HUMAN MOTOR LEARNING IN STATIONARY AND NONSTATIONARY NOVEL DYNAMIC
ENVIRONMENTS: PSYCHOPHY SICAL, ELECTROMYOGRAPHIC, AND COMPUTATIONAL
VERIFICATION AND EXTENSION OF THE INVERSE MODEL HYPOTHESIS
by

Kurt Andrew Thoroughman

A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the
degree of Doctor of Philosophy

Baltimore, Maryland

December, 1999

© Kurt Andrew Thoroughman 1999

All rights reserved



Abstract

In this thesis I investigated the computational nature of human motor learning of novel dynamics. In my
experiments human subjects learned to make reaching movements while grasping a robotic arm. After
learning a baseline task, subjects trained to move the robot while it produced viscous forces. The ability of
humans to control their arms while interacting with environments with differing dynamic properties is
computationally impressive. Recent studies have suggested that a neural implementation of an inverse
model of dynamics likely underlies this ability. Psychophysical and theoretical studies have suggested that
inverse models exist, are spatially focused, and could be computed using mathematical primitives termed
basis functions.

I measured neuromotor output using electromyography to investigate whether muscle activations
themselves supported the inverse model hypothesis. Two novel metrics of EMG suggested that subjects
did learn an inverse model specific to dynamics, and that the inverse model was likely trained via an
integration of feedback into feedforward control.

I also tested an assumption of previous studies, that desired trajectories remain constant in different
environments. I found a small but significant difference in asymptotic behaviors in the null and force
fields. Comparison of performance to simulated optimal trajectories indicated that while dynamics were
considered, kinematic influences far outweighed dynamics in movement planning.

Previous investigations were also limited to study of steady-state performance after dynamics were well
trained. Investigators sometimes surprised subjects with quick dynamic changes, but the effect of these
changes on future performance was not studied. My subjects who trained in nonstationary dynamic
environments demonstrated unlearning with every surprise dynamic change. These changes provided a
unique window into movement-by-movement learning of dynamics. A state-space model fit to the
adaptation patterns provided an estimate of the spatial extent of unlearning, a motor learning receptive
field. This receptive field revealed that sudden changes in dynamics had opposing effects on subsequent
behavior, dependent on the direction of movement in which dynamics changed. Theoretical and
computational analysis showed that such a receptive field could result from broad, sparse velocity-
dependent Gaussian basis functions.
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Chapter 1 Introduction: Psychophysical, physiological, and
theoretical explorations for the computational and neural bases
of human motor learning

People are typically unimpressed with their ability to not only move their arms in almost any desired
trajectory, but also to skillfully move both familiar and novel objects which have different dynamic
properties. The neuroscientific, computational, and robotic communities were also not appropriately
impressed with this human skill, until robotic control researchers attempted to control multijoint
manipulanda (robotic arms). They discovered that even the simplest control of multijoint arms is fraught
with complexity. Since the dynamics of multijoint systems are coupled; dynamic commands between all
joints must therefore be coordinated (Atkeson, 1989). The successful completion of movement requires a
transformation between many coordinate systems, including spaces of vision, joints, and the hand (Bizzi et
al, 1991; Wolpert, 1997). From a control perspective, perhaps the worst complexity of multijoint arm
movement lies in its strong nonlinearities. Only recently have theorists discovered complex mathematical
routines to perform stable adaptive control of nonlinear dynamic systems (Narendara and Annaswamy,
1989; Slotine and Li, 1991). In the late 1980s, researchers questioned whether human nervous systems
could perform the complex computations required to generate motor commands informed by precise
kinematics and dynamics (Hildreth and Hollerbach, 1987). In the next twelve years, investigators have
theoretically, psychophysically, and physiologically searched for the neural computational basis of human

motor learning.

Figure 1.1 summarizes several current theories regarding the human motor control and learning of arm
movements (taken from Wolpert et al, 1998). The “controlled object” refers to the excitation-contraction
coupling of muscles, the dynamics of the arm, and any interaction from the environment. The collective
system of muscles and manipulated dynamics is often referred to as the “plant.” The plant then transforms

a neural motor command into the trajectory (position and velocity) of the arm.
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Figure 1.1: Block diagram summarizing current theories of the computation underlying human
motor control. Taken from Wolpert et al (1998).

