
Sensitivity to prediction error in reach adaptation

Mollie K. Marko,1 Adrian M. Haith,1,2 Michelle D. Harran,2 and Reza Shadmehr1

1Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland; and 2Department of
Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland

Submitted 28 February 2012; accepted in final form 28 June 2012

Marko MK, Haith AM, Harran MD, Shadmehr R. Sensitivity to
prediction error in reach adaptation. J Neurophysiol 108: 1752–1763,
2012. First published July 5, 2012; doi:10.1152/jn.00177.2012.—It
has been proposed that the brain predicts the sensory consequences of
a movement and compares it to the actual sensory feedback. When the
two differ, an error signal is formed, driving adaptation. How does an
error in one trial alter performance in the subsequent trial? Here we
show that the sensitivity to error is not constant but declines as a
function of error magnitude. That is, one learns relatively less from
large errors compared with small errors. We performed an experiment
in which humans made reaching movements and randomly experi-
enced an error in both their visual and proprioceptive feedback.
Proprioceptive errors were created with force fields, and visual errors
were formed by perturbing the cursor trajectory to create a visual error
that was smaller, the same size, or larger than the proprioceptive error.
We measured single-trial adaptation and calculated sensitivity to
error, i.e., the ratio of the trial-to-trial change in motor commands to
error size. We found that for both sensory modalities sensitivity
decreased with increasing error size. A reanalysis of a number of
previously published psychophysical results also exhibited this fea-
ture. Finally, we asked how the brain might encode sensitivity to error.
We reanalyzed previously published probabilities of cerebellar com-
plex spikes (CSs) and found that this probability declined with
increasing error size. From this we posit that a CS may be represen-
tative of the sensitivity to error, and not error itself, a hypothesis that
may explain conflicting reports about CSs and their relationship to
error.

cerebellum; motor learning; proprioception; vision

HOW WE PERCEIVE THE WORLD is at the core of how we behave. As
we make a movement, sensory inputs from multiple modalities
converge in our brain to create an understanding of the results
of that movement. Theory suggests movements may be plan-
ned with a forward model, which generates a prediction of our
sensory feedback based on the outgoing motor command
(Wolpert et al. 1995). If a movement has an unexpected
sensory consequence, an error is experienced. Error feedback is
rich in nature and can include size, relevance, direction, sen-
sory modality, and other details about the error. Despite the
large number of studies on adaptation (Pekny et al. 2011;
Shadmehr and Mussa-Ivaldi 1994; Smith et al. 2006), little is
known about how we adapt to a single error or how individual
sensory prediction errors are processed and combined. Of
particular interest are visual and proprioceptive errors, which
arguably play the greatest role in control of movement. Here
we explore the question of how learning from error depends on
error size and sensory modality.

In models of adaptation, it is generally assumed that learning
scales linearly with error size (Cheng and Sabes 2006; Scheidt
et al. 2001; Smith et al. 2006; Thoroughman and Shadmehr
2000; van Beers 2009). This implies that sensitivity to error is
constant as a function of error size. However, experiments
suggest that the brain alters sensitivity to error based on its
uncertainty about its predictions relative to its uncertainty
about observations (Burge et al. 2008; Korenberg and Ghah-
ramani 2002). For example, when visual feedback about the
consequences of a movement is blurry, one is less likely to
change their motor commands compared with when it is sharp
(Izawa and Shadmehr 2008). Even when the quality of the
sensory feedback is kept constant, the brain appears to modu-
late sensitivity to error as a function of error size. For example,
Robinson et al. (2003) found that adaptation to saccadic errors
declined as the error size increased. Additionally, in reaching
tasks, both Fine and Thoroughman (2006) and Wei and Kord-
ing (2009) reported that trial-to-trial learning from a force
perturbation of increasing size or a visual perturbation of
increasing size showed rapid saturation, respectively. That is,
learning did not increase linearly with error size.

From a neurophysiological perspective, it is also unclear how
the brain encodes error sensitivity. Error-dependent adaptation of
movements is generally thought to require integrity of the cere-
bellum (Martin et al. 1996; Maschke et al. 2004; Rabe et al. 2009;
Smith and Shadmehr 2005). Complex spikes (CSs) that are gen-
erated by climbing fiber inputs onto Purkinje cells of the cerebel-
lum are considered to be the biological representation of an error
signal (Kitazawa et al. 1998). However, when the probability of a
CS was measured in response to various error sizes, the proba-
bility was high for small errors but decreased for larger errors
(Soetedjo et al. 2008). This result is inconsistent with the idea that
CSs encode an error, and instead indicates that error size may play
a role in plasticity of Purkinje cells.

In addition to errors having different sizes, errors can occur
in multiple modalities. The most commonly used adaptation
paradigms rely on visual error alone (i.e., a visuomotor rota-
tion) or visual and proprioceptive error concurrently (i.e., a
force field). Behavioral studies suggest that learning from
visual and proprioceptive errors may occur independently
(Bock and Thomas 2011; Krakauer et al. 1999; Pipereit et al.
2006). Furthermore, a recent study of people with cerebellar
damage demonstrated that adaptation in these two paradigms
relied on different regions of the cerebellum (Donchin et al.
2012; Rabe et al. 2009). Thus it is important to consider the
relative contributions of visual and proprioceptive error and
understand how the two interact.

Here we performed an experiment to measure sensitivity to
error, defined as the ratio of the change in motor output from
trial n � 1 to trial n � 1 to the error experienced in trial n. We
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aimed to understand the role of error size and modality on
sensitivity to error in a way that unified the results of past
studies. To do so, we performed a one-trial learning experiment
in which we varied errors in vision, proprioception, and size of
discrepancy throughout the same task. Our results demonstrate
that, regardless of sensory modality, sensitivity to error de-
clines with increasing error size. Furthermore, discrepancy
between modalities does not significantly modulate error sen-
sitivity; thus learning from each modality may occur indepen-
dently. Finally, we show that the relationship between sensi-
tivity and error size is similar to the relationship between the
probability of a CS and error size. This suggests that the
occurrence of a CS may be a reflection of sensitivity to error,
and not the error itself.

