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There are many causes for variation in the responses of the motor apparatus to neural commands. Fast-timescale disturbances

occur when muscles fatigue. Slow-timescale disturbances occur when muscles are damaged or when limb dynamics change as a

result of development. To maintain performance, motor commands need to adapt. Computing the best adaptation in response to

any performance error results in a credit assignment problem: which timescale is responsible for this disturbance? Here we show

that a Bayesian solution to this problem accounts for numerous behaviors of animals during both short- and long-term training.

Our analysis focused on characteristics of the oculomotor system during learning, including the effects of time passage. However,

we suggest that learning and memory in other paradigms, such as reach adaptation, adaptation of visual neurons and retrieval of

declarative memories, largely follow similar rules.

Suppose that we are designing the control mechanism of an
autonomous robot. We recognize that motors in various limbs
will change their characteristics with use and with the passage of
time. For example, with repeated use over a short period, a
motor may heat up and change its response transiently until it
cools. On the other hand, with repeated use over a long period, the
batteries may gradually discharge and the power will only return
to near its original state after a recharge. Both of these conditions
will produce movement errors, requiring our controller to adapt
and send updated commands to the motors to produce the
desired actions. However, our controller should interpret these errors
differently: errors that have a fast timescale should result in
rapid adaptive changes, but should be quickly forgotten. Errors
that persist for extended periods of time should result in slow
adaptive changes.

The nervous system seems to face similar problems in controlling
the body. Properties of our muscles change as a result of a variety
of disturbances, such as fatigue1, disease, exercise and develop-
ment. The states of these disturbances affect the motor gain:
that is, the ratio of movement magnitude relative to the input
signal. States of disturbances unfold over a wide range of time-
scales. Therefore, when the nervous system observes an error in
performance, it faces a credit assignment problem: given that
there are many possible perturbation timescales that could have
caused the error, which is the most likely? We think that the
solution to the problem should dictate the temporal properties
of the resulting memory. That is, adaptation in response to things
that are likely to be permanent should be remembered, whereas
adaptation in response to things that appear transient should
be forgotten.

RESULTS

Bayesian statistics allows us to formalize this problem and predict the
behavior of a rational learner. Suppose that the motor plant is affected
by disturbances that can come in a variety of timescales. Each
disturbance will have a state, here represented as a random variable,
that evolves independent of other states (Fig. 1a). This implies that
fatigue state does not directly affect disease state. A long-timescale
disturbance state, such as the general health state, will go up slowly and
go down slowly (Fig. 1b). A short-timescale disturbance state, such as
fatigue state, will change rapidly. We assume that the moment-to-
moment variance of the states is higher for faster timescales than for
slower timescales (although all disturbances will have the same variance
over long times; see Methods for details). Finally, we assume that the
various states combine linearly to affect the motor plant, resulting in
perturbations to the motor gain. This motor gain defines the move-
ment and thus the movement error. From these assumptions, the
Bayesian formalism directly leads to our predictions about learning
and memory.

The Bayesian learner introduced here observes the motor error
(deviations from unity gain), but needs to estimate the states of the
various potential disturbances. Is the error due to fatigue or something
more serious? As the states of the various timescales can never be
known, the learner represents its knowledge as a probability distribu-
tion. Before an observation is made, the learner has a prior belief. For
example, if there are only two states, then the prior belief is character-
ized by a Gaussian distribution (yellow cloud in Fig. 1c). When the
learner observes an error it has effectively measured the sum contribu-
tion of all states: this leads to a diagonal area of high likelihood
(Fig. 1c). This measurement will be affected by noise, and so the
uncertainty of the learner in its measurement is displayed as the
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thickness of the blue line. By combining the measurement with its
prior knowledge, the learner comes up with a new estimate (the
posterior, red cloud).

How did the learner solve the credit assignment problem? When the
learner observes a large error on a given trial, it needs to estimate
whether this is due to a fast or a slow disturbance. In this example, the
first time the large disturbance happens, the system infers that the
disturbance is most likely due to a fast disturbance, as the prior belief is
skewed in the direction of fast timescales. That is, the yellow cloud
characterizing the distribution (Fig. 1c) has a larger variance along the
fast state. This skew arises because of the assumption that disturbances
with fast timescales are affected by greater variability. Therefore, the red
cloud (Fig. 1c) is centered on a large contribution by the fast timescale.
However, if the system keeps observing large errors, this finding is best
explained in terms of a slow disturbance, as a fast disturbance would be
expected to quickly dissipate (Fig. 1d). This would explain why
adaptation tends to show a rapid initial phase followed by a slower
phase of performance changes.