One technique humans could utilize to lessen computational complexity would be to rely primarily on
feedback control. Feedback control of the human arm produces torque with stiffness and viscosity, in
response to differences between desired and actual hand position and velocity. A feedback control system
would track desired trajectories robustly with little computational cost (Arbib, 1995). Visual and
proprioceptive signals provide inputs to short- and long-loop feedback signals that could drive feedback
control. A very simple strategy, then, would be to generate a desired trajectory that slightly leads the actual
trajectory, with the feedback controller pulling the arm along. This simple control forms the core of an
early theory termed the equilibrium point hypothesis (Flash, 1987). Both sensory systems have inherent
delays, however, of up to 100 msec. In spite of these delays, humans are able to make rapid, accurate
movements (Miall, 1995). Furthermore, when learned dynamics are unexpectedly removed, subjects
generate errors in movement that reject the notion that movement is generated through stiffness and
viscosity alone (Lackner and DiZio, 1994; Shadmehr and Mussa-Ivaldi, 1994). Humans can, however,
respond to unexpected dynamics and correct their trajectories mid-movement (Gottlieb, 1996; Sainberg et
al, 1999). Human motor control must therefore combine feedback control, responding to information

during a movement, and feedforward control, generating commands before sensory feedback is available.

In order to generate feedforward commands, the human CNS must predict the dynamic demands of the

movement. The prediction of dynamics could have relatively low computational cost if the mapping
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between desired trajectory and required motor commands were stored in a lookup table. The continuous
range of positions and velocities accessible by multiple joints, however, would demand a lookup table far
too large to be physiologically plausible (Mussa-Ivaldi, 1999). The full spectrum of motor behaviors, then,
likely stems from a functional, systematic mapping of desired movement states into motor commands,
reflecting the dynamic demands of particular movements. This hypothesized unit of neural computation
inverts the transformation carried out by the plant; hence this unit is termed an inverse dynamic model, or
simply an inverse model. Such a systematic mapping would, unlike a lookup table representation,

continuously interpolate between and extrapolate from experienced movement states.

Recent psychophysical studies have investigated the spatial and temporal properties of the internal model
by training subjects in novel dynamic environments. The kinematic features of movements produced by
subjects who train in viscous force field correlate well with a biomechanical simulation of movements
generated by a velocity-based inverse model. When trained subjects move in novel regions of the
workspace, dynamics seemed to generalize in angular, rather than Cartesian, coordinates (Shadmehr and
Mussa-Ivaldi, 1994). Subjects generalized well across different speeds and velocities in the same direction
as dynamic training (Goodbody and Wolpert, 1998), but generalization trailed off rapidly when subjects are
tested in different movement directions (Gandolfo et al, 1996). Dynamic information seemed to generalize
in terms of velocities even when the actual structure of learned dynamics depends on time, not state
(Conditt and Mussa-Ivaldi, 1999). The adaptation of an inverse model to one dynamic environment also
seems to be susceptible to anterograde and retrograde interference: exposure to a second anti-correlated
environment is harder to learn and damages previous learning more prominently if the two environments
are closely spaced in time (Brashers-Krug et al, 1996; Shadmehr and Brashers-Krug, 1997). All of these

studies measured kinematics of performance to infer properties of the inverse model.

Movement kinematics, however, are a product of the plant’s transformation of the actual output of the
inverse model, the feedforward motor command. This motor command can be measured using surface
electromyography (EMG) (Basmajian and De Luca, 1985; De Luca, 1997). EMG traces measure the
output of motor neurons that drive muscle contractions. Quantification of neural output has elucidated how

the CNS generates appropriate muscle forces in the multi-joint arm in many directions of free movement
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(Flanders, 1991; Karst and Hasan, 1991) or isometric force resistance (Flanders and Soechting, 1990).
Recording of EMG has also quantified changes in motor output while subjects learn to make single-joint
movements against novel loads (Gottlieb, 1994, 1996). Single-joint movements, however, do not excite
dynamics of the complexity that inspired the inverse model hypothesis. A study of EMG during dynamic
learning of multi-joint movements would directly test the predictions of inverse model existence stemming

from theory and psychophysics.