METHODS

Ten subjects (age 25.8 � 3.7 yr; 6 women, 4 men) participated in
the experiment. The protocol was approved by the Johns Hopkins
Institutional Review Board, and all subjects provided written in-
formed consent. All subjects were healthy, right hand dominant, and
naive for the purpose of the experiment. Subjects held the handle of
a robotic manipulandum with their right hand below an opaque
horizontal screen that prevented view of their arm (Fig. 1A). An
elastic force helped guide their hand to the start position, indicated by
a 6 � 6-mm green square. Once the hand was within 1 cm of the start
box, a cursor indicating current hand position was turned on. After
stopping within the start box, a target box (6 � 6 mm square)
appeared at 8-cm distance and the start box disappeared. There was
only a single target, always located 8 cm above the start position.

Fig. 1. Experimental setup. A: schematic of the experimental setup. Subjects held the handle of a robotic manipulandum and made horizontal reaching movements
below an opaque screen. B: perturbation schedule. After a warm-up of 40 trials, subjects were presented with movement triplets in a random order separated by
0, 1, or 2 null field trials for 15 blocks (block 1 is shown). Triplets consisted of a channel trial (C1), one of the possible perturbations (P), and then a second channel
trial (C2). Purple trace indicates the size of the visual perturbation, and green trace indicates the size of the proprioceptive perturbation. A channel trial, noted
by the thick dark points, clamped the subject’s error to 0 while measuring the force produced along the channel wall. The change in force from C1 to C2 measures
the amount the subject learned from the error experienced in trial P. C: example of hand trajectories through the small, medium, and large rightward force
perturbations. D: example of the cursor trajectory in each of the 5 possible gains as applied to the small proprioceptive error. Visual gains were applied to
manipulate visual errors by scaling the lateral deviation of the hand by 1 of 5 values: 0.0, 0.5, 1.0, 1.5, or 2.0. Thus the gain 1.0 trace in this figure corresponds
to the small proprioceptive error trace in C. E: proprioceptive error resulting from the 3 different-sized force fields: small, medium, and large. Error was measured
as the lateral deviation at 190 ms. Proprioceptive error was consistent for a given field, despite the applied visual gain.
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Subjects were required to make a ballistic movement through the
target box (a shooting movement), crossing through the target be-
tween 150 and 250 ms after the movement start, at which point a
“pillow” force field cushioned and slowed their movement and the
robot brought the hand back to the target box. The cursor indicating
hand position remained on until the hand was returned to the target
box. Subjects then received feedback regarding their movement.
Feedback consisted of the target box turning red or blue or “explod-
ing,” indicating that the movement was too fast, too slow, or accurate
and correctly timed, respectively. For every target explosion, subjects
gained a point toward their score. Subjects were instructed to score as
many points as possible.

The experiment lasted �90 min. There were 10 blocks with 80
movements in each. The experiment began with a warm-up period of
40 movements through a null field to acquaint the subjects with the
apparatus.

Perturbations. Subjects were exposed to 11 different perturbation
types, each applied in both the left and right directions. In each block,
all of the possible 22 perturbation types appeared once in a random
order (Fig. 1B). Thus not only was the overall experiment balanced,
but each individual block as well. The perturbation trials consisted of
a force perturbation and a visual perturbation. The force perturbation
was caused by a velocity-dependent curl force field that applied force
perpendicular to the direction of movement,

f � � 0 B

�B 0 �ẋ

where ẋ is hand velocity. There were three possible force perturbation
sizes, causing a small proprioceptive error (B � �6.5 N·s·m�1), a
medium proprioceptive error (B � �13 N·s·m�1), or a large propri-
oceptive error (B � �19.5 N·s·m�1) to the left or right. Figure 1C
shows sample hand trajectories for rightward perturbations. For the
small or medium force perturbation one of five possible visual gains
was applied to the cursor trajectory. The visual gain, g, scaled the
lateral deviation of the hand from the straight line to the target by 0,
0.5, 1, 1.5, or 2. Thus the lateral trajectory taken by the cursor, cx, had
either smaller, the same, or larger error than the lateral trajectory taken
by the hand, hx:

cx � ghx.

Examples of these five cursor trajectories as applied to the small
proprioceptive error are plotted in Fig. 1D. As can be seen in Fig. 1E,
the proprioceptive errors that resulted from the force perturbations
were consistent despite the changes in visual gain.

Finally, for the large force perturbation only the gain of 0 was
applied, creating a large proprioceptive error with zero visual error.
While this additional proprioceptive error size was critical in exam-
ining the linearity of the relationship between proprioceptive error and
adaptation, we chose to not to apply all visual gains. This is because
as perturbation schedules are increasingly random, learning rates
decrease (Smith and Shadmehr 2004). Thus we opted for fewer
perturbations in favor of a shorter, more efficient experiment.

Quantifying adaptation. The brain responds to the error in one trial
by changing the motor commands in the subsequent trial (Thorough-
man and Shadmehr 2000). To quantify this adaptation, we measured
the motor output before and after each perturbation trial. Each per-
turbation trial was preceded with a channel trial (C1) and was then
followed by another channel trial (C2), as in Fig. 1B. These triplets of
channel-perturbation-channel (C1PC2) were randomly separated by 0,
1, or 2 null field trials, preventing subjects from predicting the timing
of the perturbation trials. During a channel trial (Scheidt et al. 2000),
the hand path to the target was directed along a straight line with walls
that had a spring force (spring coefficient � 2.5 kN/m) and a damping
force (damping coefficient � 25 N·s·m�1). This clamped the lateral
deviation of the hand to �3 mm from a straight line between the
center of the start box and the center of the target box. There were a

total of 440 channel trials throughout the 800-trial experiment. A force
transducer housed in the handle of the manipulandum measured the
force applied by the subject against the channel walls.

To measure adaptation to the perturbation, we examined the force
produced in C2 versus C1. In this way, the force produced in C1 acted
as a baseline with respect to C2. In principle, the change in force from
C1 to C2 is due to the error experienced in trial P that occurred
between C1 and C2 and a natural decay of force from C1 to C2. We
were primarily interested in the change due to the learning from error
in trial P. To quantify this, suppose that in trial n � 1 we have a
channel trial C1, where we measure the motor output f (n � 1). The
motor output that the subject produces in the next two trials can then
be characterized by three factors: 1) a forgetting factor �; 2) error that
was experienced in trial n, labeled as ep

(n) (proprioceptive error, i.e.,
the difference between the predicted and observed proprioceptive
feedback) and ev

(n) (visual error, i.e., the difference between the
predicted and observed visual feedback); and 3) learning from error,
labeled as �(ev, ep):

f�n� � �f�n�1�

f�n�1� � �f�n� � ��ev
�n�, ep

�n�� (1)

From Eq. 1 it follows that the change in motor output from C1 to C2

due to learning from error is

��ev
�n�, ep

�n�� � f�n�1� � �2f�n�1� (2)

To find the forgetting term �, we looked at the average ratio of the
force profiles at all instances in the experiment in which there were
back-to-back channel trials, i.e., C1C2 pairs. This occurred 121 times
for each subject. We found a forgetting constant of � � 0.84 � 0.07
(mean � SE). This value is similar to the value of the forgetting term,
0.85, found for the fast state when block adaptation is fit to a multirate
model (Joiner and Smith 2008). In this model, the fast state is
responsible for the initial stages of learning, which would most
appropriately map onto our one-trial learning experiment.

