 

addition, as error magnitude increased the timing of complex spikes became more consistent, resulting 

in a reduction in the standard deviation of the timing distribution (Fig. 12C, right panel). As a result, 

small errors produced complex spikes that were distributed widely in time. In contrast, large errors 

produced complex spikes that clustered at a specific time: around 110ms after the onset of the error 

event (saccade end).  

An example of variability in the waveform duration of complex spikes is shown in the left panel 

of Fig. 12D. A P-cell sometimes produced a complex spike that had many spikelets and a long duration, 

 

Fig. 12. Encoding of the error vector by complex spikes. Monkeys made saccades to visual targets and experienced 
errors that varied in direction and amplitude (Fig. 8A). A. Changes in error magnitude produced little or no change 
in the probability of complex spikes. B. Timing distribution of complex spikes in the 250 ms period following 
completion of the primary saccade. As error magnitude increased, the timing of complex spikes exhibited less 
variability, becoming more focused at around 100 ms. C. Mean and standard deviation of complex spike timing as a 
function of error magnitude. As errors size increased, complex spikes occurred earlier and with less temporal jitter. 
D. Variability in the complex spike waveform, shown for two representative P-cells. Changes in complex spike 
timing coincided with changes in waveform. Spikes that occurred at around 100 ms tended to have a longer 
duration. E. Effect of complex spike timing on trial-to-trial learning from error. The greatest amount of learning 
followed trials in which a complex spike occurred at around 100-150 ms. From Herzfeld et al. (2018), used by 
permission. 
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whereas in other times the same cell produced a complex spike with few spikelets and a short duration. 

Notably, Herzfeld et al. (2018) found that complex spikes that occurred at around 100 ms following the 

error event tended to be longer in duration (Fig. 12D, right panel). 

These results suggested that error magnitude affected the timing and duration of complex 

spikes. Indeed, Herzfeld et al. (2018) noted that complex spike timing affected the process of learning 

from error: complex spikes that arrived at around 100 ms were followed by greater trial-to-trial learning 

than spikes that arrived earlier or later (Fig. 12E).  

In summary, varying the magnitude of error does not produce an appreciable change in the 

probability of the complex spike. Rather, error magnitude affects the timing and duration of complex 

spikes, which in turn regulate the amount of plasticity in P-cell synapses. Because synchronizing complex 

spikes and thus coordinating their timing is also a key factor in regulating discharge of DCN neurons (Fig. 

5C), the results raise the likelihood that complex spike timing is an important variable with which the 

olive transmits error information to the cerebellum.  

 

Why do complex spikes carry information about the reward value of the stimulus? 

The probability of a complex spike depends on many factors beyond the presence or absence of a 

prediction error. For example, while sudden occurrence of a stimulus by itself may not produce a 

complex spike in the P-cell of a naïve animal, it will do so if the animal has learned to associate that 

stimulus with an aversive event (Ohmae and Medina, 2015), with a greater reward (Heffley and Hall, 

2019; Kostadinov et al., 2019; Larry et al., 2019), or a previous performance error (Junker et al., 2018). 

Withholding of reward when it was expected can also modulate complex spike rates (Heffley et al., 

2018; Kostadinov et al., 2019). These results have demonstrated that the signal in the climbing fiber is 

not merely the difference between what was predicted and what was observed, at least not if this 

comparison is in terms of a simple sensory coordinate system. Rather, complex spikes also reflect a 

measure of the learned value of the stimulus. How does one reconcile these facts with the assumption 

that complex spikes encode a prediction error?  

 To illustrate this puzzle, consider the results of Larry et al. (2019) who trained monkeys in a 

pursuit task in which the amount of reward varied on each trial. Each trial began with a center target 

that changed color to indicate whether low or high reward would be available. As a population, P-cells 

showed an increase in probability of complex spikes at 200 ms following the cue that indicated high 

reward, and reduction of this probability when it indicated low reward. Why was the probability of 

complex spikes modulated by the reward value of the stimulus? 

Let us assume that in this and other visual tasks, complex spikes are partly generated to signal 

unexpected activity among a group of neurons in the superior colliculus. However, activities of collicular 

neurons are not simply a reflection of retinal input, but also inputs from the basal ganglia and the 

cerebral cortex. For example, response of neurons in the superior colliculus is greater if the stimulus is 

novel and threatening as compared to familiar and unthreatening (Lee et al., 2020). The response is 

greater if the stimulus is associated with reward (Ikeda and Hikosaka, 2003). This utility-dependent 

collicular response to the visual stimulus is likely because of value-dependent modulation of inhibition 
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from the basal ganglia (Sato and Hikosaka, 2002) and excitation from the frontal eye fields (Glaser et al., 

2016).  