The inferences regarding inverse model properties in previous studies were also limited by the assumptions
of investigators regarding learning and training stationarity. Metrics employed in previous studies focused
on learning over the course of many minutes of training. These methods elucidated the steady state
response, but did not explain the transient response of the human motor learning system to sudden changes
in dynamics. Some studies did in fact interleave sudden changes of dynamics into training in a baseline
environment (Shadmehr and Mussa-Ivaldi, 1994; Goodbody and Wolpert, 1998; Sainberg et al, 1999).
These investigators, however, studied only how subjects responded during the surprise dynamics, not how
those surprises affected subsequent movements back in the baseline environment. Just as impulse functions
reveal important characteristics in systems engineering, sudden changes in dynamic environments may

create the interrogation necessary to understand how inverse models adapt.

Although previous psychophysical studies have made important inferences regarding the natural of inverse
dynamic models, the computational basis of the inverse dynamic computation remains largely unknown
(Mussa-Ivaldi, 1999). The mapping between desired trajectories and motor commands appropriate for
particular dynamics could be framed as fitting an unknown function between kinematic input and
neuromuscular output. A computationally efficient method used for function fitting represent the unknown
function as a sum of coefficients multiplying regular functions termed basis functions (Poggio and Girosi,
1990). These basis functions are typically radial, peaking at a center and decaying with distance away from
the center. The variance of the function across the input space is therefore represented by different
coefficients multiplying the basis functions located at different centers. The basis function representation is
identical to the input/output mapping generated by layered neural networks (Poggio and Girosi, 1990).

Presuming a neural network architecture of dynamic learning, basis functions of inverse models would
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depend on the desired trajectory of each movement. Learning novel dynamics would require the update of
the weights that multiply those basis functions (Jordan and Rumelhart, 1992; Sanner and Slotine, 1995;
Sanner and Kosha, 1999). The response of the inverse model to sudden, frequent changes in dynamics
could cause varied weight changes; the effect of these weight changes on subsequent motor output and

behavior could reveal important properties of the hypothesized inverse model basis functions.

The functions of both feedback and feedforward control depend on desired trajectories as input (Figure
1.1). Movement goals are specified in a discrete number of dimensions, whereas trajectories are specified
as a continuously (or at least densely represented) function of time (Wolpert, 1997). Human motor control
therefore requires a transformation between movement goals and desired trajectories. Since the goal-to-
trajectory mapping is many-to-one, the human CNS must use some other constraints to specify trajectories.
A hypothesized class of constraints posits that humans generate movements that optimize performance, that
minimize some undesirable characteristic of movement. Two undesirable costs incurred in movement are
movement jerk, the third time derivative of position (Flash and Hogan, 1985), and the time derivative of
torque change (Kawato et al, 1987). Minimizing jerk and torque change would maximize smoothness in,
respectively, kinematics and dynamics. Natural movement profiles seemed to be explained well by both
hypotheses (Desmurget et al, 1998), although specific tasks seem to be fit better by minimizing torque
change (Osu et al, 1997). The altered behavior of subjects who are given perturbed visual feedback,
however, indicates that minimizing visually perceived jerk is of primary concern (Wolpert et al, 1995b;
Ghahramani et al, 1996). An alternate hypothesis, recently proposed, posits that humans generate desired
trajectories in order to minimize error created by noise in the neural motor command (Harris and Wolpert,
1998). Quantification of theoretical and actual costs incurred in kinematics, dynamics, and accuracy during
movements in a novel dynamic environment might provide insight regarding the relative relevancy of these

costs to movement planning.

In this thesis I investigated the properties of the hypothesized inverse model of dynamics. Human subjects
trained in novel dynamic environments, produced by a robotic arm. In Chapters 2 and 3, all subjects
practiced movements in a consistently applied viscous force field. In Chapter 2, EMG is used to record

motor neuronal output from subjects learning the force field. I developed novel metrics of EMG to
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facilitate a comparison of neural output to an anthropomorphic biomechanical model which learned via
updating an inverse model. The electromyographic metrics confirmed the existence of an inverse model,
revealed how feedback control could instruct the feedforward controller, and indicated how learning an

internal model could correlate with changing motor cortical activity.

