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Figure S1. Related to Figure 3D-G. Energy consumed during isometric contraction grows linearly with the force-

time integral.  A. The measured force during electrical stimulation of the human gastrocnemius muscle at 20 or 

80Hz (data from [S1]). The 20Hz stimulation produced a force that increased with a time constant of around 

0.25sec, reaching a plateau of approximately 230N.  The 80Hz stimulation produced a force that had a similar time 

constant, but reached a plateau of approximately 430N.  B. Energy expended by the muscle as measured via 

consumption of ATP.  The data points are from [S1].  In the left subplot, the curves depict a model where energetic 

costs grow linearly with the force-time integral.  In the right subplot, the curves depict a model where energetic 

costs grow with the squared force-time integral.  The fit with the force-time integral has about half of the errors as 

in the squared force-time integral.  C. Oxygen consumed during electrical stimulation of a frog muscle plotted as a 

function of the force-time integral.  Data from [S2].   
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Supplemental Mathematical Derivations 
 

Speed of walking 
Considerable research has approached the question of natural walking speed of various animals.  Here, 
we briefly summarize this work, demonstrating that like reaching, energetics of human walking are 
convex in time, suggesting an optimum speed.  However, this speed is slower than one that humans 
choose during locomotion.  We suggest that the reason for this is that reward interacts with effort, 
making it worthwhile to be energetically inefficient. 
 The current view in walking research is that the energetic cost of locomotion defines the optimal 
speed of motion [S3].  For example, Ralston [S4] measured rate of energy expenditure in human walking 
and found that when people were not walking, the rate of energy expenditure per unit mass was 

0 0e a , and when they were walking 
2

0 1we e a bv     per unit mass, where v is average speed of 

walking.  Suppose that during an arbitrary period of time T  a person spends some time wT T  walking 

a distance d, and is otherwise not walking.  During walking their average speed is wd T .  The rate of 

energy spent during walking (per unit mass) becomes: 
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If that individual has mass m, total energy spent during that T period is: 
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To find the speed of walking that minimizes energy expenditure, we compute the derivative of the 

above expression with respect to wT , and find the optimum walk duration 
*

wT : 

 *
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T d
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  (S3) 

The optimum walking speed is:  

 1*
*

w

ad
v

T b
   (S4) 

Therefore, the energetic cost of walking, similar to that of reaching, describes a convex function of time 
which exhibits a minimum. This means that in this energetics-only formulation of movement, there is an 
optimal speed and duration that minimizes the energetic cost of walking.  Indeed, Hoyt and Taylor [S5] 
concluded that humans and other animals “select speed within a gait in a manner that minimizes energy 
consumption”.   

However, this energetics-only framework has a number of limitations.  As Srinivasan [S3] has 
pointed out, the optimum speed predicted by Eq. (S4) is considerably slower than the speed that people 
naturally choose to walk.  The reason for this, our theory suggests, is that reward discounts effort, 
making it worthwhile to expend energy to acquire a rewarding goal (Figure 1).  One caveat is that the 
optimum walking speed depends on how energetic cost is represented. A common approach in the 
locomotion literature [S4] is to represent it as the total energetic cost to walk a unit distance, referred to 
as the cost of transport. The optimum speed predicted by minimizing the total cost of transport provides 
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a reasonable match to the natural speeds observed. However, an argument against optimization of total 
cost of transport is that it relies on the unrealistic assumption that one will always be walking and 
nothing else.  

Ultimately, regardless of how energetic cost is calculated, an energetics-only framework does 
not consider a role for reward.  As a result, this framework cannot account for the observation that 
people and other animals move faster toward stimuli that promise greater reward [S6-S10].  It cannot 
account for the observation that more impulsive people may move faster than less impulsive people 
[S11].  It cannot account for the observation that movement speed declines with increasing inter-trial 
intervals [S12].  It cannot account for the observation that people in different cities walk at different 
speeds [S13]. 

Because we found that energetics of walking and reaching were both convex functions of time, 
our results regarding effects of reward, mass, distance, etc. on vigor of reaching predict similar effects 
on vigor of walking.   