This credit assignment also may work in more complex situations.
For example, if there is a negative perturbation averaged over the last
hundred trials, whereas the last three trials had positive perturbations,
then the system would infer a long-timescale negative and a short-
timescale positive disturbance. In this scenario, the sum of the states
might be zero, indicating a motor gain of 1, but the learner knows that
the various states have not returned to their baseline. This would
explain why adaptation followed by a limited period of de-adaptation
does not wipe out the memory.

The Bayesian learner’s estimates of the contributions of each time-
scale, as well as the uncertainties of these estimates, are constantly
changing in response to the observed outcomes of each motor
command. Whenever a movement error is observed, the state estimates
adapt and the uncertainty decreases. The learner thus becomes less
sensitive to further errors. However, when time passes without the
learner observing consequences of its actions (for example, in darkness
or in sleep), the disturbances are expected to get smaller, as each

disturbance tends to vanish over its own timescale. Therefore, the
learner’s beliefs will change even when it cannot observe motor error.
However, when the learner is prevented from observing motor errors,
its uncertainty increases. This makes the interesting prediction that the
learner will be more sensitive to errors that follow a period of sensory
deprivation, and will therefore learn at a faster rate after a period of
darkness or sleep as compared with its learning rate before that period.

This is the statistically optimal way for handling the motor errors to
estimate the gain of the motor plant. Here we show that this simple
computational framework is able to account for a large body of
behavioral data.

Short- and long-term effects of saccadic gain adaptation

Motor adaptation has been extensively studied in the context of
saccades. Saccades are rapid eye movements that shift the direction
of gaze from one target to another. The eyes move so fast that visual
feedback cannot usually be used during the movement2. For that
reason, any changes in the properties of the oculomotor plant that
are not compensated for would lead to inaccurate saccades3. It has been
observed that if saccades overshoot the target, the motor gain (that is,
the ratio of eye displacement to target displacement) tends to decrease,
and if they undershoot, the gain tends to increase. For example, when
motor gain decreases to an amount smaller than 1, the nervous system
must send a stronger command to produce a movement of the correct
size. The saccadic jump model4 is a way to probe such adaptation5:
while the subject moves its eyes toward a target, the target is moved. For
a monkey, the rate of adaptation to this disturbance is similar to the
rate of adaptation in response to the weakening of eye muscles6,7,
suggesting that the error is interpreted as a change in the eye plant.
Using this model, it is possible to probe the mechanism that is normally
used to adapt to ongoing changes of the oculomotor plant.

In a number of previous experiments4, investigators have examined
how monkeys adapt their saccadic gain. The gain changes over time so
that saccades progressively become more precise (Fig. 2a). The rate of
adaptation typically starts fast and then progressively gets slower. This
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Figure 1 A generative model for changes in the motor plant and the corresponding responses of a Bayesian learner to performance errors. For illustrative
purposes, here we show the results of a simulation with just two timescales. (a) Various disturbances (d) evolve over time as independent random walks that

linearly combine to change the motor gain. The observed error is a noisy version of the gain disturbance. (b) Sample disturbances and the resulting motor gain.

(c) The Bayesian learner’s belief during an experiment where a disturbance suddenly increases the gain of the motor plant. Before the learner observes the

gain, it has a prior belief. The learner’s belief can be represented by its current estimate of the fast and slow disturbances and its uncertainty about this

estimate. This is termed a prior and is shown in yellow. In this case, the prior has a larger uncertainty along the fast state. In each trial, the learner observes

the disturbance to the motor gain (in this case a 30% increase). This observation is represented by the blue line. The observation is a line and not a point

because the disturbance could be due to a fast timescale with magnitude of 30%, a slow timescale with magnitude of 30% or any other point along this line.