In Chapter 3 I examined the asymptotic behavior of these subjects to investigate the relative importance of
neural noise and kinematic and dynamic optimization in movement planning. I discovered that trajectories
converge upon a more curved trajectory in the force field than without the force field, suggesting that
humans do at least consider dynamic optimization in planning movements. Computational consideration of
jerk, torque change, and neural noise in the force field, coupled with the actual costs incurred by subjects
during movements, suggest that subjects first and foremost consider kinematic optimization during

movement planning.

In Chapter 4 I examined the kinematic and electromyographic response of subjects who trained in a
different paradigm, during which surprise movements without the force field were interspersed between
force field movements. These “catch trial” movements induced subsequent reversals of improvements in
movement accuracy and changes in muscle activation, indicating short-term unlearning of dynamics. A
state-space model quantified this unlearning and uncovered its unexpected spatial extent. The parameters
of the state space fit defined receptive fields of motor learning. The receptive fields, when considered in
the neural network implementation of inverse models, revealed important characteristics of the basis

functions underlying dynamic motor learning.

Parts of this dissertation have been published (Thoroughman and Shadmehr, 1999). Other parts of this
dissertation rely on retrospective analysis of previously trained subjects. Kinematic parameters of these
subjects’ movements were previously published (Shadmehr and Brashers-Krug, 1997). The analysis
performed here focused on the effect of catch trial performance on subsequent movements in the force
field, which constitutes novel and substantial work beyond the analyses performed by the previous paper’s

authors.



Chapter 2 EMG correlates of inverse model form ation during
training in stationary dynamics

2.1 Introduction

People learn to move novel objects along desired trajectories, in any direction, by simply practicing the task
a few times. This adaptation is remarkable because of the computational complexity inherent to learning
dynamics (Atkeson, 1989). Previous studies have hypothesized that adaptation of a neural internal model
(IM), transforming desired trajectories of the hand into appropriate muscle activations, likely underlies this
ability (Jordan, 1995; Wolpert et al., 1995). Aftereffects, errors that people make when learned dynamics
are unexpectedly changed, suggest that IMs are built gradually with practice (Shadmehr and Mussa-Ivaldi,
1994), that learning one IM can interfere with the learning of a second IM (Brashers-Krug et al., 1996), and
that the interference fades over the course of hours (Shadmehr and Brashers-Krug, 1997). The evidence for
the formation of IMs, however, comes mainly from psychophysics. A measure of neural output, such as

electromyography (EMG), could provide insight into the neural basis of the formation of IMs.

Previous work has reported EMG changes during learning of single-joint movements with different loads
(Corcos et al., 1993; Gottlieb, 1994). When subjects make elbow movements against an unexpected load,
EMG patterns up until 200 msec into the movement remain unchanged compared with unperturbed trials
(Gottlieb, 1996). This delayed response to the perturbation reflects the latency of short- and long-loop
reflexes that use proprioceptive information to produce an error—feedback action (Marsden et al., 1978).
After subjects practice moving the novel load, EMG differs from unperturbed trials from the beginning of
movement (Gottlieb, 1994). This change in the movement-initiating EMG reflects the adaptation of
descending control commands. In computational studies, the changes in descending commands are
attributable to adaptation of an IM (Wada and Kawato, 1993; Miall and Wolpert, 1996; Barto et al., 1998;
Bhushan and Shadmehr, 1999). An elegant idea is that adaptation may be driven by error—feedback motor
responses generated by reflex circuits (Kawato et al., 1987; Stroeve, 1997). In other words, the delayed,
reflex-based error feedback might serve as a “blueprint” for how the CNS needs to change descending

commands. To test this idea, the computational concept of an IM for multijoint movements needs to be



described in a way that its formation could be quantitatively tested by changes in EMG. Here I asked
whether changes in EMG correlate with the formation of an IM, and whether the error—feedback response

drives this learning.