In summary, our framework extends the existing approach in the field of walking research in a 
critical way: using energetics of action as a measure of effort, we define a utility in which there is 
interplay between reward, effort, and time.  We arrive at a theory that not only describes where one 
should walk (toward the choice that offers the greatest utility), but also how fast one should walk (via a 
speed that maximizes the utility).  As a result, the theory provides an account of the observation that 
when there is greater reward at stake, one should walk faster.  When time is more valuable, one should 
walk faster.  If mass increases, one should walk slower. 
 
Combining effort and reward additively vs. multiplicatively 
We suggested that effort discounted reward additively.  This is in contrast to earlier work where it was 
assumed that effort discounts reward multiplicatively [S14-S16]. Let us compare these two approaches.  
In the case of multiplicative interaction between reward and effort, we have the following 
representation for utility: 

 ( )
1

J U T
T







  (S5) 

In the above formulation increasing reward increases the utility of the action, but has no effect on the 
optimal movement duration (because the effect of reward is to scale the utility function, which has no 
effect on the value of time that maximizes the utility).  Therefore, such a formulation is inconsistent with 
the observation that reward makes movements faster.  That is, any utility in which reward is multiplied 
by a function of effort will fail to predict sensitivity of movement vigor to reward. This is in contrast to 
experimental evidence [S10].  In contrast, an additive interaction between reward and effort correctly 
predicts that increased reward increases movement vigor. 
 
Hyperbolic vs. exponential temporal discounting 
We suggested that like reward, effort is discounted hyperbolically.  In reinforcement learning [S17], 
future rewards are discounted exponentially, largely due to mathematical convenience.  Exponential 
discounting has also been suggested in models of human decision making [S18].  Hyperbolic discounting, 
however, is more consistent with decision-making data in humans [S19] and monkeys [S20].  In our 
expression for movement utility, we opted to discount reward and effort as a hyperbolic function of 
time.  The reason for this is that exponential discounting makes the incorrect prediction that changes in 
inter-trial intervals should have no effect on movement vigor.  To illustrate this, suppose that time 

discounts utility exponentially.  For an arbitrary effort ( )e T , we have:  

  ( ) exp
T q

J e T


 
   

 
 (S6) 
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If we take the derivative of the above equation with respect to T, we find the following expression: 

 
( ) ( )

exp
dJ de T e T T q

dT dT



 

    
    
   

 (S7) 

To find the optimum duration, we set the above expression equal to zero, and find that the inter-trial 
delay q has no consequence on the optimum duration.  Thus, in the case of exponential discounting we 
find that vigor is independent of inter-trial delay, something that is inconsistent with experimental 
evidence [S12]. 

We also considered the possibility that reward and effort were discounted exponentially in time 
in our analysis of the choices that birds made in walking vs. flying, and the choices people made in 
isometric force production.  For the walking vs. flying data set, we found that exponential discounting of 
reward and effort provided as good a fit to the data as hyperbolic discounting (R=0.99, p<10-8).  For 
isometric force production (Figure 3), we found that exponential discounting did a better job than no 
discounting at all, but still underperformed hyperbolic discounting (R=0.84, p<10-7).   

In Figure 3D, the indifference curves dip downward, and then move slightly upward with 
increasing durations. This is unexpected because it suggests that the utility of producing a force for a 
given duration is equal to producing a larger force for a larger duration. Intriguingly, exponential 
discounting can account for the curious dip observed in the indifference curves, although the overall fit 
to the data was still worse than hyperbolic discounting. The dip could also be explained by a utility in 
which time was discounted hyperbolically, where discounting of time is due to a power function of time: 

 1 2

1

a FT a
U

T 

  



  (S8) 

While the above utility could account for the curious dip, its overall fit to the data (R= 0.65, p< 
10-3) was not as good as the utility where effort is hyperbolically discounted by time. 
 
Integral of squared motor commands vs. energetic cost 
Assuming that temporal discounting of effort is hyperbolic, is there a fundamental difference between 
representing effort via energetic cost as compared to sum of squared forces?  We will consider this 
question in this section and show that sum of squared forces presents a cost that is convex in time but 
has no global minimum.  In contrast, energetics of both walking and reaching are convex in time but also 
have a global minimum.  The implications of this result are presented. 