Upon presentation of a visual stimulus, the basal ganglia and the frontal eye fields evaluate the 

stimulus and alter the inhibition and excitation that they respectively impose on the superior colliculus 

(Glaser et al., 2016; Sato and Hikosaka, 2002). As a result, the collicular response to a visual stimulus 

depends on the location of the stimulus on the retina, as well as the utility that the cortex and the basal 

ganglia assign to that stimulus (for a systematic presentation of this topic, see Shadmehr and Ahmed 

(2020)). This leads to the speculation that utility dependent activity on the colliculus may in turn be at 

least partly responsible for modulation of complex spike probability as a function of the reward value of 

the stimulus. 

In summary, several recent reports have shown that complex spikes carry information about the 

reward value associated with a stimulus (Heffley and Hall, 2019; Kostadinov et al., 2019; Larry et al., 

2019). To reconcile this fact with the idea that complex spikes carry an error signal, we can consider an 

olivary neuron that receives two inputs: inhibition from a DCN neuron, and excitation from a neuron in 

the superior colliculus. The DCN neuron produces an output that attempts to predict and cancel (at the 

 

Figure 13. Change in simple spikes following presence or absence of a complex spike. Data are from pursuit and 
saccade tasks. A. Trial-to-trial change in simple spikes. In the pursuit task, the inter-trial interval was 2.5 sec. Time 
zero indicates the time during pursuit in which an unexpected change in the visual stimulus occurred. The black 
trace is the baseline relationship during pursuit. In the saccade task, change in simple spikes are plotted with 
respect to saccade onset. B. Total amount of change in simple spikes when the errors are in CS-on or CS-on+180 
direction. For the pursuit task, the change is the expected value for a single P-cell, averaged across all P-cells. For 
the saccade task, the change is the sum for 50 P-cells that make an average population. The dashed lines are the 
CS-on data mirrored along the x-axis. It appears that the rate of change in simple spikes is faster when errors are in 
direction CS-on. C. Presence of climbing fiber activity (with parallel fiber activity) results in long-term depression 
(LTD) at the parallel fiber to P-cell synapse, long-term potentiation (LTP) at the parallel fiber to P-cell synapse, and 
rebound potentiation at the molecular layer interneuron (MLI) to P-cell synapse. When climbing fiber activity is 
absent, parallel fiber to P-cell synapses undergo LTP, LTD is induced at the parallel fiber synapse onto MLI neurons, 
and the intrinsic excitability of the P-cell is increased. D. Effect of synchronous and asynchronous production of 
complex spikes on the DCN neuron. Parts A and B are from Yang and Lisberger (2014), and Herzfeld et al. (2018), 
used by permission. 
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level of the olive) the activity in a specific region of the superior colliculus. However, the collicular 

activity is not simply the location of the stimulus in the visual field, but also a reflection of its utility as 

evaluated by the frontal eye fields and the basal ganglia. Thus, an error in the activity of a DCN neuron is 

reflected in complex spikes that carry information about both the location of the stimulus, and its utility. 

 

Implication: multiple timescales of learning 

Let us broaden our scope and ask whether the conjecture regarding population coding might provide 

clues as to why behavior during learning exhibits certain remarkable features, namely multiple 

timescales, resistance to erasure, and spontaneous recovery. 

We noted that presence of a complex spike in a P-cell was followed by a change in behavior, but 

the absence of a complex spike was also followed by a change, one that was much smaller and in the 

opposite direction (Fig. 11D). This is because both the presence and absence of a complex spike leads to 

P-cell plasticity, but in different directions, and with different amounts. For example, Yang and Lisberger 

(2014a) trained monkeys to pursue a visual target and induced an unexpected change in the motion of 

the target. Sometimes the error was in direction CS-on for the P-cell, and sometimes it was in direction 

CS-on+180. If the error took place and a complex spike occurred, on the next trial the simple spike rate 

during pursuit exhibited a decrease (Fig. 13A, pursuit). If the complex spike did not occur, the simple 

spike rate during the subsequent trial exhibited a small increase. We observed roughly the same pattern 

during saccades (Herzfeld et al., 2018): if at saccade completion a complex spike was present, on the 

next trial the P-cell showed a reduced rate of simple spikes (Fig. 13A, saccade).  (The effect of complex 

spike absence on the simple spikes was less clear in the saccade data.) 

 These changes in simple spike response of P-cells were likely due to the influence that climbing 

fiber activity had on induction of plasticity in the parallel fiber synapses on P-cells, as well as parallel 

fiber synapses on molecular layer interneurons (Fig. 13C, for a comprehensive review, see (Gao et al., 

2012)). Parallel fiber synapses on P-cells undergo post-synaptic LTD following paired stimulation of 

parallel fiber and climbing fibers (Hansel et al., 2006; Jörntell and Ekerot, 2002). In contrast, post-

synaptic LTP takes place when the parallel fibers are stimulated without climbing fiber activity 

(Coesmans et al., 2004). Thus, direction of plasticity at the parallel fiber P-cell synapse depends on 

presence or absence of complex spikes. In addition, stimulation of parallel fibers without climbing fiber 

stimulation can increase the intrinsic excitability of P-cell dendrites, reducing the simple spike pause 

duration that follows production of a complex spike (Grasselli et al., 2020, 2016).  