We measured EMG as subjects learned to reach while grasping a manipulandum that created novel forces.
I used a biomechanical model to transform EMG into a composite trace, corresponding to activation that
specifically compensated for the imposed field. I found that with training, activation of the appropriate
musculature gradually shifted from a delayed error— feedback response to a predictive feedforward
response. To quantify how these changes corresponded to the formation of an IM, I analyzed the
directional tuning functions of movement-initiating EMG. These spatial functions relate EMG to
movement direction in hand-centered coordinates (Flanders and Soechting, 1990; Sergio and Kalaska,
1998). Previous reports have demonstrated that reaching movements or isometric force production
generate EMGs with broadly tuned directional biases (Flanders and Soechting, 1990; Flanders, 1991; Karst
and Hasan, 1991). This modeling revealed that learning of an IM should result in specific rotations of
muscles’ tuning curves. I found that with practice, the directional patterns of activation gradually rotated;
the final magnitude of the rotations corresponded well with the predicted change. Temporal features and
angular orientation are invariant to the overall magnitude of the EMG; therefore, across subjects and across
recording sessions, despite removal and reapplication of surface electrodes, these metrics robustly

quantified the formation of internal models.

2.2 Materials and Methods

2.2.1 Experimental apparatus and protocol

Twenty-four right-handed subjects (12 women and 12 men), students in the Johns Hopkins School of
Medicine, provided written consent to participate in this study. With their right hand, subjects grasped the
end effector (handle) of a 2 degree-of-freedom (df) manipulandum mounted in the horizontal plane
(Shadmehr and Brashers-Krug, 1997). Subjects sat in front of the manipulandum, with the right arm

supported by a sling. Sensors on the manipulandum accurately measured joint position and velocity



Figure 2.1: Experimental apparatus. Subjects make reaching movements while grasping a 2 df
manipulandum (robotic arm). The manipulandum could be programmed to produce a force field.

(details provided by Shadmehr and Brashers-Krug, 1997). Two motors, mounted on the base of the
manipulandum, could independently produce torque on the proximal and distal joints of the robotic arm. A
computer monitor mounted above the manipulandum displayed a cursor representing hand position and
boxes representing targets. Using pediatric cardiac electrodes, EMG was recorded from four muscles:
biceps, triceps lateralis/ longus, anterior deltoid, and posterior deltoid. Before the application of the
electrodes, the skin was cleaned and abraded using a preparation gel (NuPrep; Weaver, Aurora, CO). EMG
signals were amplified by Grass (Quincy, MA) AC amplifiers (model 8AS5) with 60 Hz notch filters. The
amplified signal was bandpass-filtered (17-530 Hz), processed through a root-mean-square circuit with a
25 msec integration window (De Luca, 1997), and digitized. Hand position, hand velocity, and processed

EMG were recorded at 100 Hz. The processed and digitized EMG formed the signals analyzed below.

Subjects made 10 cm point-to-point movements toward 8§ mm square targets represented by boxes on the
computer monitor. Subjects made movements in four directions (0, 45, 90, and 135°) away from the center
of the work space and four directions (180, 225, 270, and 315°) back to the center; the order of the outward
directions was determined pseudorandomly. If subjects completed the movement in 500 * 50 msec, the

box “exploded,” and the computer generated a pleasing sound. If the cursor reached the box too slowly (in



2550 msec), the target filled in blue; if the cursor reached the box too quickly (in <450 msec), the target
filled in red. The only instruction provided was to explode as many targets as possible. I provided no
instructions regarding straightness of movements or smoothness of trajectories. Subjects made reaching
movements in two or three different dynamic environments. One, termed the “null field,” is the condition
in which the torque motors do not create any forces; in the null field the subjects encounter only the inertial
dynamics of the manipulandum. In the second and third environments, B1 and B2, torque motors produce

an additional force as described by the equation:

F = BXx, 2.1

where F is the force produced at the end effector by the robot’s motors, X is the instantaneous velocity
vector of the hand, and B is a viscosity matrix. In the first environment, the null field, BO equals [0 0; 0 0]
N sec m”'. In the second environment, B1 equals [0 13; -13 0] N sec m’'; in the third, B2 = -B1. These
“force fields” exert a force proportional in strength to the instantaneous speed of the hand, in the direction

perpendicular to the instantaneous velocity vector.

Subjects’ training was divided into sets of 192 movements. Each set was followed by a 3 min rest period.
On a first day of training, all 24 subjects completed three sets of movements in the null field. On a second
day, all subjects completed one set in the null field and then three sets in the force field B1. Here I report

data only from the second day.