Because the learner has sensory noise, there is a probability distribution associated with its observation, and therefore the blue line is hazy. To solve the credit

assignment problem, the learner integrates its observation (blue line) with the prior belief (yellow cloud) to generate a posterior estimate (red cloud). In this

case, because uncertainty was greater for the faster timescales, the observation was mostly assigned to a fast timescale perturbation. (d) The perturbation is

sustained for 30 trials. Now the learner associates the perturbation with a slow timescale.
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is a classic pattern that is reflected in numerous motor adaptation
paradigms, including reaching8–10. The same patterns are seen for the
Bayesian learner (Fig. 2b). When the gain rapidly changes, credit is
mostly assigned to fast states because the uncertainty is greater for
them, resulting in rapid adaptation. Between trials, fast states
decay rapidly, but this decay is smaller in the slower states. If the
perturbation is maintained, the relative contribution of the fast states
diminishes in comparison with that of the slow states (the blue bank
becomes darker and shifts to longer timescales in Fig. 2b). This implies
that as training continues the estimate of the gain change is assigned to
progressively slower timescales. In practical terms, this results in the
often reported observation that, in response to a constant perturbation
(that is, a step change in the apparent gain), performance of the learner
shows an initially rapid rate of adaptation, followed by progressively
slower rates.

When the target no longer jumps (in trial 1,400, the dashed line
returns to 1 in Fig. 2a), saccade gains return to 1. However, note that
the state estimates do not return to baseline: in trial 2,900, the faster

states are positive, while the slower states are negative. Adaptation
followed by de-adaptation may not wash out the system.

Our model not only accounts for relatively brief periods of adapta-
tion that are typically involved in laboratory settings, it also accounts
for behavior during long-term periods of training. For example, let us
consider a recent experiment11 where the saccadic gain adaptation was
set to –50%. The monkey adapted for about 1,500 saccades every day
for a consecutive 21-d period, and then after several days of washout
trials, de-adapted back to a gain of unity. Notably, the monkey wore
goggles that blocked vision after training each day. Multiple effects are
visible in the data (Fig. 2c). First, we note that there were several
timescales during adaptation: there was a fast (100 saccades) and a slow
(10 d) timescale. Second, we note that the starting point of perfor-
mance on each day is a bit higher than the final performance in the
previous day. Third, relearning rates are affected by the periods of
darkness. For example, the learning rate on the second day was much
faster than that on the first day. Finally, during the gain-down
adaptation (days 1–22), performance following darkness has decayed
toward a gain of unity. However, during wash-out (days 23–27), the
decay is toward a gain of 0.5. That is, the system appears to ‘forget’ in
different directions during the two phases of learning.

Our model’s behavior (Fig. 2d) was markedly similar given that we
used the same parameters that we inferred from the single session
adaptation in a previous experiment3 (Fig. 2b). The quantification of
the system’s estimates of disturbances shows that the system did indeed
infer longer timescales and stronger deviations over time (deeper blues
at longer timescales in Fig. 2d, color plot). After the initial period of
gain-down adaptation training, a period of darkness followed. This
means that the monkey was allowed to make saccades, but was not
allowed to observe the sensory consequences of its actions (effectively,
the noise on the observation is set to infinity). During the darkness
period, the learner became uncertain about its beliefs about the states of
the motor system. Increased uncertainty means that new observations
about motor gain are relatively more precise than old information,
which in turn leads to faster learning when the blindfolds are removed.
Consequently, although both the monkey and the model forget some of
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Figure 2 Short-term and long-term behavior in response to saccadic gain

changes. (a) Short-term training. Each dot represents one saccade and the

thick lines are exponential fits to the intervals [0:1,400] and [1,400:2,800].

A target was displayed starting at saccade number 0, and as soon as the

saccade started, the target jumped back by 30%. The adaptation that would

negate this target jump is indicated as horizontal dashed lines. This

manipulation ended at saccade number 1,400, beyond which were washout

trials. Reprinted from ref. 3 with permission. (b) The same plot is shown for
the saccades during the simulated experiment for the Bayesian learner. The

color plot shows the learner’s estimates of the state of each disturbance (we

assumed 30 different states, ranging from very short to very long). Colors

indicate the estimate of the mean of each disturbance, before updating with

the new feedback; negative disturbances are denoted as blue, whereas

positive disturbances are denoted as red. The color plot shows the values for

all saccades, including the saccades simulated during darkness. The sum of

the various states is the expected gain of the motor plant with respect to

unity. The subplots below this figure show the belief of the Bayesian learner

during the initial stages of gain decrease and then after 30 trials,

approximated by two timescales. (c) Long-term training. In this experiment11,

the saccadic gain was reduced over many days of training. At the end of each

training session the monkey was blindfolded and held in darkness for the

remainder of the day. Note that the rate of relearning on day 2, following

darkness, is faster than initial rate of learning. Black lines show exponential

fits to the data. (d) The same plot for the Bayesian learner along with a color

plot showing the estimate of the learner of the disturbance at each timescale.