Climbing fiber activity also influences the strength of the parallel fiber synapses onto molecular 

layer interneurons. These synapses undergo post-synaptic LTP when parallel fiber stimulation is 

coincident with depolarization of stellate cells, which is thought to be naturally occurring through 

spillover from activity in climbing fibers (Szapiro and Barbour, 2007). In contrast, post-synaptic LTD takes 

place in these synapses in response to low frequency parallel fiber activity without climbing fiber 

stimulation (Piochon et al., 2010).  

In summary, presence of a complex spike is likely to reduce P-cell activity via induction of LTD at 

the parallel fiber P-cell synapse, and LTP at the parallel fiber molecular layer interneuron synapse. 

Absence of a complex spike is likely to increase P-cell activity via induction of LTP at the parallel fiber P-
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cell synapse, LTD at parallel fiber molecular layer interneuron synapse, and increase in the intrinsic 

excitability of the P-cell.  

Yang and Lisberger (2014a) measured simple spike changes in P-cells over the course of 100 

trials. They found that if the error was consistently in the CS-on direction of the P-cell, the simple spike 

rate during the pursuit declined steadily (Fig. 13B, pursuit). If the error was consistently in the CS-

on+180 direction, the simple spike rate increased. Notably, the rate of increase in the simple spikes was 

slower than the rate of decrease during pursuit. We observed a similar pattern during saccades 

(Herzfeld et al., 2018): the simple spikes produced by the population of P-cells decreased for CS-on 

errors, and increased for CS-on+180 errors. However, the decrease occurred faster than the increase 

(Fig. 13B, saccade). 

The differing sensitivities of simple spikes to presence or absence of a complex spike is an 

important feature because it suggests that a single error engages mechanisms that naturally exhibit 

multiple timescales, some fast (CS-on), others slow (CS-on+180). Let us show how this fact can 

contribute to the multiple timescales of behavior during adaptation. 

Suppose we have two P-cell populations, one with a complex spike tuning to the left, and the 

other to the right (as in Fig. 10). Imagine that these P-cells are distinct populations that projects onto 

two different DCN neurons. On trial n we make a saccade and during that saccade population 1 

produces simple spike response 
( )
1
nx . On the same trial population 2 produces response 

( )
2
nx . Following 

saccade completion we experience a post-saccadic error ( )ne : the target is to the left of our fovea. This 

error is in direction CS-on for population 1, and CS-on+180 for population 2. The error produces 

plasticity in our two populations (and perhaps in their DCN daughters). On the next trial, the responses 

in the two populations are as follows:  

 

( 1) ( ) ( )
1 1

( 1) ( ) ( )
2 2

n n n
on on

n n n
off off

x a x b e

x a x b e

+

+

= +

= +
 (9) 

The term onb  refers to the trial-to-trial change in the simple spike response when the error is in 

direction CS-on. The term ona  refers to the trial-to-trial change due to passage of time between the two 

trials (decay toward baseline).  

Eq. (9) has parameters that can be inferred from the available data. Following experience of 

error ( )ne , the saccade is corrected by a small amount q  on the subsequent trial. The adaptive 

response q is due to the contributions of these two populations. Suppose that if a population produced 

a complex spike in response to error, it affected behavior on the next trial in the direction of its CS-on by 

amount 1y . If it did not produce a complex spike, it affected behavior in the direction CS-on+180 by 

amount 0y . Fig. 8C provides the probabilities associated with production of a complex spike. From 

these probabilities, we form the following two equations:  
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= = − =

 (10) 

The first equation provides the probabilistic contributions of the two populations to learning from error. 

For example, the term ( )Pr 1 ,CS CSon err= = =  specifies the probability of a complex spike in 

population 1, given that the CS-on direction is leftward, and error direction is leftward as well. The term 

( )Pr 1 ,CS CSon err= =→ =  specifies the probability of a complex spike in population 2, given that 

the CS-on direction is rightward, but the error direction is leftward. The values for each probability term 

can be acquired from Fig. 8C. The second equation provides the constraint associated with homeostatic 

regulation; sum total of plasticity, weighted by the overall probability of complex spikes, is zero.  

The solution to Eq. (10) is 1 5.6y q=  and 0 0.6y q= . This means that following an error, the 

population with a CS-on is responsible for 79% of the adaptive response, whereas the population with 

CS-on+180 is responsible for 21%. Therefore, given the leftward error, both populations learn from it: in 

one population this error produces an increase in the simple spike rate, whereas in the other population 

the same error produces a decrease. However, because population 1 prefers the error (CS-on), it will 

contribute roughly 3.5 times more to the adaptive response than population 2. 

The next critical feature of the P-cell’s response to error is that between the trial in which the 

error is experienced and the subsequent trial, the error induced adaptation decays with passage of time. 