To determine the whether observed changes in EMG were specific to B1, three groups of eight subjects
each completed two additional sets of movements in other environments. One group completed these two
sets in the null field after the standard 3 min rest. A second group trained in B2 3 min after B1, and a third
group trained in B2 6 hr after B1; EMG in these groups also explored the neural basis of anterograde
interference (Brashers-Krug, Shadmehr, and Bizzi, 1996). During the 6 hr period, EMG
electrodes were removed, and subjects left the laboratory. After their return, electrodes were reapplied on

approximately the same arm positions as the earlier session, as marked by the earlier abrasion of the skin.
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2.2.2 Displacement analysis

To facilitate averaging across movements, all movement data were temporally aligned on the basis of the
movement onset, which was defined as when the hand speed first crossed a threshold (0.03 m/sec).
Perpendicular velocity was defined as the component of the velocity vector that pointed perpendicular to
the line connecting the initial hand position and target position. Perpendicular displacement was computed
by summing perpendicular velocity over the first 250 msec of the movement. Curvature in null field
movements was often nonzero. To focus on recovery from the force field, in each direction I subtracted

away the average perpendicular displacement generated in the null field (first set, day 2).

2.2.3 EMG normalization and polar analysis

Each subject’s (bandpassed, RMS’d) EMG traces were normalized based on movement-initiating EMG (as
defined below), recorded during the initial null field set (first set of movements in day 2). For each muscle
m and in each direction of movement, I calculated a scalar activation a,, by averaging the normalized EMG
trace A, (t) over time interval between 50 msec before and 100 msec after the onset of movement (capital

letters refer to full time series; small letters refer to scalar measures) and then averaging over all
movements made in that direction during the initial null field set. I constructed an 8 x 1 vector c_im for

each muscle, each element representing a single direction. I then adjusted the scale of each muscle’s EMG

trace in each movement, producing the normalized trace A", using the equation:

A (1) —min(a,, )

A, (@) =50% + 25, (2.2)

max(a, ) —min(a,,)
where k is an index of movement number, and m is an index of muscle. Within each subject, therefore, the
EMG values recorded during all movements (in the null field and in force fields) were normalized using the

same linear transformation. This transformation facilitated comparisons of activation across subjects but

preserved the training-induced changes of every subject’s EMG.

I used a form of data analysis termed polar analysis to evaluate changes in EMG. I began the analysis by

computing the movement-initiating activation for each subject, binned within each direction across eight
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movements. I then multiplied each scalar by the unit vector pointing in the direction of movement, so that
these vectors, when plotted together, display a,, as radii pointing in the direction of movement
corresponding to that activity. These polar plots summarized the function mapping target direction into

initial EMG activity.

To determine the directional bias of each activation function, in each movement bin I added the eight a,,
vectors together to form one resultant vector. This resultant vector had the same direction and is
proportional in magnitude to the mean of the eight vectors (if a unit mass would have been placed on the
end point of each vector, the mean of the vectors would have been the center of mass of the collection of
points). By calculating the orientation of this resultant vector, I detected changes in the angular

dependence of a,, as subjects learned dynamic environments.

2.2.4 Computational modeling: structure of the model

The purpose of the computational modeling was to predict the change in the pattern of joint torques that
should result if an adaptive control system learned to completely compensate for the dynamics of the force
field. To calculate the changes in joint torques attributable to adaptation, we simulated the dynamics of the

four-link system of Figure 2.1 through the following coupled differential equations:
1L,(P)p+G,(p.p)p=M(P)+J/F, 23)

1,(@q+G,(G.94=CG,4.§ @)-J'F, 2.4)

where I and G were inertial and coriolis/centripetal matrix functions, M was the torque field produced by
the robot’s motors, i.e., the environment, I was the force vector measured at the handle of the robot,

5 was the adaptive controller implemented by the motor system of the subject, § . (t) was the reference
trajectory planned by the motor control system of the subject, J was the Jacobian matrix describing the

differential transformation of coordinates from end point to joints, § and p were column vectors
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representing joint positions of the subjects and the robot (Figure 2.1), and the subscripts s and r denoted

subject or robot matrices of parameters.