(e) Comparison of the saccadic gain-change time course obtained by fitting

an exponential function to the set of all saccades during the day.
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their learning during darkness, they learn faster during the second day
than during the first day (quantified in Fig. 2b,d). Similar results were
found in a recent study of ocular reflexes12.

The model explains why forgetting apparently occurred in opposite
directions during the first and second halves of this experiment.
Passage of time produced substantial decay in the fast states. During
gain-down adaptation, this results in a forgetting toward a gain of unity
because the fast states return to zero. By the end of training on day 22,
only the slow states were negative, whereas all the fast states were at
zero. During washout, the training caused the fast states to rapidly
become positive, pushing the performance away from 0.5 and toward
unity. When the gain was retuned to unity, it caused the fast states to
become positive (yellow in Fig. 2b). Even after 5 d of reversal, the long
timescales were still strongly negative (blue in Fig. 2d). As a conse-
quence, when time passed during the darkness period of the washout
days, forgetting in the fast states now made the gain estimate
drop toward 0.5.

Double reversal training of saccades

Many motor learning studies have attempted to quantify timescales of
memory using an interference protocol. A common theme is a ‘double
reversal’ protocol, where the direction of visual errors is changed twice
(Fig. 3). For example, in a previous experiment13, the saccadic gain was
initially increased, then decreased until it reached unity, and finally
increased again (Fig. 3a). The animals learned faster during the second
gain-up session than during the first (Fig. 3b). The reversal learning
apparently reduced the estimated gain of the motor plant back to 1, yet

the monkey still had ‘saved’ some aspect of its previous gain-up
training, as it showed savings.

The Bayesian model (using the same parameter values as before)
explains this phenomenon (Fig. 3c). At the end of the first gain-up
session, most of the gain change was associated with the slow states
(they are positive, yellow in Fig. 3c, color plot). In the subsequent gain-
down session, errors produced rapid changes in the fast state so that by
the time the gain estimate reached unity, the fast and slow states had
opposite estimates: the fast states were negative, whereas the slow states
were positive. Therefore, the gain-down session did not reset the system
because the latent variables stored the history of adaptation. In the
subsequent gain-up session, the rate of re-adaptation was faster than
that of initial adaptation (Fig. 3d) because the fast states decayed
toward zero in between trials, whereas the slow states were already
positive. After about 100 saccades, the speed gain from the low
frequencies was over and was turned into a slowed increase as a result
of the decreased error term.

In another set of experiments, the investigators13 observed that after
a period of darkness where the animal was not allowed to view sensory
consequences of its motor commands, there was a sudden jump in
performance. In these experiments, gain-up training followed gain-
down training until saccade gains were restored to unity. Then the
animals spent some time in the dark. Afterward, when the animal was
tested in the gain-up task, saccade gain had spontaneously increased
(Fig. 3e). The same effect was seen for the Bayesian learner (Fig. 3g). In
the dark period, the Bayesian learner made no observations and
therefore could not learn from error. However, the estimates were
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Figure 3 The double reversal model. (a) The gain was first adapted up until it reaches about 1.2 with a target jump of +35%. Then it was adapted down with

a target jump of –35%. Once the gain reaches unity, it was again adapted up with a positive target jump. Data from ref. 13. The box indicates the trials where

the line was fitted. The number on the line indicates its slope. (b) The speed of adaptation (slope of the lines in part a) was compared between the first gain-up
and the second gain-up trials in different sessions of training. The monkey showed savings in that it relearned faster, despite the apparent washout. (c) The

performance of the Bayesian learner is shown, as is the estimate of the learner of the disturbance at each timescale in the color plot. (d) The rate of adaptation

for the Bayesian learner. (e) In this experiment, the reversal training was followed by a period of darkness and then by gain-up adaptation13. Saccade gain