Let us describe a utility that represents effort via integral of squared forces.  How does this 
utility depend on duration of movement?  Suppose a movement is made in period T, along trajectory 

( )q t .  We compute the integral of the squared forces for that movement, represented by s.  Now 

suppose that the system makes the movement in period T/a.  What is integral of the squared forces 
produced in this movement?  We note that: 

 
( ) ( ( ))

( )

q t q r t

r t at




 (S9) 

The velocity of the movement ( )q t  is related to the movement ( )q t  by the following:  

 
( ) ( ) ( )

( ) ( )
dq t dq r dq r

r q r r aq r
dt dt dr

      (S10) 

For acceleration we have:  

 

 2
2 2

2

2

( )( ) ( ) ( )
( ) ( ) ( ) ( )

( )

d q r rd q t dq r dq r
r q t r r q t r q r r q t r

dt dt drdt

a q r

  
         



 (S11) 
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For a typical system that has dynamics described by inertial and coriolis/centripetal forces, we have the 
following relationship between forces and motion:  

     2( ) ( ) ( ) ( ) ( )t I t t C t t  q q q q  (S12) 

For the sped-up trajectory, we have:  

 

   

   

22

2

2 2

2

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( )

d t d t
t I t C t

dtdt

I r a r C r a r

a r





 
   

 

  



q q
q q

q q q q  (S13) 

The above result implies that when we scale time to go from one trajectory that has duration T to 
another that has duration T/a, the forces scale by a2.  Let us now compare the integral of the squared 
forces in the two trajectories.  We indicate this integral with the symbol ( )i T  for one trajectory, and 

( )i T a  for the other trajectory.   

 

2

0

/
2 4 2 3

0 0

( ) ( )

( ) ( ) ( )

T

T a T

i T t dt s

dr
i T a t dt a r a s

a



 

 

  



 

 (S14) 

These two equations imply that there exists a function ( )i T  such that:  

 
3

( ) 1

( )

i T

i T a a
  (S15) 

A function that satisfies the above condition is: 

 
3

( )
c

i T
T

  (S16) 

This result implies that the sum of squared forces required for moving an inertial system along an 
arbitrary trajectory will decrease as the third power of the duration of movement.  These forces scale 
approximately linearly with mass.  As a result, we conclude that if our measure of effort is the sum of 
squared forces, then the utility of a constant amplitude movement as a function of duration T and mass 
m is: 

 
2 3

1

cm T
J

T









 (S17) 

In comparison, if our measure of effort is the energetic cost of that movement, then the utility is: 

 
2

1

amT bm T
J

T





 



 (S18) 

We find that a fundamental difference between representations of effort via sum of squared forces vs. 
energetic cost is that the latter is a convex function of time with a minimum, whereas the former is not.  
The minimum arises from the bias term, am , in Eq. (1) that represents an energetic cost that grows 
with time, penalizing movements with longer durations. The bias term is not present if effort is sum of 
squared forces or even sum of forces. It also cannot be explained by the cost of supporting the arm 
against gravity, as the arm was supported throughout the movement. Interestingly, a similar bias is 
present in walking, and also leads to energetics that are convex in time with a minimum [S4]. 



7 
 

What is the implication of a movement duration that minimizes energetic cost?  Consider a 
thought experiment in which one is given the option of doing nothing (and receiving no reward), vs. 

performing a movement for 10T   seconds to receive reward .  If we set large enough, then both 
utilities produce a positive value, which implies that one should choose to perform the movement and 
receive the reward.  Now suppose that we increase the required movement duration.  If the utility of 
these choices is based on squared forces, as T  , 0J  , but always remains positive.  This means 
that according to the squared forces model, if we accept to perform a short duration movement for 
some reward, we must also accept it despite the requirement of extremely long movement durations.  
This unreasonable prediction arises because representation of effort via sum of squared forces does not 
exhibit a minimum as a function of time.  