Yang and Lisberger (2014a) found that the trial-to-trial change in a P-cell’s adaptive response depended 

not only on production of a complex spike, but also on the passage of time between trials. The passage 

of time produced decay in the error induced change in the simple spike response. 

We do not know whether the plasticity induced by production of a complex spike decays 

differently than the plasticity induced by lack of a complex spike. But we can make a guess by examining 

the data in Fig. 13B. After a long series of trials, the change in simple spikes reaches an asymptote. 

Remarkably, this asymptote is not different for CS-on errors that encourage production of complex 

spikes, and CS-on+180 errors that decrease it. However, the trial-to-trial rate of change is faster when 

the errors are in direction CS-on. 

A constant asymptote but differing rates of convergence require that trial-by-trial amount of 

forgetting be larger for the process that learns more rapidly (Albert and Shadmehr, 2018; van der Kooij 

et al., 2015; Vaswani et al., 2015; Vaswani and Shadmehr, 2013). To see this, consider that a process 

that learns from error e  by amount b  but suffers from forgetting between trials by amount a  (as in 

Eq. 9), exhibits a steady state ( )ssx  that at asymptote is defined by:  

 

( )
( )

1

ss
ss be

x
a

=
−

 (11) 

Eq. (10) and the data in Fig. 13B imply that when the error is in direction CS-on, the P-cell population 

that prefers this error will exhibit an error sensitivity that is larger than the population for which this 
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error is in direction CS-on+180. That is, on offb b . The data in Fig. 12B implies that 
( ) ( )
1 2
ss ssx x= . Hence, 

we infer that on offa a  and on offb b .  

This means that when an error is aligned with CS-on, sensitivity to that error in the P-cells and 

their downstream DCN neurons is greater than when the same error is aligned with CS-on+180. 

However, if the error is aligned to CS-on, the resulting adaptation decays at a faster rate as time passes 

from one trial to the next, as compared to when error is aligned to CS-on+180. Thus, given a single error, 

one population of P-cells learn a great deal (CS-on), but also forgets at a faster pace, whereas another 

population of P-cells learns less (CS-on+180), but retains a greater amount.  

Behavior during learning of tasks that depend on the cerebellum has hinted that the change in 

the motor output appears to be a sum of two or more adaptive states: some that learn slow but retain 

what they learned, and others that learn rapidly but are more susceptible to forgetting (Kording et al., 

2007). It is curious that P-cell populations with CS-on and CS-on+180 error preference exhibit some of 

the properties of these theoretical states. Whether error-dependent adaptation in these two 

populations plays a causal role in the multiple timescales of behavior remains an open question.  

  

Implication: resistance to erasure and spontaneous recovery of memory 

In numerous paradigms, from fear conditioning to motor adaptation, learning exhibits a remarkable 

property: acquisition of a novel behavior followed by its extinction does not erase the acquired memory. 

Rather, following passage of time, behavior reverts toward the originally learned pattern. That is, unlike 

an artificial neural network, in many biological systems one cannot unlearn a behavior by reversing the 

sign of the error vector (Pekny et al., 2011). Our framework provides clues as to what may be the cause 

of this ubiquitous feature of learning. 

In the field of classical conditioning, bees can learn to associate an odor with nectar, extending 

their proboscis upon presentation of the odor (Stollhoff et al., 2005). They will extinguish this response if 

the odor is presented without the nectar. However, following passage of time, the bees once again 

extend their proboscis when they are presented with the odor. In the field of fear conditioning, a 

stimulus can be associated with a shock, inducing fear. This fear can be extinguished if the stimulus is 

presented without the shock (Schiller et al., 2010). However, fear of the stimulus returns following 

passage of time. In the field of motor learning, people and other animals respond to a perturbation by 

modifying their motor commands through learning from error. If the perturbation changes direction, 

reversing the error vector, behavior returns to baseline. However, with passage of time the behavior 

spontaneously reverts back and they once again produce the motor commands that they had originally 

learned (Criscimagna-Hemminger and Shadmehr, 2008; Kojima et al., 2004; Sarwary et al., 2018; Smith 

et al., 2006).  

The central theme in these experiments is resistance to erasure, leading to spontaneous 

recovery. A mathematical model (Kording et al., 2007; Smith et al., 2006) had suggested that during 

learning, changes in behavior may be supported by two adaptive processes: a fast adaptive process that 

has high sensitivity to error along with poor retention, and a slow adaptive process that has poor 

sensitivity to error along with robust retention. In this model, learning is due to changes in both the fast 
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and the slow processes. When error reverses direction, behavior returns to baseline, but the memory is 

not erased. Rather, the slow process retains what it had learned, but that learning is masked by learning 

in the fast process. With passage of time, the fast process decays, inducing spontaneous recovery of the 

previously learned behavior. 