shows spontaneous recovery. (f) In this experiment, the period of darkness was followed by a condition in which the target did not change position during the

saccade period (that is, no intrasaccadic step, ISS)13. The animal did not show spontaneous recovery. (g) The same plot for the Bayesian learner in e along

with a color plot showing the estimate of the disturbance at each timescale. (h) The same plot for the Bayesian learner in f along with a color plot showing the

estimate of the disturbance at each timescale.
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still affected by the passage of time: the fast states were negative and
rapidly decayed toward zero, whereas the slow states were positive and
only slowly decayed (Fig. 3g, color plot). The sum was a positive
disturbance that after an initial transient, slowly decayed. Consequently,
by the end of the dark period, the estimate had become ‘gain-up’. This
effect is enhanced by fast learning following the period of darkness.

A recent model of motor adaptation14 is functionally similar to the
model introduced here and explains much of the data on saccadic gain
adaptation (Fig. 3) using two integrators operating at different time-
scales. However, for the Bayesian model, not only did the passage of
time during darkness produce changes in the mean of the estimates, but
it also made the learner less certain of its belief. Therefore, the Bayesian
model made an important prediction: extended periods of darkness
should lead to faster subsequent learning. We noted this earlier in the
multiday adaptation studies (Fig. 2e). However, the effect was present
even in a single-day study. Here, the Bayesian model predicts that
relearning will be faster when up-down adaptation is followed by a
period of darkness than it will be if the darkness period is replaced with
saccades in full light. Indeed, in the available data13, after darkness the
gain change is much faster (5.8 � 10�4 versus 3.8 � 10�4 for one
monkey, 9.3 � 10�4 versus 6.8 � 10�4 for the other, with Po 0.05 and
Po 0.001, respectively). These effects of post-darkness change in rates
of learning come about only if the passage of time has an influence on
the uncertainty of the learner. That is, the passage of time affects the
learner’s knowledge in terms of both its mean and variance, demon-
strating that sensory deprivation leads to faster learning. This data is
hard to explain with models that do not incorporate uncertainty14.

If the period of darkness is followed by a period without intrasacca-
dic target jumps (Fig. 3f), then the animal did not show spontaneous
recovery. At first glance this would suggest some kind of context-
dependent recall. However, the Bayesian learner showed a similar
behavior (Fig. 3h) and the model explains that the effect was not
due to context, but to uncertainty. At the end of the darkness period,
the slow states were at a positive gain while the fast states were near
zero. When darkness is followed by gain-up training, all states are more
uncertain and therefore rapidly move toward a positive gain. On the
other hand, when darkness is followed by unity gain training, the gain-
up status of the slow states is rapidly negated by the fast states that now
become negative.

Adaptation outside the motor system

Many phenomena outside the realm of muscle properties can be
expected to happen on multiple timescales. For example, the contrast
of visual scenes may follow similar rules15. To adapt optimally, the
nervous system might need to estimate the current level of contrast
from past values. Recently, investigators measured how visual neurons

adapted to stimuli that changed on several different timescales16

(Fig. 4a). It was found that adaptation timescales among the
neurons were longer as the interval between switches of contrast was
lengthened. The Bayesian learner showed very similar effects (Fig. 4b).
Multiple timescale learning and adaptation may be optimal even for
sensory phenomena.

Analogous problems of multiple-timescale inference may also be
solved by the nervous system in certain cognitive tasks. For instance, in
the retrieval of long-term declarative memories, numerous studies
occurring over a century have explored ‘spacing effects’: a specific item
will typically be remembered longer if the study trials for that item are
spaced out over a long training period, rather than clustered in a short
training period17–20. The spacing effect in one classic study of long-
term memory for vocabulary words in a foreign language21 is shown in
Figure 4c. Spacing effects might seem counterintuitive if we think of
forgetting as a passive decay process with a fixed time-constant, but the
phenomenon should be familiar, from the often repeated (and often
ignored) advice of school teachers that steady studying over a whole
term leads to better retention of learning than intensive cramming right
before the exam.