The robot’s passive mechanical dynamics, I, and G,, as well as a typical subject’s passive dynamics of the
arm, I and G, were previously estimated (Shadmehr and Brashers-Krug, 1997). A key design question is
with respect to the function C. Simulations have previously suggested that a reasonable lumped model of
the subject’s biomechanical controller in the case of these targeted movements is as follows (Shadmehr and

Brashers-Krug, 1997):

C=1,.G)q +G,(G .4 )q ~M(q)-K(G-4)-V(G—q). (2.5)
K is a linear estimate of subject’s joint stiffness and was set to a constant K = [15, 6; 6, 16] N m rad’!
Mussa-Ivaldi et al., 1985). V is a linear estimate of joint viscosity and was set at V =[2.25, 0.9; 0.9, 2.4]

N m™ sec” rad”'. This controller is dependent on a model of the subject’s passive dynamics, represented by

A

I, and éx , and model of the force field environment, M (q "). Tassume the desired trajectory, q ", was

a minimum jerk motion of the hand to the target (Flash and Hogan, 1985) with a period of 0.5 sec.
Previous simulations have suggested that such a controller produced trajectories in the above differential
equations that reasonably agreed with performance of subjects in the field (Shadmehr and Brashers-Krug,

1997).

In previous work, Shadmehr and Brashers-Krug (1997) simulated Equations 2.3 and 2.4 for a configuration
of the arm in which the hand made the first movement starting from x =-0.1 and y = 0.45 m, based on the

coordinate system shown in Figure 2.1. This is the work space for which the EMG data in this thesis were

acquired. The force field produced by the robot was always of the form F= BX . This field can be
written in joint coordinates of the robot or the subject, i.e., the M variable in Equation 3, using simple
kinematic transformations (Shadmehr and Mussa-Ivaldi, 1994). I considered two conditions. In the first
condition, the field produced by the robot was B = B0, i.e., the null field. In the second condition, I had B

= BI1. I performed a numerical simulation of Equations 2.3 and 2.4 for each condition under the
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assumption that the controller had a perfect model of the field. Movements were simulated to the same

eight directions as in the psychophysical studies.

The torques produced by the controller of Equation 2.5 on the shoulder and elbow joints were Ty(t,0) and
T.(t,0), where t is time into the movement, and 0 is the target direction. The calculated elbow and shoulder

torques were parceled into muscle force by solving the set of equations,

T=J'F
F,F, =k, (2.6)
F,F, =k,

where ﬁ =[F,,F,,F,,F » ]T is a vector of muscle forces, J,," is the transpose of the differential

transformation from muscle lengths to joint angles, i.e., d\/d6, the Jacobian representing muscle moment
arms, and ky; and k,, are constants of reciprocal activation. The reciprocal activation constants were
derived through analysis of the actual null field EMG data. From the recorded EMG data, a,,, was
calculated for each muscle for each direction (this represented the average EMG from t =-50 to t = 100
msec into the movement). Next, a resultant vector was calculated for each muscle. The ratio of the length
of the resultant vector to the mean of the a,, function for each muscle was calculated. This represented the
strength of the directional bias of each muscle’s EMG. I observed that selection of reciprocal activation
constants ky, and k,, determined the strength of the directional bias of muscle forces in the model (also
calculated over t = -50 to t = 100 msec). I adjusted the activation constants in the model so that it produced
muscle forces that matched the strength of the directional biases measured in the a,, data. T arrived at k, =

1x 10° N*and k,, = 3 x 10° N?,

There is no general consensus regarding the magnitude of muscle moment arms (i.e., matrix J;, in Eq. 6) for
the human arm in the horizontal plane. Here I considered six different models (Table 1). Four of the

matrices (models A-D) were derived presuming different levels of effective biarticulation of biceps and
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Moment arm matrices (cm)

Expected rotation in the muscle’s EMG
function when field B1 is learned (°)

Model T _ (dA Biceps Triceps  Antdel  Post del
ir =)
A 4 -4 0 0] -26.6 -26.5 -14.1 -13.6
0 0 4 —4]
B (4 —4 2 -2 -26.6 -26.5 -13.2 -13.0
0 0 4 —4]
C (4 —4 4 —4] -26.6 -26.6 -13.7 -13.6
0 0 4 —4]
D (4 —4 4 —4] -26.6 -26.6 -19.7 -20.2
0 0 2 -2]
E (458 —0.70 237 —-274] -26.6 -26.5 -13.1 -16.6
0 0 467 -148
F 316 —6.07 220 -3.43] -26.6 -26.5 -12.7 -15.2
0 0 484 -2.21