However, if the utility of the choice is based on energetic cost, then as T  , then 

1

am
J

T



.  This means that regardless of reward, the utility of doing an action for a very long period 

is always less than zero.  As a result, while we will accept to perform the movement for a short period of 
time in exchange for the reward, as the movement duration becomes longer, we will reject the offer of 
reward and opt to do nothing.  This reasonable prediction arises because the energetic cost has a global 
minimum. 
 
Effective mass of the hand as a function of movement direction 
In Figure 2 we considered data from experiments in which people reached to various directions.  To 
compute the utility of each movement, we needed to estimate the effective mass of the arm as it 
moved in each direction.  Here, we show how to estimate this effective mass. 

We begin with the inertia of the arm, which for the planar configuration is a 2x2 position-

dependent matrix ( )I  , where  
T

s e   , representing angular position of the shoulder and elbow 

joints.  At rest, inertia represents the relationship between a vector of joint accelerations and the 
resulting torque: 

 ( )I    (S19) 

We are interested in computing the mass matrix ( )M  which represents the relationship between the 

acceleration vector x  and the force vector as measured at the hand at rest: 
 ( )f M x  (S20) 

We use the Jacobian matrix:  

 
dx

d
   (S21) 

and the principle of virtual work to relate force to torque, and acceleration in joint coordinates to hand 
coordinates: 

 

T f

x

d
x

d





 


 

 


 

 (S22) 

Using the above equalities, we can write the relationship between hand acceleration and force: 

    1 1 1 1( ) ( )
T T d

f I x I
d

  


    
       (S23) 
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When the hand is at rest, the velocity-dependent term on the right side of the equation is zero, 
providing the following relationship between acceleration and force: 

  1 1( )
T

f I x      (S24) 

As a result, we can define the mass matrix at the hand as:  

  1 1( ) ( )
T

M I      (S25) 

In the case of the planar arm that we are considering, the mass matrix ( )M   is a 2x2, describing the 

relationship between accelerations and forces at the hand.  To compute the effective mass ( )m   we 

apply an acceleration of length unity in a given direction and compute the length of the resulting force 
vector. 
 
Energetic cost of isometric force production 
We considered data from an experiment in which energy consumption was estimated via the change in 
ATP concentration (or alternatively, oxygen uptake) during the electrical stimulation of an isometric 
muscle (Figure S1A).  We modeled the actual forces produced by the muscle, computed its integral, and 
then fitted the following equation to the measured data, with the results shown in Figure S1B (left 
panel): 

 1 2

0

( )
T

e a f t dt a    (S26) 

We found that this model produced a mean-squared error that was about half as large as those 
produced if we had assumed that energy was related to the integral of the squared force: 

   2
1 2

0

( ) ( )
T

e f t a f t dt a   (S27) 

The results are shown in the right subplot of Figure S1B. Other experimental data [S2] provided further 
evidence for the conjecture that the energetic cost associated with isometric force production is a linear 
function of the force-time integral (Figure S1C).  

Let us consider the iso-utility curves in Figure 3D and ask what would happen if effort was the 
energetic cost of force production, but not discounted in time.  This means that the utility of producing a 
constant force F for duration T is:  

 1 2
1

J a FT a
T




  


 (S28) 

To find iso-utility curves, we solve the equality    1 1 2 2, ,J F T J F T  and obtain the following expression: 

 
   

1 1 1
2

1 2 1 2 1 1 2 21 1

a F T
F

a T a T T a T T

 

 
  

 
  (S29) 

This equation tells us that if effort is not temporally discounted, then the iso-utility curves will 

asymptote to zero with increasing duration 2T .  Therefore, undiscounted energetic cost, like the time-

integral of force (Figure 3G), will lead to iso-utility curves that go to zero, which is inconsistent with the 
experimental data.  
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Supplemental Tables 

Table S1. Simulation Parameters and Goodness of Fit for Figures 1 and 2 

  Parameters Goodness of Fit 

Simulation Fig a  

(J/s/kg) 

b i j    

(kJ) 

  

 

m 

(kg) 

d 

(m) 

   