Our framework can explain spacing-dependent forgetting curves
(Fig. 4d) as follows. Let us assume that the strength of a memory trace
reflects the modulation of a ‘cognitive gain’ and that each encounter or
study trial with a specific item results in a measured gain of 1 for that
item. Intuitively, the model attempts to infer the changing importance
of a given item, allowing that the importance of different items could
rise and fall over different timescales. These timescales are reflected in
the item’s past use: when experience with an item has been spaced over
a long period of time, it provides evidence that the item is of long-term
relevance. In contrast, an item with clustered experience or practice is
more likely to be of only short-term interest.

DISCUSSION

Traditional models of adaptation simply change motor commands to
reduce prediction errors22,23. We approached the problem from a
different point of view: if the CNS knows that the body is affected by
perturbations that have multiple timescales, then the problem of
learning in the CNS is really one of credit assignment. The rational
approach would be to do three things. First, the learner should
represent its knowledge of the properties of the motor system, includ-
ing how disturbances of various timescales can affect it. Second, it
should represent the uncertainty it has about its beliefs. Third, it should
formulate the computational aim of adaptation in terms of optimally
combining what it knows about the properties of the motor plant with
the current observations. The experimental predictions of the pre-
sented model derive from the way knowledge about the state of the
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motor plant is combined with noisy feedback into a statistically
optimal estimate.

Although our work may be the first model of learning in which all
three of these points are considered together, earlier studies have
considered these points separately. In a previous model14, it was
proposed that the brain responds to error with at least two systems:
one that is highly sensitive to error but rapidly forgets, and another that
has poor sensitivity to error but strong retention. That model explained
savings and spontaneous recovery and demonstrated that during the
period of darkness motor estimates take the form of the sum of two
exponentials, one with a fast and the other with a slow time constant.
Without incorporating uncertainty, it is difficult to explain the full
range of phenomena described here.

The idea of multiple timescales has also been proposed in the context
of connectionist learning theory24 and in motor learning8,10. Connec-
tionist models, as well as earlier motor learning models, have no
systematic way of modeling uncertainty about timescales. The pheno-
menon of spontaneous recovery in classical conditioning25 fits well
into the framework presented here. In classical conditioning, it has
been proposed that the nervous system should keep a measure of
uncertainty about its current parameter estimates to allow for an
optimal combination of new information with current knowledge26.
That model included a measure of uncertainty and a mechanism
mediated by neuromodulators for allowing fast changes at catastrophic
moments. The multiple timescales of potential disturbances proposed
here may lead to similar results, as fast timescales may take care of
catastrophic fast changes. Moreover, Kalman filters have been used for
systems identification in engineering to solve similar problems27. They
have also been proposed to model how different joints may contribute
to movements to explain generalizations from one movement to
another and fast learning for high uncertainty28. Finally, even the
earliest studies of oculomotor adaptation realized that the objective of
adaptation is to allow precise movement with a relentlessly changing
motor plant4. Our approach unifies these ideas in a coherent computa-
tional framework.

In the saccade experiments that we considered, darkness corre-
sponded to a period of time when the animal makes eye movements,
but is not allowed to observe the visual consequences of its motor
commands. Because our model shows how a rational learner would
update its knowledge when faced with sensory deprivation, it gives one
explanation as to why there are improved rates of learning after periods
of darkness. It is interesting to view sleep in a similar framework: as
essentially a period in which the brain simulates movements, but is
deprived of actual feedback. The post-sleep improvements in rates of
learning may be partly due to an increased uncertainty regarding the
states of the internal model.

There are features of adaptation that our model in its current form
does not explain. For saccades, three kinds of asymmetries are
observed: adaptation up is faster than adaptation down, unlearning
after up adaptation is slower and spontaneous recovery is only observed
in the up direction. It is an interesting question as to how these
asymmetries arise. We know that our body is not symmetric with
respect to strengthening and weakening of muscles. For example, we
often experience errors due to rapid fatigue, but errors due to fast
strengthening are really quite rare. Such an asymmetric history of
perturbations can, in principle, explain both the fact that gain-down
learning is slower than gain-up and the fact that spontaneous recovery
is present only in the gain-up direction. The asymmetries may,
however, also indicate effects stemming from suboptimal neural
computation. Similarly, for the adaptation of visual neurons there
exists a clear asymmetry between upward and downward adaptation.