The motor output in a channel trial is measured as the force pro-
duced against the channel wall, resulting in a time-dependent force
profile. However, the terms in Eq. 1 are scalar quantities and are
therefore a proxy for the force trace on each trial. Traditionally, the
proxy for the force trace has been the peak force, which would occur
after passing the target in this ballistic paradigm, or force at an
arbitrary time point. Here, we attempted a more principled approach.
We measured the difference in force traces in the channel trials for all
C1PC2 triplets for each subject. We then submitted the resulting data
set to principal component analysis and found the time point into the
force trace in which the first principal component had the largest
value. Across our population, the resulting time point had the follow-
ing distribution: 193 � 16 ms (mean � SD) after the start of the
movement. As our sampling rate for the data was 100 Hz, we took the
time point 190 ms after movement onset to determine the force that
the subjects produced on a channel trial and the error that they
experienced on a perturbation trial. To be certain that our findings
were not too sensitive to this specific error measure, we also examined
the data at various time points from early to late in the movement and
at varying distances from the start. In all cases, the results were
qualitatively the same; therefore we believe our measures of errors
and adaptation to be robust. The use of principal component analysis
to choose an error measure provides an objective justification for our
choice, while accounting for the greatest amount of the variability in
the data. Measurements from the left and right perturbation directions
were collapsed, and although adaptation and error are oppositely
signed, they are plotted in the first quadrant for ease of viewing.
Movements that resulted in less than �2 N of learning, and thus
showed adaptation in the same direction as the error was experienced,
were excluded from our analysis. Across all subject, this discounted
36 movements out of 2,200. All statistics and data analysis were
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completed with custom software developed on MATLAB (Math-
Works), Microsoft Excel, or SPSS (IBM).

RESULTS

We asked volunteers to reach to a target while we imposed
a random perturbation on their hand. The trial that preceded the
perturbation and the trial that came after the perturbation were
channel trials, guiding the hand directly to the target with no
error and allowing us to measure the force that subjects
produced against the channel walls (Fig. 1B). On the pertur-
bation trial, a force pushed the hand perpendicular to the
direction of motion. As a result, learning from error produced
a change in the force perpendicular to the direction of motion
in the trial that followed the perturbation (Eq. 2). The pertur-
bations consisted of three force perturbations (Fig. 1C) and five
visual gains (Fig. 1D). It is important to note that the force
perturbations generated a consistent proprioceptive error, de-
spite the various visual gains, as shown in Fig. 1E. We found
that there was no significant effect of visual gain on proprio-

ceptive error for the small force perturbation [repeated-mea-
sures ANOVA: F(4,45) � 3.08, P � 0.11] or the medium force
perturbation [repeated-measures ANOVA: F(4,45) � 3.00,
P � 0.11]. This allows us to organize our results into three key
subgroups of data: the small and medium proprioceptive error
data, which had constant proprioceptive error and varying
visual error, and the zero gain data, which had constant visual
error and varying proprioceptive error. We will refer to these
subgroups throughout our analysis.

Data from a typical subject are shown in Fig. 2, A–D. Figure 2A
plots hand trajectory (solid lines) and cursor trajectory (dashed
lines) for the five visual gain conditions applied to the medium-
size force perturbation. The circles indicate 190 ms from the start
of the movement; thus the time point at which we analyze our data
occurred at a consistent distance into the movement across all
error conditions. Figure 2B shows the change in force from the
channel trial preceding the perturbation trial to the channel trial
that followed the perturbation trial. As the visual gain increases,
the trial-to-trial change in force initially increases but then tends to

Fig. 2. Adaptation tends to saturate as error size in-
creases. A: hand trajectory (solid lines) and cursor tra-
jectory (dashed lines) for a medium-size force perturba-
tion for a representative subject. Circles indicate posi-
tion at 190 ms from start of movement, which served as
our proxy for measuring error. B: a channel trial pre-
ceded and followed each perturbation trial in A. This
plot shows the change in force from the trial that
preceded to the trial that followed the perturbation trial.
The change in force represents how much the subject
learned from the error in the preceding trial. This learn-
ing is small when the visual error is small (gain of 0.0),
increases when visual error increases, but then saturates
for large visual errors. Dashed line indicates 190 ms into
the movement. C: change in force (measured at 190 ms)
for the same representative subject across all 5 visual
gains (0–2, sequentially from left to right) for the
medium force perturbation. Error bars are SE. D: change
in force (measured at 190 ms) for the 3 force perturba-
tion sizes (small, medium, and large, from left to right)
at 0 visual gain. Error bars are SE. E: group data: change
in force as a function of visual error size. Each line
represents a single force perturbation size, and each
point represents a single visual gain on that propriocep-
tive error. Error bars are between-subject SE. F: change
in force as a function of proprioceptive error size at 0
visual gain. Error bars are between-subject SE.
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saturate despite increases in visual error. Using the force at 190 ms
as our proxy for the motor output on a given channel trial, Fig. 2C
shows the trial-to-trial change in force (Eq. 2) at the given pro-
prioceptive error (medium size) as a function of visual error, with
each point representing a different visual gain condition. Here, the
relationship between visual error and adaptation can be more
clearly observed, and the saturation of learning is apparent. Figure
2D plots adaptation at 190 ms when visual error is constant at
zero, i.e., the three zero gain conditions, but proprioceptive error
size is increasing. Again, adaptation in response to error size
appears sublinear. This single-subject result echoes the results
seen in previous one-trial learning studies (Fine and Thorough-
man 2006; Wei and Kording 2009), suggesting that sensitivity to
error tends to decline as error magnitude increases.