(sec) 

k  

Movement Utility 1B 15 77 1.1 3 0.5 1 2 0.1 0 n/a n/a 

Effect of reward 1C 15 77 1.1 3 0.5 

1.0 

1 2 0.1 0 n/a n/a 

Effect of mass 1D 15 77 1.1 3 0.5 1 2 

3 

0.1 0 n/a n/a 

Effect of impulsivity 1E 15 77 1.1 3 0.5 1 

2 

2 0.1 0 n/a n/a 

Effect of inter-trial 

delay 

1F 15 77 1.1 3 0.5 1 2 0.1 0.5 

1 

n/a n/a 

 Effect of mass on 

movement duration 

(Gordon et al. 1994 ) 

2B 15 77 1.1 3 0.31 1 m()  0.1 0 n/a R = 0.83, p<10
-34 

 Effect of mass on 

movement direction 

(Wang and 

Dounskaia 2012) 

2C 15 77 1.1 3 0.1 1 m() 0.15 0 n/a Right: R=0.67, p<10
-8

  

Left:   R=0.68, p<10
-9 

 Effect of mass on 

movement direction 

(Cos et al. 2011) 

2H 

2I 

15 77 1.1 3 0.1 1 m() 0.11 

0.075-

0.145 

0 28 T1/T2: R=0.96,p=0.009  

T3/T4: R=0.96,p=0.008 
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Table S2. Simulation Parameters and Goodness of Fit for Figure 3A-3C 

  Parameters Goodness of Fit 

Simulation Fig 
we

 

(J/s) 

fe
 

(J/s) 

pe
 

(J/s) 

wt
 

(sec) 

ft
 

(sec) 

pt
 

(sec) 

  

(kJ) 

   

 

 

Walk/Run Indifference Points: 

Temporal discounting of 

reward and effort 

3A 2 J/s 31.7 1.09 0.6 1.1 1.25 1.3 0.03 R=0.99, p<0.0001, 

SSE=74.35
 

Walk/Run Indifference Points: 

No temporal discounting  

3B 2 J/s 31.7 1.09 0.6 1.1 1.25 1.3 0 R=0.99, p<0.0001, 

SSE=757.84 

Walk/Run Indifference Points: 

Temporal discounting of 

reward only 

3C 2 J/s 31.7 1.09 0.6 1.1 1.25 1.3 0.007 R=0.99, p<0.0001,
 

SSE=109.28 

 

 

 

Table S3. Simulation Parameters and Goodness of Fit for Figure 3E-3G 

   Parameters  Goodness of Fit 

Simulation Fig   
1a  2a     

 

 

Temporal discounting of reward and 

effort: Force-Time Integral 

3E 1  1 1 25 R=0.92, p<10
-11 

No temporal discounting: Force
2
-Time 

Integral  

3F 1 1 n/a n/a R=0.67, p<10
-4 

No temporal discounting: Force-Time 

Integral 

3G 1 1 n/a 0.001 R=0.62, p<10
-3
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Supplemental Experimental Procedures 

EXPERIMENT: Energetic cost of reaching 
We measured rate of metabolic energy expenditure via expired gas analysis as subjects made reaching 
movement of different distances and durations.  Fifteen healthy adults (mean ± SD age 24.2 ± 4.4 yrs, 8 
females, 7 males) participated in this study. All subjects were right-handed and recruited from the 
University of Colorado Boulder student body. The University of Colorado Institutional Review Board 
approved the study protocol and all subjects gave informed consent. 

Seated subjects grasped the handle of a robotic arm (Interactive Motion Technologies, Shoulder-
Elbow Robot 2) to move a circular cursor from a home circle to a target circle at five pre-determined 
reaching speeds. The cursor, home circle, and target circle were displayed on a vertically mounted 
computer screen at the subject’s eye-level. The five speeds are referred to as Very Slow, Slow, Medium, 
Fast, and Very Fast. We tested three reach distances of 10, 20, and 30cm. On odd numbered trials, 
reaches started ~15 cm in front of the chest area with the arm in a flexed position.  On even numbered 
trials, the reach started at the previous target location with the arm in an extended position and 
involved flexing the arm back towards the center target. Subjects wore bilateral shoulder straps and a 
lap belt to limit torso movement. A cradle attached to the robot handle supported the right forearm 
against gravity and restricted wrist movement.  