In our model of the cerebellum, training starts with errors that are in a constant direction, thus 

producing rapid changes in a specific P-cell population with CS-on aligned with that error, and slower 

change in other populations. During extinction training, the error reverses direction. This reversal of the 

error vector now produces complex spikes in a different population of P-cells. That is, because of 

preference for direction of error, training engages primarily one olivocerebellar module, whereas 

extinction is likely to engage a different olivocerebellar module. The populations that had learned slowly 

now learn rapidly because the error is aligned with their CS-on. In contrast, the populations that had 

learned rapidly now learn slowly because the error is aligned with their CS-on+180. Critically, reversal of 

error direction produces adaptation that is approximately 3.5 times slower in the CS-on+180 direction as 

compared to CS-on. Thus, reversal of error cannot easily erase the history of past trials. 

In summary, in this framework behavior exhibits apparent extinction not because P-cells have 

returned their activities to their baseline state, but because of a balance that has been reached between 

the changes in the CS-on and CS-on+180 populations of P-cells. With passage of time, the previously 

rapidly adapting population exhibits decay toward baseline, resulting in the spontaneous recovery of 

behavior.  

Thus, a consequence of preference for error in the cerebellum may be that behavior is more 

easily learned than unlearned: unlearning requires 4 or more times the amount of training than the 

amount that it took to acquire the original behavior. However, this potential link between spontaneous 

recovery and the rates of decay in the error-induced adaptation of the CS-on and CS-on+180 populations 

of P-cells is still a conjecture, waiting to be tested. 

 

Discussion 

Activity of single neurons in the cerebral cortex and the cerebellum are often difficult to interpret as a 

function of the ongoing behavior. In the cerebral cortex, the current approach is to pool the neurons 

into pseudo-populations in which a weight is associated with each neuron’s response based on a 

statistical measure of its activity (e.g., principal components), and the weighted activities are summed to 

produce a population response. In the cerebellum, however, P-cells organize into small groups that 

converge onto a single DCN neuron (Person and Raman, 2012b). Thus, in the cerebellum there is an 

anatomical meaning to the term “population response”. Why do P-cells form populations, and what is 

the criterion for membership? 

 To consider these questions, we applied ideas from machine learning: we viewed the 

cerebellum as a three-layer network in which simple spikes of P-cells carried information from the 

middle layer to the output layer. The inferior olive compared the cerebellar output with a desired one, 

and thus produced an error sign. We derived how this error signal must guide learning in the DCN 

neurons that produced the erroneous output, and the P-cells that projected to them. The theory 

highlighted a major problem: while olivary inputs to P-cells are remarkably strong, the same inputs to 
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the DCN neurons are quite weak (Lu et al., 2016). Thus, to understand population coding, we first had to 

consider how the error signal might reach the DCN neurons and produce learning.   

The anatomy suggested the error associated with a DCN neuron’s output was computed by an 

olive cell and then sent via climbing fibers to a few P-cells which then projected back to that specific 

DCN neuron (Chaumont et al., 2013). Perhaps the error in the output of a DCN neuron was conveyed to 

it indirectly through the complex spike that was produced by its parent P-cells (Heck et al., 2013). 

However, a complex spike is effective in influencing a DCN neuron’s activity only if it is synchronized 

with complex spikes that are generated in other P-cells in the same population (Tang et al. 2019). While 

this observation remains to be confirmed in other preparations, it suggests that the error in the output 

of a DCN neuron may be communicated to it via synchronous complex spikes in the parent P-cells. This 

requirement for complex spike synchrony implied that the parent P-cells of a DCN neuron could not be 

selected randomly. Rather, the olive must select the P-cells that form a population so that they share 

the same preference for error.  

Thus, the idea is that the role of olivary input may be two folds: 1) provide complex spikes that 

act as a teaching signal to P-cells, and 2) through complex spike synchrony among a small group of 

“parent P-cells” provide a teaching signal for the DCN neuron that was responsible for generating the 

erroneous output. 

This framework made two predictions. The population of P-cells that projected onto a nucleus 

neuron was likely composed of those P-cells that received climbing fibers from the olivary neurons that 

also projected to that nucleus neuron (Fig. 6A). Furthermore, efficient learning in a P-cell required that 

its single climbing fiber should come from a specific olivary neuron: the olivary neuron that computed 

the errors associated with the DCN neurons that this specific P-cell projected to (Fig. 6B). 

Many aspects of this framework remain untested. Yet, in one respect the framework has proven 

useful: decoding simple spike activity of P-cells as a population during voluntary movements (Herzfeld et 

al., 2018, 2015). During a saccade, individual P-cells exhibited simple spikes that burst, paused, or did 

both, with a modulation that outlasted the movement by 50 ms or more (Kojima et al., 2010b; Thier et 

al., 2000). However, when the P-cells were organized into populations based on their complex spike 

response to error, the sum total of simple spikes of the member P-cells presented a clear pattern: in 

direction CS-on+180, simple spikes increased before the eyes accelerated and then decreased as the 

eyes decelerated. In direction CS-on, simple spikes increased by a smaller amount during acceleration 

but returned to near baseline during deceleration. Thus, population response of P-cells during saccades 

appeared related to the acceleration needed to move the eyes, and the deceleration needed to stop it. 