The nervous system should also have some way of learning the
importance of each possible timescale. Hierarchical Bayesian models
allow a straightforward modeling of such phenomena. Moreover, the
model presented here uses a simple definition of time. For example, the
nervous system may model that our motor system changes less if we do
not move than if we move. Such a situation may be an analog to a
Kalman filter that runs fast in the presence of movement and much
slower in the absence of movement. It is known that adaptation is
highly context dependent29–31, and indeed we should only generalize
from one situation to another situation that is similar. In this model, we
cut out all properties apart from time and error magnitude to predict
purely temporal adaptation phenomena.

It should be clear that we modeled the animal’s learning here as if the
errors were due to the behavior of the motor plant, when in fact errors
were due to clever manipulations in the outside world. As long as
changes in the world happen according to similar rules, or the subject
does not know it is dealing with changes in the outside world, our
model works well. However, it is likely that the world goes through
more step-type changes than our body, in particular the world in a
neuroscientist’s laboratory. In that case, the nervous system has to solve
an additional credit assignment problem: is the error due to a change in
my body or due to a change in the world? We find it intriguing that
different species may have different ways of solving this problem. Gain
adaptation training in monkeys generalizes broadly to other types of
saccades32, agreeing with our simple model of associating the errors to
changes in the oculomotor plant. However, similar training in humans
is context specific and shows more specific generalization patterns,
suggesting that the credit assignment is mostly to the model of the
world33. Yet humans have ample experience with changes in the world,
such as the wearing of glasses, that demand specific context-dependent
patterns of adaptation.

It should be emphasized that we did not model the mechanisms of
any specific memory, but rather attempted to present a general model
for all memories using a generalization of how the brain would learn to
control the motor plant. For example, let us consider spacing-training
trials. Spacing effects have been observed robustly across many time-
scales and stimuli34,35. Spacing effects fall out naturally and quite
generally from making rational statistical inferences about the time-
scales over which a given piece of information’s relevance is changing.
This is the same kind of inference that the motor system must make
about potential motor disturbances. A similar view of memory retrieval
has been previously suggested36, inspired by a model for predicting
library-book access, and shows how this model could predict spacing
effects and other dynamical aspects of declarative memory. Our results
suggest that common principles of memory and forgetting may be at
work more broadly across the nervous system. Both higher-level
cognitive learning and lower-level sensorimotor learning face a shared
challenge of adapting their behavior to processes in the world that can
unfold over different timescales.

An important question for further inquiry is how the nervous system
solves problems that require multiple timescale adaptation. Our idea
that the general rules for learning and memory may have arisen from
time-dependent properties of the motor system gains credence from a
recent observation that saccades can fatigue the eye muscles, producing
a short-term adaptive response in the cerebellum37. The compensation
of saccadic fatigue is determined by the adjustment of a Purkinje cell
simple spike population signal. If this adaptation process is happening
in the cerebellum38,39, the necessary effects could potentially be
implemented directly by synapses that show long-term depression
with power-law characteristics40,41. Alternatively, at least for small
timescales, small groups of neurons may jointly represent the estimates
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along with their uncertainties. A second question is how the nervous
system infers the timescale and noise properties of the disturbances.
The Bayesian learner may begin with a prior assumption about the
structure of the ‘generative model’, but adapts the parameters of this
model as it experiences the world.

METHODS
The Bayesian approach makes it necessary to explicitly specify all the assump-

tions we are making as to how the motor plant may change over time.

Disturbances. Our problem of learning is one of state estimation, where state

refers to the state of the disturbances. Each disturbance was modeled as a

random walk that was independent of all other disturbances:

disturbancetðt+DÞ ¼ ð1 � 1=tÞ � disturbancet ðtÞ+ et ð1Þ

where et was drawn from a mean zero normal distribution of width st, and t
was the timescale. The larger the value for t, the closer (1 – t –1) is to 1 and the

longer a disturbance typically lasts. The motor gain was simply 1 plus the sum

of all the disturbances:

gainðtÞ ¼ 1+
X

t

disturbancetðtÞ ð2Þ

Equation (1) is the state update equation. The problem of state estimation is to

estimate the states from measured output (see below). We do this via a Kalman

filter. In our simulations each saccade is simulated as one time step of the

Kalman filter. The t are thus defined in terms of saccades.