A training bar that moved with a velocity that corresponded to the minimum jerk trajectory was 
used to illustrate the desired reaching speed during a familiarization period at the beginning of each 
reaching block. Additionally, the target turned gray if the reach was too slow, green if the reach was too 
fast, and “exploded” as a flashing yellow ring if the reach was within ±50ms of the desired movement 
duration. A pleasant auditory tone was also used to signal that the subjects successfully hit the target 
within the desired time window. After reaching the target, subjects had 800ms to settle in the center 
ring of the home circle before the next target circle was displayed. Thus, the inter-trial time was fixed at 
800ms for all speeds at each reach distance.  

We measured metabolic rate using expired gas analysis (ParvoMedics, TrueOne 2400). Subjects 
wore a nose clip and breathed in and out of a mouthpiece during data collection. We sampled the rates 

of oxygen consumption ( 2OV ) and carbon dioxide production ( 2COV ) at 5 second intervals as subjects 

made reaching movements at the desired speeds. Data collections occurred early in the morning, after 
subjects had fasted overnight. We calibrated the system prior to each data collection using certified gas 
mixtures and with a range of flow rates using a 3 liter calibration syringe. All metabolic data were 
corrected with standard temperature and pressure, dry (STPD).  

Subjects performed five 5-minute reaching blocks at each of the five fixed speeds. The speeds 
for these five reaching blocks were randomized for each subject. Each 5-minute reaching block began 
with 20 practice trials during which no energetic data was recorded. After the practice trials, subjects 
placed the clip on their nose, inserted the mouthpiece, and breathed for ~1 minute while sitting quietly. 
After this 1-minute breathing period, subjects performed N number of reaches, where N was chosen to 
last ~5 minutes. Thus, all subjects performed the same number of reaches for a given reaching speed 
and reach distance. In between reaching blocks, subjects rested for at least 5 minutes during which no 
energetic data was recorded. If subjects were naïve to reaching with the robotic arm, we asked them to 
come in for a brief ~15 minute familiarization session the day prior to the data collection. The 
familiarization session involved short reaching blocks of 50 trials at relatively slow and fast speeds until 
the subject appeared to be comfortable with the robotic arm and the task. Only the trials performed 
during the last 3 minutes of each reaching block, corresponding to the steady-state metabolic data, 
were used in the calculations. 
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We only analyzed metabolic data with respiratory exchange ratio, 
2 2

/CO ORER V V , values less 

than 1.0 and generally below 0.85, suggesting that oxidative metabolism was primarily involved [S21]. 
Normal resting RER values range from 0.74 to 0.87, partly depending on diet and other factors [S22, 
S23]. 

We calculated the average gross metabolic rate to perform the task in terms of Joules per 
second using the Brockway equation [S24].  As we were interested only in the cost of moving the arm, 
we calculated the net metabolic rate by subtracting the bias representing the cost of sitting quietly with 
the hand resting in the cradle. To obtain a movement’s net metabolic cost in units of Joules, we 
multiplied the measured net metabolic rate in J/s for each movement duration and distance, by trial 
duration. Trial duration is the time between the start of consecutive movements, which represents the 
sum of the movement duration, the inter-trial time, and reaction time. The net metabolic rate for a 
movement of a fixed distance and duration was then calculated as the net metabolic cost of the 

movement divided by the movement duration. Note that re  represents the average not the 

instantaneous metabolic rate over the course of a movement. We next parameterized the relation 
between a movement’s net energetic rate and the duration and distance of the movement. We fit 
metabolic rate to Eq. (1), to determine the free parameters a, b, i, and j.  The distance d was known. The 
effective mass of the arm and robot was estimated as 2m  kg, based on an inertial model of the arm 
using standard anthropometric values (see section on Mass of the Arm and Movement Vigor for more 
details regarding the arm model).    
 
SIMULATIONS 
Goodness of fit for each model was determined by calculating the correlation coefficient and the sum of 
squared errors, SSE. Parameter values and goodness of fit for each simulation are provided in 
Supplemental Tables S1-S3. Simulation code is available upon request. 
 