These patterns were not present in any single P-cell, but unmasked when P-cells were grouped into a 

population in which membership was defined based on olivary input, i.e., preference for error. 

Because P-cells are not the output of the cerebellum, they do not directly control any aspect of 

behavior. To understand their contributions to behavior, it is useful to ask where the DCN neurons of a 

given population of P-cells project to. Trial-by-trial analysis of complex spikes (Herzfeld et al., 2018; Yang 

and Lisberger, 2014a) has provided evidence for the conjecture that there is a correspondence between 

the complex spike tuning of a P-cell, and the direction of action of the DCN neuron it projects to (Apps 

and Garwicz, 2005; Ekerot et al., 1995). It appears that the direction of error that a P-cell is concerned 

with (CS-on) is aligned with the direction of action of its DCN neuron. Thus, we have a simple heuristic: 
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the output if a DCN neuron influences actions that are aligned with the specific errors that its parent P-

cell is concerned with. 

There may be a consequence of this anatomy on how the cerebellum learns from error. During 

the past two decades, numerous paradigms have quantified behavior during motor adaptation and 

noted a few consistencies. First, during a single session, errors decline as training proceeds, but there 

are at least two rates of learning, one fast, and the other slow. Second, if the errors reverse direction, 

thus causing “unlearning”, behavior returns to baseline (termed extinction training). However, reversal 

of error does not erase the memory, as evidenced by the fact that with passage of time, behavior 

spontaneously reverts back toward the initially learned behavior.  

It is possible that the multiple timescales of learning arise from the fact that a single error 

engages multiple P-cell populations, some that produce a complex spike in response to that error, and 

others that suppress this production. Both induce plasticity that affects behavior, but the effects are 

asymmetric: simple spike rates change more after experience of a complex spike (as compared to when 

the complex spike is missing), and may also decay more with passage of time. In addition, the conjecture 

that P-cells act as surrogate teachers for their DCN neurons  (Medina and Mauk, 1999) raises the 

possibility that even slower timescales of adaptation arise from plasticity in the DCN neurons (Herzfeld 

et al., 2020), though this conjecture also remains to be tested. The asymmetric response of a P-cell to 

presence or absence of a complex spike may be responsible for the fact that reversal of error during 

extinction training does not reverse the effects of past learning. Instead, it produces spontaneous 

recovery with passage of time. 

To be sure, there are numerous limitations in our framework. For example, our central 

conjecture that complex spikes signal a prediction error is not without problems. Some complex spikes 

occur at the onset of salient events that by themselves have no obvious interpretation as an error 

(Welsh et al., 1995). A further complexity is that a single P-cell can produce complex spikes in response 

to sudden onset of many types of sensory inputs. For example, Ju et al. (2019) used 2-photon calcium 

imaging to measure complex spike driven responses in crus 1 region of awake mice and found that a 

response was elicited following air puff stimulation of the whiskers, tactile stimulation of the cheeks and 

lips, sound of the device that produced the air puff, and flash of an LED. If complex spikes represent a 

prediction error, they seem to lack specificity. 

Another problem is that complex spikes, rare events that occur approximately once per second, 

appear poorly matched to reflect errors of DCN neurons, neurons which fire at rates of tens of spikes 

per second. The key appears to be complex spike timing. Small errors produce a complex spike that has 

high temporal variability, while large errors produce a complex spike that has low temporal jitter 

(Herzfeld et al., 2018; Najafi et al., 2014), synchronized with other P-cells (Najafi et al., 2014). The timing 

(Herzfeld et al., 2018; Suvrathan et al., 2016) and the number of spikelets (Rasmussen et al., 2013; Yang 

and Lisberger, 2014b) affect not only the amount of plasticity at the P-cell, but also the strength of 

suppression in the downstream DCN neuron, thus potentially affecting its plasticity.  
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A potential problem with conveying error information via synchronous complex spikes  

Our conjecture that synchronous complex spikes among a population of P-cells may be a method with 

which to transmit error information from the olive to a DCN neuron introduces a new problem: what 

happens if there is synchrony among the simple spikes of the parent P-cells? Indeed, we noted that 

optogenetic pulsed stimulation of P-cells induced simple spike synchrony that resulted in DCN plasticity 

(Lee et al., 2015) as well as behavioral learning (Nguyen-Vu et al., 2013).  

On the one hand, the olive might rely on P-cells to serve as a substitute teacher for the DCN 

neuron that they converge upon, indirectly providing it with error information via its climbing fiber. On 

the other hand, the rest of the brain, via mossy fibers and the granule cells, rely on the P-cells to provide 

the DCN with a major source of information about the state of the body, thus sculpting the output of the 

DCN neurons. Hence, whereas most of the brain relies on the P-cells to provide simple spikes that 

influence the DCN’s output, the olive relies on the P-cells to provide spikes that teach the DCN about the 

errors of the same outputs. How can the P-cell serve both masters? 