Parameters. Only those timescales will matter that are not much longer than

the overall time of the experiment (because they would already have been

integrated out) and that are not much shorter than the time of an individual

trial (because they would average out). For that reason we chose the distribu-

tion of t to be 30 values exponentially scaled between 2 and 3.3�105 saccades.

Choosing a larger number of disturbances while correcting for the overall

variance had little effect on the results. We chose 30 timescales as an

approximation to a continuous distribution to allow our simulation to run

quickly. Once chosen, the timescales remained fixed. The distribution of

expected gains thus depended only on the distribution of st, a characterization

of how important disturbances were at various timescales. It seemed plausible

that disturbances with a short timescale tended to be more variable than those

that had a long timescale: over the timescale of about a year we can double our

strength through workout; over the timescale of a week we can half our strength

if we get ill; and over the timescale of a minute we can half our strength

through fatigue. Each such effect seems to be similarly important, although

we acknowledge that there are many more timescales. Therefore we chose s2t ¼
ct–1, where c is one of the two free parameters of our model. We have thus

specified the prior assumption about the body that drives adaptation.

On each trial the learner made an observation about the state of the motor

plant. We assumed that this observation was corrupted by noise:

observationðtÞ ¼ gainðtÞ+w ð3Þ

where w was the observation noise with a width sw. This is the second free

parameter in our model. Throughout this paper we chose sw ¼ 0.05, which

we estimated from the spread of saccade gains over typical periods of

200 saccades and c ¼ (0.001)2, because that yielded good fits to previously

reported data3. We chose to model all data using the same set of parameters to

avoid issues of over-fitting.

Inference. Given this explicit model, Bayesian statistics allowed for deriving an

optimal adaptation strategy. MATLAB files for repeating these simulations are

available online (see Supplementary Scripts online, which also contains

parameter sensitivity analysis). We observed that the system was equivalent

to the generative model of the Kalman filter42 with a diagonal state transition

matrix M¼ diag(1 – t–1), an observation matrix H that is a vector consisting of

a 1 for each of the 30 potential disturbances, and a diagonal state noise matrix

of Q ¼ diag(ct–1). State noise was what was driving the changes of each of the

disturbances. This Kalman filter represents its knowledge about disturbances by

two entities, a state vector of length 30 containing the best estimates at each

timescale and a matrix V characterizing the uncertainty about that estimate. We

obtained the solution that is well known from the Kalman Filter literature. We

used the Kalman filter toolbox (written by K. Murphy, University of British

Columbia, Vancouver, Canada) to numerically solve these equations. To model

target jump experiments we simply added the displacements to the error that

was being used by the Kalman learner.

Once we could estimate the gain as a function of previous observations, the

learner could use the estimated gain to produce optimal movement. The

corrected motor command (the used gain) is then mcorrected ¼ mnormal/gain,

where mnormal is the motor command that is optimal for an unperturbed motor

plant. Throughout the paper, the gain is close to 1 and we thus use the

simplifying approximation mcorrected ¼ mnormal � (1 – gain).

To model the sensory deprivation experiments (that is, darkness), we set the

measurement noise for those trials to infinity. To model the experiments where

the monkey spent some time in the dark (Fig. 3f), we simulated 500 saccades

without any feedback. To model long-term learning in the monkey when it

spent a whole night in the dark (Fig. 2d), we simulated 1,500 saccades without

sensory feedback.

Contrast adaptation of visual neurons. The adaptation state was modeled as a

muscle that had a baseline gain of 40. We chose c ¼ (0.003)2 and sw ¼ 1 to

model the data. The contrast of the input stimulus that was varied in the

experiment was modeled as a motor gain change from 20 to 60. Each second

was modeled as 100 time steps for the Kalman filter. Otherwise the same

distribution of timescales (in terms of simulation steps) was retained and the

same methods were used.

Word learning. To model the retention of memories, we treated each word

learned as a gain perturbation of 100. We chose c ¼ (0.03)2 and sw ¼ 1 to

model the data. As words were not used in between, we assumed that apart

from the learning trials the rest of the time consisted of no observations,

equivalent to darkness in the saccade case. Each year was modeled by 100 time

steps for the Kalman filter. The same distribution of timescales (in simulation

steps) was used as in the motor case. The plotted retention function is the gain

of the adapting system.

Note: Supplementary information is available on the Nature Neuroscience website.
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