Mass of the arm and movement vigor 
We tested the predictions of the theory in conditions where the mass of the limb was varied via the 
direction of the reach (Figure 2).  We considered an inertial model of the human arm that was 
composed of two segments, with the following properties:    

1 2

1 2

1 2
1 2

2
1 1

0.33 0.43 meters

1.93 1.52 kg

2
meters

2 3

0.014 0.019 kg m

d d

m m

d d

I I

 

 

 

 

 

 

In the above expressions, di  is length of each segment, m is mass,   is length from point of rotation of 
the segment to its center of mass, and I is the inertial of the segment, with the subscript 1 referring to 
the upper arm, and subscript 2 referring to the forearm and hand.  To predict what the movement 

duration and velocity should be for each direction  , we first computed the effective mass along that 

direction  m   by computing the length of the vector that resulted when an acceleration of 1 m/s2 in 

the direction of movement was multiplied by the mass matrix M.  The result was scalar value function 

 m  , which was then used to compute the predicted duration for a reach in that direction, with an 

amplitude of 10cm, that is, 0.1d   (as shown in Figure 2B).  We then computed the peak velocity of the 
resulting movement using a minimum-jerk trajectory.   
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To compute effort of each movement, we used the energetic costs that we had measured in 
Figure 1A, and set 1  , with the only free parameter  .  We found that a value that provided a good 

fit to the data of Gordon et al. [S25] was 310  .   
 
Mass of the arm and choice of the movement  
We next tested the predictions of the theory by considering the choices that people made when they 
were free to choose their own movement direction.  In this experiment, the right and left arms were 
placed in a given configuration and the subjects were asked to make an out-and-back reaching 
movement to a circle of 15cm radius, but to a direction of their choice [S26].  The resulting probability 
distribution of the directions that they chose is shown in Figure 2C (gray region).  To see whether our 
theory could account for the data, we fit the data, with only one free parameter,  , keeping all other 
parameters unchanged from the simulations shown in Figure 2B.  We found that a value that provided a 
good fit to the data was 100  .  

We first computed the effective mass for the left and right arms for the out-and-back movement 
by using the mass at the start point and each possible turn-around point about a circle of 15cm radius.  
We then used this effective mass to predict the duration of each 30cm movement, and then to compute 
the utility of that movement.  For each possible movement direction we computed its utility, and then 
computed the ratio of this utility to the sum of utilities across all movement directions, producing the 
following probability:   

  
 

 
Pr i

i
i

i

J

J








 (S30) 

The results are shown with the black curve in Figure 2C, with the effective mass distribution for an out-
and-back movement plotted in Figure 2D. In Figure 2E, the sum of utilities for quadrants 1 and 3 is 
compared to the fractions of trials that the subjects chose to reach to those quadrants. 

Our formulation of utility function was further tested by considering the choices that people 
made when they were given the option of reaching to one of two possible targets (Figure 2F).  The idea 
was that for each target, the effective mass of the movement described the utility for that movement, 
and the difference in the utilities associated with the two targets should describe the probability of 
choosing one target over another.  We kept the parameters that we had found in Figure 2C unchanged.  
This produced a utility function with nothing to fit.  To compute the effective mass for the reach to a 
given target, we computed the effective mass at the start and end points and averaged the two.  To 
compute the probability of choosing a target, we used a logistic function in which the probability was a 
function of the difference in the utility of each target.  Target T1 had a utility that was 16% larger than 
the utility of target T2.  When the two targets were equally distant from the start point, the subjects 
chose target T1 on around 80% of the trials. To model the choice of targets as a function of movement 
distance, we used a logistic function: 

 

1

1

1 2

1
Pr( 1) 1 exp

2
T

T T

J
T k

J J


   

          

  (S31) 

Here, k is a free parameter representing noise in the decision making process and was fixed to the same 
value in all simulations. Figure 2H illustrates the fit of the function to the data for the probability of 
choosing target T1 over target T2, and target T3 over target T4. As the distance to target T1 and T3 
increases, the preference shifts to target T2 and T4. In the logistic function, the only free parameter was 
k, which we found to be 28 for the data in Figure 2I. 
 