From a learning perspective there is a need to disambiguate the error signal (complex spike) 

from other signals (simple spikes) that the P-cell transmits to the DCN. If error transmission from P-cell 

population to the DCN neuron relies on complex spike synchrony, then there is a need for suppressing 

synchrony among the simple spikes. In this way, if a synchronous event is detected at the DCN neuron, it 

likely due to the error signal from the olive.  

From a control perspective, if the mossy fiber input via granule cells to the P-cells are to 

influence the output of a DCN neuron, then there is a need for synchrony among the simple spikes 

(Person and Raman, 2012a). For example, P-cells fire at a baseline rate of around 50 Hz. In a 

decerebrated cat this background activity produces little change in the membrane potential of the 

downstream DCN neuron (Bengtsson et al., 2011). Through synchrony, simple spikes of P-cells can drive 

the activity of a DCN neuron (Person and Raman, 2012b). For example, if the simple spikes are 

asynchronous, the nucleus cell is inhibited, but if the simple spikes are briefly synchronous, at 8 ms 

latency the DCN neuron can experience a rebound that produces a spike. Thus, through synchronization 

of simple spikes the downstream DCN neuron can relay the specific timing of the P-cell activity to 

neurons outside of the cerebellum, thus providing a pathway to influence behavior. 

 Indeed in both anesthetized and behaving animals, nearby P-cells have cross-correlations that 

exhibit a level of synchrony among complex spikes as well as simple spikes (De Zeeuw et al., 1997; Ebner 

& Bloedel, 1981; Heck et al., 2007; Sedaghat-Nejad et al., 2019; Shin & De, 2006; Wise et al., 2010). For 

example, Heck et al. (2007) found that in rats, P-cells within a few hundred microns fired synchronously 

during the period of reach to grasp, but not during the period after grasp completion. Hong et al. (2016) 

noted evidence for simple spike synchrony around saccade onset. Simple spike synchrony exists even 

when chemical synapses in the cerebellar cortex are inactivated (Han et al., 2018), raising the possibility 

that some neighboring P-cells are electrically coupled. 

However, it is unclear whether in the intact animal, control of DCN output relies on synchrony of 

simple spikes. Experimental results and simulations of Payne et al. (2019) suggest that whereas the 

mean rate of simple spikes is critical for control of eye velocity during a pursuit task, the timing of 

individual spikes plays a less significant role. Irregular simple spike timing of a population of P-cells, 

though produced synchronously through optogenetic stimulation, did not result in eye velocities that 
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were different than expected from the averaged firing rates of the P-cells. If synchronous simple spikes 

are present during pursuit eye movements, they do not appear to provide an advantage for control of 

DCN output. 

What about the idea that unambiguous transmission of error information via synchronous 

complex spikes might require a mechanism to suppress simple spike synchrony? Intriguingly, in the 

cerebellar cortex, one function of interneurons may be to reduce the synchrony of simple spikes. P-cells 

receive excitatory inputs from granule cells, and inhibitory inputs from small interneurons in the 

molecular layer, as well as Golgi cells. Hausser and Clark (1997) measured activity in P-cells and 

molecular layer interneurons in cerebellar slices, thus removing the influence of excitatory inputs. 

Without their external excitation, P-cells and the interneurons nevertheless produced spontaneous 

activity. Critically, the spontaneous activity of individual P-cells was highly irregular: inter-spike intervals 

(ISI) exhibited a long tail, indicating that the coefficient of variation of ISI was large. To measure the 

effect of the inhibitory interneurons on the P-cells, Hausser and Clark (1997) blocked inhibitory synapses 

and found that mean firing rates increased in both P-cell and the interneurons. Removal of inhibition 

transformed the ISI histogram into a pattern that exhibited a single narrow peak without a tail. That is, 

removal of inhibitory inputs to the P-cells increased their regularity. 

Do the inhibitory interneurons play a role in reducing simple spike synchrony in the intact 

animal? Brown et al. (2019) made mutant mice that lacked stellate and basket cells, the principal 

interneurons in the cerebellar cortex. They recorded P-cell activity in the awake mice and found that 

despite loss of stellate cells, there was little or no change in the mean firing rate of P-cells. Rather, the 

mutation affected the variability of simple spikes: without the stellate cells, the P-cell simple spike ISI 

histogram had a reduced tail. This argument is admittedly weak because the pattern of irregularity may 

be shared among P-cells, and thus irregularity by itself is not an indicator of reduced synchrony. 

Regardless, the available results raise the possibility that a function of the interneurons in the cerebellar 

cortex may be to reduce simple spike synchrony. 