The group data are summarized in Fig. 2, E and F. Figure 2E
illustrates the change in force for the three force perturbation
magnitudes as a function of visual error, and Fig. 2F illustrates the
change in force for the zero gain conditions as a function of
proprioceptive error. In Fig. 2E, each point on the curve represents
a different visual gain, increasing from 0 to 2 as visual error
increases. If sensitivity to error was constant, the relationship
between error size and adaptation would be linear. Upon inspec-
tion, it appears that adaptation does not grow linearly with either
increasing visual or proprioceptive error size. To test this idea, we
fit the data to both a linear model, � � ae � b, and a logistic

model, � �
1

1�exp��ae�
� b, where e is the error size and � is

adaptation. For the small proprioceptive error condition, the linear
fit yielded r2 � 0.76 and the logistic fit yielded r2 � 0.99. A
comparison of the two models using the Akaike information
criterion (AIC) found that the goodness of fit was better for the
logistic model (AIC � �37.18) than for the linear model (AIC �
�20.67). This indicates that the relationship between adaptation
and visual error size can be better characterized by a model in
which the sensitivity to error is not a constant. We repeated this
analysis for the medium proprioceptive error condition and found
r2 � 0.59 and 0.99 for the linear and logistic fits, respectively. As
with the small field, the AIC again indicates that the logistic model
(AIC � �37.4) is a better fit than the linear model (AIC �
�17.9). This suggests that sensitivity to visual error is not con-
stant, as adaptation is a nonlinear function of visual error.

We also examined the relationship between proprioceptive
error size and adaptation using the three zero gain conditions.
The r2 was 0.76 for the linear function and 0.81 for the logistic
function, with corresponding AIC values of �18.4 and �19.1,
suggesting a better fit for the nonlinear function.

Sensitivity to error as a function of error size. The observa-
tion that trial-to-trial change in force does not grow linearly
with error size suggests that the brain may be more sensitive to
small errors. However, this statement is ambiguous because it
refers to magnitude of error without considering the possibility
that learning may be modulated by factors such as discrepancy
between errors in each sensory modality (Wei and Kording
2009). That is, it is possible that when one sensory modality
reports a small error and the other reports a large error, the
discrepancy reduces the likelihood that the error is reliable,
resulting in reduced learning. Therefore, from the results in
Fig. 2 it is not evident how sensitivity to error changes with
error magnitude.

Let us label proprioceptive and visual errors as ep and ev and
sensitivity to these errors as bp and bv. Models of motor
adaptation often assume a fixed linear relationship between
error size and amount of learning (Cheng and Sabes 2006;
Smith et al. 2006; Thoroughman and Shadmehr 2000):

��ev
�n�, ep

�n�� � bv
�n�ev

�n� � bp
�n�ep

�n�

If the sensitivity to errors depends on the size of errors and on
the discrepancy between these errors, one can imagine that the
discrepancy might have an overall modulatory effect on learn-
ing:

��ev
�n�, ep

�n�� � �bv
�n�ev

�n� � bp
�n�ep

�n��bvp
�n���ev

�n� � ep
�n���

(3)

where bvp describes the influence of discrepancy. This would
be a function of the absolute distance between the two errors,
equal to 1 for zero discrepancy and tending to 0 for large
discrepancies. This function may, for instance, reflect the
likelihood that vision and proprioception reported the same
event (Wei and Kording 2009).

To dissociate the role of error size from the role of discrep-
ancy between errors, we can consider a trial in which there is
no discrepancy in the two sensory modalities, i.e., the gain-one
condition where ev

(n) � ep
(n). In this condition, bvp � 1 (i.e., the

term on the right-hand side of Eq. 3) and

bv
�n� � bp

�n� �
��ev

�n�, ep
�n��

ev
�n� �

f�n�1� � �2f�n�1�

ev
�n� (4)

To examine this, we binned the data from all movements in
the gain-one condition, taking advantage of the natural vari-
ability of error size in response to a force field. Bin size was
0.25 cm, and bins with �20 total movements were excluded.
Figure 3A plots our resulting estimates of the net sensitivity to
error bv

(n) � bp
(n) as a function of error size. We find that

sensitivity to error is not constant as a function of error size but
declines as error magnitude increases [repeated-measures
ANOVA, main effect of error magnitude, F(2,46) � 8.95, P �
0.001]. This result demonstrates that in the case where sensors
agree on the size of the error, the brain is much more sensitive
to small errors than large errors.

Sensitivity to visual and proprioceptive error. The fact that
sensitivity to error (Fig. 3A) is not constant implies that � remains
a nonlinear function of ep and ev even when ep � ev. This result
suggests that learning depends on the magnitude of individual
errors. It is possible that learning is independent of discrepancy
and that changes in proprioceptive error and changes in visual
error result in independent contributions to adaptation. We can
formulate this hypothesis mathematically as

��ev
�n�, ep

�n�� � bv
�n��ev

�n��ev
�n� � bp

�n��ep
�n��ep

�n�

��v�ev
�n�� � �p�ep

�n�� . (5)

Ideally, true independence could be verified experimentally by
holding the magnitudes of error constant while varying dis-
crepancy. Any resulting change in adaptation could be attrib-
uted to the change in discrepancy. Here, we attempted to
exploit the properties of Eq. 5 to estimate the sensitivity to
visual error, bv, at different magnitudes of proprioceptive error.
If the resulting visual sensitivity is identical for different
magnitudes of proprioceptive error (and therefore, different
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discrepancies), it is likely that the impact of discrepancy
between feedback modalities is negligible. To do this, we first
computed the trial-to-trial change in force in the zero-gain
visual condition for both the small and medium force pertur-
bations. We then subtracted this change in force from the
change in force observed in all other visual gain conditions
with the same force perturbation, for each subject. Finally, we
divided the result by the size of the visual error:

bv
�n� �

��ev
�n�, ep

�n�� � ��0, ep
�n��

ev
�n� (6)

In Fig. 3B we have plotted this estimate of the sensitivity to
visual error at the small and medium proprioceptive error sizes.

If sensitivity to visual error is independent of proprioceptive
error size, and as such, independent of the discrepancy between
ep and ev, then Eq. 5 can be substituted into Eq. 6, reducing
it to

bv
�n� �

�v�ev
�n��

ev
�n� (7)

where �v(ev
(n)) represents adaptation to a visual error only.