To walk or to fly 
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One of our main ideas is that representation of effort may depend on temporally discounted energetic 
cost of action.  To test this idea, we considered an experiment in which both the caloric values of reward 
and the energetic cost of performing the action were objectively known.    

Bautista et al. [S27] trained starlings to choose between walking a short distance or flying a long 

distance to acquire a piece of food.  The caloric content of this reward was known, 
31.3x10  , as was 

the energetic rate associated with walking, perching, and flying:  2we  , 1.09pe  , and 31.7fe  .  

Time spent in each act was also known: 0.6wt  , 1.25pt  , and 1.1ft   sec.  According to our theory, 

the utility function takes the following form: 

 
1

e
J

T









  (S32) 

Here, T is total travel time, e  is energetic cost of the movement, and   is a temporal discounting factor.  

The variable T represents the time the animal spends performing three different activities: moving, 

perching, and handling the food. The movement time wt  is the time the birds spend walking in a one-

way trip (or time spent flying, represented as ft ).  In addition to walking or flying, the animals spent 

time perching in between walking or flying one-way trips ( pt ), and there is additional time spent 

handling the reward ( ht ) before they consumed it.  If the animal chose to walk wn  times to acquire 

reward, the travel time is: 

    2w w w w p hT n n t t t    (S33) 

Bautista et al. [S27] estimated the energetic rate during perching pe  from previous recordings and 

assumed that the energetic rate of handling he  was the same.  Thus the total energetic cost for making 

wn  walking trips is: 

    2w w w w w p p p he n n e t e t e t    (S34) 

Combining the above equations, we find the utility for the choice of taking wn  walking trips: 

  
  

  

2

1 2

w w w p p p h

w w

w w p h

n e t e t e t
J n

n t t t





  


  
  (S35) 

We can similarly define the utility for flying, fJ .   

The indifference point is found by setting    w w f fJ n J n  and solving for wn . The only free 

parameter is  .  We found that changing  had a monotonic effect on the indifference curve: as Figure 

3A illustrates, small   (patient animal) led to a preference for walking, whereas large   (impulsive 

animal) led to a preference for flying.  The data was best fit for 0.022  .   

If neither reward nor effort is temporally discounted, then there are no free parameters in the 
utility function.  The number of walks is proportional to the number of flights, where the proportion is 
determined by the ratio of the energetic cost of flying to walking (Figure 3B).   

Finally, if reward is temporally discounted but not effort, then once again there is only one free 
parameter,  .    However, in this case changing   has a non-monotonic effect on the indifference 

curve.  When   is very small (patient animal, 0.0001  ), there is a preference for walking (Figure 3C).  

When   is very large (impulsive animal, 1  ), there is once again a preference for walking (Figure 3C).  

The closest that we can come to the measured data is with 0.007  , which provides a poor fit.  
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Indeed, if we assume that effort is not temporally discounted, the mean-squared error between the 
model and data is an order of magnitude larger than if effort is temporally discounted. 
 
Sensitivity of results to parameter values 
We chose to represent utility as a sum of effort and reward.  A number of earlier approaches have used 
a multiplicative approach, where effort multiplicatively discounts reward [S14-S16].  An additive 
formulation is a better fit to the data because a multiplicative interaction cannot account for the 
observation that increased reward results in increased movement vigor [S10, S28]. 

We chose to discount the utility via a hyperbolic function of time.  Earlier works have suggested 
an exponential discounting [S18].  Exponential discounting cannot account for the observation that vigor 
declines with increased inter-trial interval [S12]. Hyperbolic discounting performs as well or better, 
compared to exponential discounting in the choices birds made in walking vs. flying and the choices 
people made in isometric force production. 

We considered the possibility that only reward but not effort may be temporally discounted.  
Such a scenario produced a model that had the same number of parameters as in the utility where both 
effort and reward were temporally discounted.  However, we found that temporal discounting of 
reward and effort always produced a better fit to the measured data in choices that birds made in 
walking vs. flying, and choices that people made in isometric force production. 
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