We might imagine that by reducing simple spike synchrony, the molecular layer interneurons 

allow synchronous complex spikes to reliably convey error information to the DCN. If so, then removal 

of this inhibition might prevent normal learning in the DCN. Results of Wulff et al. (2009) are consistent 

with this. The authors produced mice in which P-cells lacked GABA receptors and observed an increase 

in the regularity of the simple spikes. These mice learned a gain-down VOR task normally on Day 1, but 

when tested on Day 2, they showed a deficit in the ability to retain what they had learned. 

In summary, in the framework that we have described, P-cells face a conflict in the two roles 

that they are asked to play. On the one hand, given the objective of transmitting error information from 

the middle layer (P-cells) to the output layer (DCN neurons), we need to encourage complex spike 

synchrony but avoid simple spike synchrony among the P-cells that converge upon a single DCN neuron. 

On the other hand, given the objective of driving activity of the output layer neurons, it is useful to 

encourage simple spike synchrony. Curiously, a function of the inhibitory interneurons in the molecular 

layer may be to transform the spontaneous simple spike activity of P-cells into an irregular pattern (less 

synchrony), which in turn may be required for normal learning in the DCN. However, synchrony of 

simple spikes has the advantage of allowing the P-cells to drive the activity of DCN neurons, thus 

affecting behavior. Whether simple spikes are synchronous among the P-cells that form a population (as 
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predicted by the control hypothesis), or asynchronous (as predicted by the error signal hypothesis), 

remains unknown.  

 

Other limitations 

Despite our focus on the theoretical problem of learning in the DCN neurons, we did not consider the 

question of what the cerebellum’s output is specifying. For example, we focused on P-cell activity during 

saccades, which arguable is the one voluntary movement for which there is excellent information 

regarding the role of the various non-cerebellar structures (superior colliculus, brainstem burst 

generators, etc.). Yet, we did not discuss the activity of neurons in the DCN during saccades. There are 

two reasons for this. First, activity of individual DCN neurons are difficult to interpret. In the caudal 

fastigial nucleus, neurons burst (Fuchs et al., 1993; Helmchen et al., 1994; Sun et al., 2016), pause 

(Kleine et al., 2003), or do both, with a timing that may differ as a function of direction and speed of 

saccades. A second reason is that there is significant anatomical diversity in the projections of fastigial 

neurons: some project to the brainstem burst generators (Noda et al., 1990), while some project to the 

rostral region of the superior colliculus (May et al., 1990). This may account for the fact that disruption 

of caudal fastigial nucleus not only affects the saccade component of gaze shift (Quinet and Goffart, 

2007, 2005), it also affects the equilibrium position of the eyes and head during fixation (Goffart et al., 

2004; Guerrasio et al., 2010).  

 One path forward is to try and extend population coding of P-cells via their complex spike tuning 

into a method to infer population coding in the DCN. Because complex spikes tend to produce 

suppression of DCN activity, one may be able to use this error-dependent suppression to quantify tuning 

of a DCN neuron’s activity with respect to complex spikes in the parent P-cells. This error-dependent 

tuning may be a useful way to assign membership to DCN neurons that belong to the same population. 

We focused on an elementary movement (saccades), but even simple gaze shifts involve 

coordination of motion between the eyes and the head. Visual errors that follow a head-free gaze shift 

produce adaptation of both saccades and head movements (Cecala and Freedman, 2009). In the 

framework presented here, these visual errors would engage P-cells that in turn influence DCN neurons 

that can produce an action that can remedy that error. Yet, stimulation of caudal fastigial nucleus 

produces eye saccades without significant motion of the head (Quinet and Goffart, 2009). At this writing 

it is unclear whether head-free and head-fixed gaze errors engage distinct populations of P-cells. 

There is no denying that the vast majority of cerebellar output is destined to the cerebral cortex, 

where activity affects many aspects of behavior, including decision-making. For example, fastigial (Gao 

et al., 2018) or dentate nucleus (Chabrol et al., 2019) stimulation biases the delay period activity in the 

motor cortex as an animal evaluates the evidence associated with choosing a movement. Disruption of 

the interpositus nucleus eliminates working memory related activity in the prefrontal cortex (Siegel and 

Mauk, 2013). In humans, damage along the vermis has been associated with autism. Children who suffer 

from autism spectrum disorder, a developmental disorder that leads to impairments in social and 

communication skills, exhibit anatomic abnormalities in their cerebellum, including reduced number of 

P-cells (Whitney et al., 2008), particularly along the vermis (Marko et al., 2015; Scott et al., 2009).  
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How are P-cells contributing to social and communication skills? How are the activities in the 

DCN neurons supporting delay period activity of cortical cells during decision-making? These are some 

of the many unknown aspects of cerebellar function. It seems likely that some of the answers will be 

revealed once we better understand how the teacher (inferior olive) organizes the middle layer neurons 

(the P-cells) into populations that may serve as surrogate teachers for the actors (DCN neurons) that 

convey the output of the cerebellum. 
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