We can now examine the sensitivity to visual error alone at
two different proprioceptive error sizes. If sensitivity to vision
is independent of proprioception, the two curves in Fig. 3B will
be continuous with one another and sensitivity at a given visual
error will be constant regardless of proprioceptive error size.
To compare the two curves, we fit exponential decay functions
to the small and medium visual sensitivity curves for each
subject, such that bv � �exp(�ev). We found that the regression
coefficients � (�small � 1.39 � 0.42 and �medium � 1.05 �
0.39, mean � SE) and � (�small � �0.68 � 0.34 and �medium �
�0.27 � 0.21, mean � SE) were not significantly different
[paired t-test, �: t(9)� 0.58, P � 0.58, �: t(9)� �0.84, P �
0.42], despite the medium proprioceptive error being signifi-
cantly larger than the small proprioceptive error [1-tailed
paired t-test, t(39) � 26.9, P � 0.0001]. Because the two
curves in Fig. 3B appear to lie on top of each other and can be
modeled by statistically indistinguishable exponential func-
tions, it appears that sensitivity to visual error is not modulated
by discrepancy between proprioception and vision.

Under the assumption that discrepancy is not responsible for
the saturation of learning seen in Fig. 2, we can now examine
the changing sensitivity to error more closely. To validate our
prediction that visual sensitivity to error decreases with in-
creasing error size, we compared the first and last points in Fig.
3B with a paired, one-tailed t-test and found that sensitivity
significantly decreased [t(9) � 2.59, P � 0.01]. Thus it appears
that the relative amount of adaptation to a given error size
decreases with increasing error size.

We next considered sensitivity to proprioceptive error. We
normalized adaptation in the zero-gain visual error condition
for each force perturbation (small, medium, and large) by the
magnitude of the proprioceptive error. The result, i.e., the
sensitivity to proprioceptive error, is plotted in Fig. 3C. There
is a significant decrease in sensitivity between the small and
large force perturbation [1-tailed paired t-test, t(9) � �2.03,
P � 0.036], and thus we see that sensitivity to proprioceptive
error is decreasing with error size as well.

Analysis of previously published psychophysical results. Our
main result is that sensitivity to error declines with error size.
To determine generality of our inference, we reanalyzed data
from previous publications. Wei and Kording (2009) and Fine
and Thoroughman (2006) examined single-trial adaptation in
response to either a visual perturbation or force field perturba-
tion, respectively. In both cases, error resulting from the
perturbation on trial n � 1 was measured as lateral deviation of
the cursor relative to a straight line between the start point and
the target. Adaptation was measured as the perpendicular
change in reach direction from the trial before the perturbation,
trial n, to the trial after the perturbation, trial n � 2, i.e., �x �
x(n � 2) � x(n). Thus, to find sensitivity, we divided the reported
adaptation, �x, by error size ỹ, giving a unitless measure of
error sensitivity:
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Fig. 3. Sensitivity to error declines as error size increases. A: sensitivity to error
when visual and proprioceptive modalities are matched. Sensitivity was cal-
culated as described in Eq. 4. Movements from all subjects were binned, and
bins with �20 movements were excluded. Bin size was 0.25 cm. Error bars
represent SE for each bin. B: sensitivity to visual error as calculated via Eq. 6.
Each point along each curve represents a different gain condition, increasing
from a gain of 0.5 to 2.0 as visual error increases. The sensitivity declines with
increasing visual error and appears independent of proprioceptive error, as
evidenced by the fact that the 2 curves coincide. Error bars are between-subject
SE. C: sensitivity to proprioceptive error, calculated via change in force in the
zero visual gain condition for the small, medium, and large force perturbations.
Error bars are between-subject SE.
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Sensitivity �
	x

ỹ

The results of our analysis are plotted in Fig. 4, A and B.
In Wei and Kording (2009) the task was a visuomotor shift

paradigm: end point visual feedback was provided and dis-
placed from the hand position by varying amounts, as indicated
along the x-axis of Fig. 4A. Therefore, there was only a visual
error, while the proprioceptive error was reported as approxi-
mately zero. Two separate experiments were done in which the
same perturbations were applied to either a 15-cm or a 5-cm
reaching movement. As seen in Fig. 4A, the result is a pattern
in which sensitivity to error declines with increasing visual
error size for both studies. This echoes our finding in Fig. 3B
with a paradigm in which there are visual errors without
proprioceptive errors.

In Fine and Thoroughman (2006), visual and proprioceptive
feedback was consistent and errors were created by use of force
pulses of three different magnitudes. Here, error was measured
as displacement of the cursor, which was the same as displace-
ment of the hand. Our reanalysis shows that sensitivity to error
declines with error size (Fig. 4B). This echoes our finding in
Fig. 3A, where we found that sensitivity to error declined
without the presence of a discrepancy between error size in
vision and proprioception.

Next we considered an experiment in which the objective was
not to measure trial-to-trial learning but rather to estimate a loss
function. A loss function is a theoretical construct that specifies
costs associated with prediction errors, i.e., how much worse is it
to have a large prediction error versus a small prediction error?
For mathematical convenience, loss functions are often chosen to
be quadratic functions of error, such that 	 � (y � ŷ)2. However,
in a creative study by Kording and Wolpert (2004), the loss
function for human motor control was determined in a pea shoot-
ing task by providing subjects with various distributions of error
sizes and examining how they altered their movements in order to
maximize the probability of placing a pea in the goal area. They
found that the data were most consistent with the following loss
function: 	 � |y � ŷ|1.72. As we will demonstrate, this loss

function implies that sensitivity to error must decline as error size
increases.

To demonstrate the relationship between sensitivity and
error size using this loss function, suppose that our prediction
on trial n is a function of some parameters w(n), i.e., ŷ(n) �
g(w(n)). To minimize the loss function after experiencing an
error, we change our parameters in a direction opposite to the
gradient with respect to the parameters:

w�n�1� � w�n� � 

d�

dw

�w�n� � 

d�

dŷ

dŷ

dw
(8)

Thus adaptation can be thought of as the change in w, or
�w � w(n � 1) � w(n). From this, we can calculate sensitivity,
where sensitivity to prediction error is the ratio of adaptation to
error:

b�ŷ� � �

d�

dŷ

dŷ

dw

1

ỹ

�
d�

dŷ

1

ỹ
(9)

If the loss function is quadratic, which it is often assumed to be,

then
d�

dŷ
� � 2ỹ. When this is substituted into Eq. 9,

sensitivity to error is constant as a function of error size.
However, if 	 � |y � ŷ|1.72, as was found in Kording and
Wolpert (2004), then sensitivity to error declines with error
size: b(ỹ) 
 |ỹ|�0.28. Both results are plotted in Fig. 4C. We find
that if the loss function is subquadratic, then sensitivity to error
must decline with error size. These results suggest a consistent
pattern of sensitivity to error in various paradigms.

Neural correlate of sensitivity to error. Error-dependent learn-
ing in reaching is known to depend on the integrity of the
cerebellum (Criscimagna-Hemminger et al. 2010; Donchin et
al. 2012; Maschke et al. 2004; Rabe et al. 2009; Smith and
Shadmehr 2005; Tseng et al. 2007). A prominent hypothesis

Fig. 4. Reanalysis of previously published psychophysical results. A: from Wei and Kording (2009). Adaptation to a visual shift perturbation of increasing size
was measured as a change in reach direction in the next movement. There was no proprioceptive error. Sensitivity was calculated as adaptation divided by the
visual perturbation for each reach distance, 15 cm and 5 cm. B: from Fine and Thoroughman (2006). Adaptation to force pulses of increasing magnitude was
measured as the change in reach direction in the next movement. Sensitivity was calculated as this adaptation divided by error size. C: sensitivity to error as
described by the loss function measured in Kording and Wolpert (2004). Subjects adjusted their hand position in a pea shooting task depending on the distribution
of errors. From this, a loss function was calculated and found to be a subquadratic function of error. We calculated the sensitivity to error for each loss function,
using Eq. 9.

1758 SENSITIVITY TO PREDICTION ERROR

J Neurophysiol • doi:10.1152/jn.00177.2012 • www.jn.org

 at W
elch M

edical Library Johns H
opkins U

niv on S
eptem

ber 17, 2012
http://jn.physiology.org/

D
ow

nloaded from
 

http://jn.physiology.org/


states that cerebellar learning is driven by error signals that are
communicated via climbing fibers to Purkinje cells, resulting in
complex spikes (CSs) (Albus 1971; Marr 1969). In this theory,
CSs encode an error signal, the difference between a prediction
and an observation (Kawato 2003). However, in at least some
neurophysiological experiments that have recorded CS history
during adaptation there is considerable doubt that CSs encode
prediction error (Catz et al. 2005; Ojakangas and Ebner 1992;
Soetedjo and Fuchs 2006). While there is no doubt that occur-
rence of CSs is related to some aspect of cerebellar motor
learning (Medina and Lisberger 2008), it is unclear whether a
CS directly encodes prediction error, or some other measure
related to error.

In presenting our psychophysical results, we have viewed
adaptation as a process that depends on two factors: sensory
prediction errors and sensitivity to those errors. If we label
proprioceptive feedback on trial n as p(n) and visual feedback
as v(n), then prediction error is a vector:

e�n� � �p̂�n� � p�n�

v̂�n� � v�n� 	 (10)

Trial-to-trial change in motor commands depends on prediction
errors as well as sensitivity to error:

f�n�1� � �f�n� � b�n�Te�n� (11)

In principle, sensitivity to error is a measure of confidence
associated with the error, indicating how much we should learn
from the error. In our psychophysical results we found that
sensitivity to error was not constant as a function of error but
tended to decline as error size increased. Here, we wondered
whether CSs reflect not error, but rather sensitivity to error.

A recent study by Soetedjo et. al. (2008) examined the
probability of a CS in the oculomotor cerebellum as a function
of error size in a saccade task. Upon initiation of a saccade to
a target at 15°, the target was stepped backward or forward by
a random amount. This made it so that at the end of the saccade
there was a discrepancy between position of the eye and
location of the target. This error resulted in CSs in Purkinje
cells. The authors found two populations of Purkinje cells—
some with a higher probability of CSs for small errors and
some with a more constant probability of CSs for all errors. As
described by the authors, the distinction between these two
populations of neurons was “somewhat arbitrarily” based on
the distribution of time to peak response and variability of the

response. We collapsed these data together (Fig. 5) by taking
the average of the two populations, weighted by the relative
number of neurons in each populations. The result indicates
that the probability of a CS decreased with error size. This
follows a pattern similar to sensitivity to error in reaching
movements but opposite what would be expected if CS was the
biological representation of an error. From this, we posit that
CSs may not be a reflection of an error signal, but rather the
sensitivity to error during adaptation.

DISCUSSION

When a movement is made and the resulting sensory feed-
back differs from predicted, an error signal is generated to
update subsequent motor commands. A core feature of this
adaptation is the sensitivity to error, i.e., the amount the brain
changes the motor commands in the trial following an error.
Theoretically, this sensitivity can be determined by the rele-
vance of the error signal and our confidence in our sensory
feedback. We sought to examine this sensitivity in its most
basic form through a single-trial adaptation task, which varied
both visual and proprioceptive error sizes. We found that
adaptation saturated in response to increasing error size. From
this, we calculated sensitivity to error and found that this
sensitivity was largest for smallest errors and declined with
increasing error size. This was true for both visual and propri-
oceptive modalities of error and occurred with and without
discrepancy between modalities.

Learning from error vs. sensing of error. Sensitivity to error
depends on a process that detects error and a process that learns
from that error. Here, we measured trial-to-trial change in motor
output, �f, and computed learning sensitivity, labeled with vari-
able b, as the ratio of �f to a veridical estimate of error e. We
assumed that sensing of error was unbiased, or rather that during
the movement sensory feedback provided accurate information
regarding the state of the arm. Is there evidence to support this
assumption?

If the state of the arm is detected accurately even for large
errors, then one would expect that within a given trial the brain
would have the ability to correct for that error and bring the
hand to the target. Alternatively, if the brain underestimates the
size of large errors, then we would expect that the within-trial
correction for a given error would show strong biases. Our
experiment cannot answer this question because our move-
ments were ballistic (time to reach the target was 150–250 ms),
minimizing the opportunity for within-trial correction for the
error. However, earlier works can shed light on this issue.

Scheidt et al. (2005) considered point-to-point reaching
movements through a force field similar to the medium-
strength field that we considered here. The key component of
their experiment was a condition in which visual feedback was
removed. They reported that in response to the proprioceptive
errors alone, the hand corrected for the perturbations and
brought the hand to the target (column 2 of their Fig. 2B and
row 5 of their Fig. 4). As training in the field continued, the
perturbations produced smaller errors, yet the subjects were
able to place the hand at the target without changes in accuracy
(column 3 of their Fig. 2B and row 5 of their Fig. 4). A second
example comes from the work of Veerman et al. (2008). These
authors examined within-reach response to a visual error
(change in position of the target). They found that doubling the

Fig. 5. Reanalysis of data from Soetedjo et al. (2008). This plot is a summary
of n � 18 Purkinje cells in the cerebellum showing the probability of a
complex spike in response to errors of various sizes.
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visual error caused the within-reach motor response to double
as well. If we use within-trial response to an error as a proxy
for how accurately the brain sensed that error, these data would
suggest that the brain does not underestimate large errors
compared with small errors. Therefore, in our experiment the
reduced sensitivity to error as measured via trial-to-trial change
in motor output was likely not a reflection of a bias toward
underestimating large errors, but rather a reflection of a re-
duced sensitivity in response to that error.

Additional factors modulating sensitivity to error. While
sensitivity to error may change with error size, it may also
change as task parameters are varied, impacting the subject’s
perception of error size. For example, the two lines in Fig. 4A
display the sensitivity to visual error in two paradigms that
were identical except for reach distance (Wei and Kording
2009). Why should a 4-cm error in a 5-cm movement produce
less learning than a similar-size error in a 15-cm movement?
The authors noted that the variability of the end point position
for the 5-cm reach was significantly less than that of the 15-cm
reach. If the distribution of end point positions for the 5-cm
reach is small, then the z-scores of the errors (x-axis of Fig. 4A)
would be relatively larger in the 5-cm reach than in the 15-cm
reach. Alternatively, if error during a reach is considered with
respect to reach amplitude, i.e., if error is measured in terms of
angular error, then a 4-cm perturbation during a 5-cm reach is
larger than the same perturbation in a 15-cm reach. These
parameters of the task can lead to the perception that errors in
the 5-cm reach are larger than errors in the 15-cm reach, and
may account for the decreased sensitivity to error seen for the
5-cm movement. These are just two examples of how task
parameters are potentially impacting the perception of error
size. It is likely that the perception of an error, which is a
complex and rich signal dependent on many factors, is respon-
sible for the specific shape of the sensitivity curve and the rate
of decline. Although our study has demonstrated consistently that
sensitivity to error declines with error size, we currently cannot
assess the specific shape of the decline across the variety of tasks
and perturbation types considered in our results.

Previous work has demonstrated that sensitivity to error
decreases when perturbations have a negative trial-to-trial
autocorrelation and increases when errors have a positive
trial-to-trial autocorrelation (Smith and Shadmehr 2004). This
would suggest that the brain learns more from a given error if
that error is a good predictor of future errors and learns less if
that error is a poor predictor of future errors. This view is
consistent with the result that learning rates are higher in
blocks in which the perturbation is consistent versus random
(Donchin et al. 2003).

Our estimate of sensitivity to error has larger variance for
small errors compared with large errors (Fig. 3). This trend is
inherent in the calculation of sensitivity. Sensitivity to error is
a ratio of two random variables: trial-to-trial change in force
and error. If we imagine that these two random variables are
Gaussians with arbitrary but constant standard deviations, then
as the mean of the random variable in the denominator be-
comes smaller (i.e., errors become smaller), the variance of the
ratio becomes larger (Hinkley 1969). The fact that we have
more uncertainty regarding our estimate of error sensitivity at
small errors versus large errors is partly a reflection of the fact
that our variable of interest depends on the ratio of two random
variables.

The impact of discrepancy on adaptation. Our finding that
discrepancy between sensory modalities appeared not to affect
error sensitivity is surprising given the speculation of the
causal inference model (Wei and Kording 2009). According to
that model, sensitivity to error declines when the two sensory
modalities disagree. The model assumes that the brain maps
various sensory modalities onto a common metric in which
errors can be compared. We did not find evidence for modu-
lation of error sensitivity as a function discrepancy between the
sensory modalities. Our results may be related to a recent study
of cerebellar lesion patients (Donchin et al. 2012). That study
quantified adaptation to either a visuomotor (large intermodal
sensory discrepancy) or a force field (no discrepancy) pertur-
bation. They found that performances in the two tasks were not
correlated to each other but rather seemed related to deficits in
distinct regions in the cerebellum. They concluded that adap-
tation to visual prediction errors relied on cerebellar circuitry
that was at least partially independent of the circuitry that was
involved in adaptation to proprioceptive prediction errors.
Next, consider a condition in which the sense of proprioception
is artificially degraded. If discrepancy is relevant, in a visuo-
motor perturbation paradigm the degradation of proprioception
should encourage learning from visual errors. However, deg-
radation of proprioception appears not to affect adaptation in a
visuomotor rotation paradigm (Bock and Thomas 2011; Pip-
ereit et al. 2006). Both of these results seem to support the idea
that visual and proprioceptive errors are processed indepen-
dently.

Nevertheless, our result about the impact of discrepancy on
sensitivity is a negative one and limited by the relatively small
range of discrepancies studied. With the present data, we
cannot exclude the possibility that larger discrepancies may
have an impact on adaptation.

Complex spikes and error-dependent learning. Our results
suggest that adaptation is the result of two key factors—error
and sensitivity to error. Cerebellar models of learning implicate
CSs of the Purkinje cell as a biological error signal (Kawato
2003). A basic prediction of the current CS hypothesis is that
in the initial phase of training when the errors are large there
should be an increase in probability of CSs with respect to
baseline. With further training, this probability should decrease
as errors are reduced. During saccade adaptation, one study
observed the exact opposite: the probability of a CS was small
in the initial phase of adaptation when errors were large but
then increased as training continued and errors declined in size
(Catz et al. 2005). A second study found that despite robust
reductions in error there were no corresponding changes in
probability of CSs (Soetedjo and Fuchs 2006). This pattern was
repeated in a reach adaptation study: probability of CSs ini-
tially increased with the onset of training when errors were
large but remained essentially unchanged as errors declined
(Ojakangas and Ebner 1992). Other than a single study (Gilbert
and Thach 1977), no experiment, to our knowledge, has found
that as errors become smaller during adaptation training there
are corresponding reductions in probability of CSs.

In light of these experimental data, the idea that a CS
encodes an error signal that describes in some way the differ-
ence between a prediction and an observation seems at best
unsubstantiated. However, this does not mean that the cerebel-
lum, or CSs in particular, are not involved in motor adaptation.
For example, in a smooth pursuit task, on trials in which there
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was a CS there were also reductions in the rate of simple spikes
on the following trial and a corresponding change in motor
commands that reduced error on the next trial (Medina and
Lisberger 2008). Therefore, the occurrence of a CS is related to
some aspect of cerebellar motor learning, but it may not encode
an error signal.

What do CSs encode? Here we propose a new idea. Consider
the results of Soetedjo et al. (2008), which showed an inverse
relationship between CSs and error size—similar to the rela-
tionship we found for sensitivity to error and error size.
Perhaps CSs do not encode error but rather a measure of
uncertainty about that error, which in turns acts as a signal that
modulates learning from error. Essentially, CSs may represent
sensitivity to error.

Our framework has the potential to account for an intriguing
aspect of neurophysiological data. In the oculomotor vermis,
the probability of a CS strongly depends on the direction of the
saccade error, resulting in an “on” direction (Soetedjo et al.
2008). For example, when a rightward horizontal saccade is
paired with a step-back of the target (gain-down) we have the
same error as when a leftward saccade is paired with a
step-ahead of the target (gain-up). Therefore, for two saccades
that are in opposite directions one can produce the same error
vector via gain-up and gain-down. In both cases, these errors
are in the “on” direction of the Purkinje cell, resulting in CSs.
However, monkeys adapt much less to a gain-up error than a
gain-down error (Robinson et al. 2003). If the probability of a
CS encodes error, then in these two conditions the error is the
same, and probability of a CS should be the same. However, if
probability of a CS encodes sensitivity to error, then the fact
that the monkey learns more from a gain-down error would
imply that in that condition error sensitivity is higher, and
therefore probability of a CS should be higher. When we view
the probability of a CS in this way, it nicely explains a previous
finding: consider the cell shown in Fig. 4 of Soetedjo and
Fuchs (2006). When the error vector was gain-down, it caused
a greater and more sustained increase in CS activity than when
the same error vector was gain-up. Despite equal error magni-
tudes, the probability of a CS was higher when the sensitivity
to error was higher. In some instances, saccades will system-
atically undershoot the target. This causes the errors to be
smaller in the gain-down condition than in the gain-up condi-
tion. Nonetheless, both adaptation and the probability of a CS
are greater for the gain-down condition, further suggesting that
CS activity represents sensitivity to error and not error
magnitude.

Implications for patient studies. In a recent study of patients
with cerebellar degeneration, we found that severely affected
patients had improved adaptation when the perturbation pro-
tocol induced small errors rather than large errors (Crisci-
magna-Hemminger et al. 2010). This indicates that despite
widespread degeneration of the cerebellum, sensitivity to small
errors was spared in these patients. If we are right that small
errors induce increased probability of a CS discharge, then
perhaps the latent adaptation in these patients is a reflection of
greater engagement of residual circuits in their cerebellum.
Further studies examining how the brain determines an error to
be large or small may provide insight into how to design
perturbation paradigms these patients can adapt to, and may
lead to improvements in therapeutics.

Abnormalities in the weighting of sensory feedback during
motor tasks are present in disease populations. For instance,
patients with schizophrenia show increased confidence in vi-
sual feedback when it is rotated from their actual hand position
(Synofzik et al. 2010). In contrast, children with autism have
increased generalization of motor learning in proprioceptive
coordinates, suggesting an overreliance on proprioception dur-
ing adaptation (Haswell et al. 2009; Izawa et al. 2012b). Both
results may stem from an increased sensitivity to vision or
proprioception, respectively. It may prove useful to have a
metric, such as the present study, that specifically tests for
sensitivity to visual and proprioceptive error as it relates to
adaptation.

Why should sensitivity to error decline with error size? In
principle, why might adaptation of reaching exhibit reduced
sensitivity to error as error size increases? One possible reason
may be the nature of how reaching movements are learned.
When one reaches to a target and the hand or the cursor is
perturbed, the learning from that error generalizes to neighbor-
ing targets. Interestingly, this learning is greatest near the
trajectory that the hand actually traveled rather than the trajec-
tory that was intended (Gonzalez Castro et al. 2011; Izawa et
al. 2012a; Izawa and Shadmehr 2011). In other words, the
generalization patterns suggest that maximum learning is not to
the original target (intended movement) but more likely to a
neighboring target (near the actually experienced movement).
This can be understood in terms of learning that depends
strongly on a forward model: a forward model is defined as a
map between motor commands and their expected sensory
consequences. Suppose that when an error occurs, this map is
updated. Theoretically, what one has actually learned is that the
motor command issued will result in the observed trajectory,
rather than how to generate a trajectory directly to the target.
Selecting a motor command that will bring the hand to the
target requires this learning to be generalized from the expe-
rienced motor-sensory mapping to a desired sensory state. If
we assume that generalization of a forward model declines
with distance, then this model predicts that sensitivity to error
should decline with error size.

While this framework may account for reduced sensitivity to
error with error size, it is probably not the sole contributor.
Izawa and Shadmehr (Izawa et al. 2012a) measured adaptation
to a gradually introduced visuomotor rotation and found that
the peak in the generalization function was shifted toward the
adapted reach direction, rather than the target direction, when
full online feedback was given. This can be considered as
evidence for the forward model hypothesis. However, when
only end point feedback was provided, the peak of generaliza-
tion was at the target direction and not the reach direction—
thus suggesting that with reduced quality of sensory feedback
the learning seems to depend less on the forward model. Our
reanalysis of published results includes an instance where only
end point feedback was provided, and still there was a decline
in sensitivity with respect to error size (Fig. 4A). Thus, while it
is possible that the declining sensitivity is partially related to
generalization of a learned forward model, it may not fully
explain the given results.

Conclusion. It is believed that upon completion of a move-
ment the brain compares predicted sensory consequences with
actual sensory feedback. Any difference between the two leads
to an error signal, from which we adapt our subsequent move-
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ments for improved performance. Our experiment was de-
signed to yield a better understanding of sensitivity, or the
amount we learn from error. State-space model theory would
suggest that adaptation with respect to error size is linear, and
by varying error sizes in vision and proprioception we could
obtain a constant value for sensitivity to error in either modal-
ity. Instead, we found that sensitivity declined with error size,
regardless of the discrepancy between modalities. A reanalysis
of previously published psychophysical results showed a sim-
ilar pattern of declining sensitivity. Finally, we found that the
inverse relationship between error size and sensitivity resem-
bles the pattern seen when the probability of cerebellar CSs
was measured with respect to error size. This leads to the new
hypothesis that sensitivity to error, not the error itself, may be
represented by CSs.
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