Table 2.1. Computational representation of an internal model in terms of expected changes in the

angular orientation of EMG.

triceps: model A presumed no biarticulation, and models B-D presumed that the moment arms of biceps

and triceps across the shoulder were one-half, the same, and twice the moment arms of the anterior and

posterior deltoids, respectively. The fifth model (E) was derived from cadaver data (Wood et al., 1989)

recorded with the shoulder adducted and forearm horizontal and extending forward, and the sixth model (F)

was model E transformed through a rigid body rotation to the horizontal plane of the shoulders.

2.2.5 Computational modeling: predicting rotation of directional bias

For each moment arm model, the simulation produced a time series of muscle forces appropriate to make

movements in the null field. In each direction of movement i, I averaged over the first 150 msec of
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predicted force production (corresponding to the interval 50 msec before through 100 msec after movement
initiation) to determine for each muscle a scalar variable f,(i). I performed polar analysis (see above) on
these scalars to determine a resultant vector to summarize, in null field movements, the angular dependence
of f,, on movement direction. I then performed the same analysis on the forces appropriate to move in the
force field B1. From these two polar analyses I determined, for each muscle, the difference between the

orientations of f,,, resultant vectors in the null field and in force field B1.

The results for each model are shown in Table 1. I found that changing moment arm matrices tended to
change the orientation of preferred directions in both null field and B1 but did not tend to change the angle
between them. All models predicted approximately the same levels of rotation in the tuning functions of
biceps and triceps. For the anterior and posterior deltoids, predicted rotations were very similar for all
models except that of model D. The results in Table 1 show how much rotation of the spatial activation
function, as represented in hand-centered coordinates, should occur as a subject learns an internal model for

field B1.

2.2.6 Computational modeling: predicting time series of appropriate activations

Studies that have recorded EMG during single-joint movements have reported increases or decreases in the
activation of individual muscles during learning. This analysis is appropriate for tasks with a single degree
of freedom, but here we needed to consider movements with 2 df, actuated by multiple muscles, moving in
several directions. To facilitate analysis of EMG across directions of movement, we derived an inverse
muscle model, whose parameters were determined by subjects” EMG in the null field. The model was
validated by predicting EMG patterns in the force field. These predictions were then used to remap EMG

into composite traces based on their functional relevance.

To determine the muscle activations appropriate for this task, I first used Equations 2.3 through 2.6 and
muscle model C to calculate the time series of muscle forces necessary to make a minimum jerk reaching
movement, F; ,, ,(t), where i indicates movement direction, m muscle, and n force field (n = O signifies the

null field, n = 1 the force field B1 ). Next, I transformed the modeled muscle force F, ,,,(t) into appropriate
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Figure 2.2: Data used for building a simple force activation model for the anterior deltoid and data
used for testing the validity of the model. Top plots: The anterior deltoid force predicted by the
inertial model is fitted to the mean EMG recorded from subjects during null field movements. Each
point is data for movement to a given direction. Each circle is the average normalized EMG recorded
during that period in this muscle from all subjects. The line is the best linear fit (p , 0.001 for each
figure), that represents the muscle model. Bottom plots: Validating the muscle model. The linear fit
from the null field was used to transform the predicted forces necessary for movements in field B1 to
EMG units. The x-axis is the predicted average EMG in anterior deltoid. The circles are the mean
recorded EMG in all subjects after f ull adaptation. The solid line is the muscle model’s predictions.
The dotted line is the best possible linear fit of the validation data.

muscle activations. To estimate the relationship between predicted muscle force and recorded EMG
[Aima(0)], I found a piecewise linear fit between the force predictions in the null field and the recorded
EMG from subjects, using the following analyses. In the null field, for each muscle m and in each
direction i, I calculated the average predicted force and recorded EMG during the agonist period, from 50
msec before through 100 msec after the onset of the movement (f,** and a,,"¢), and during the antagonist
period, from 200 msec through 300 msec into the movement (f,"™ and a,,"™). I then fit the null field forces
across all eight directions to the recorded null field EMG using the equations:

a” =pl Q,:g +p. (2.7

m =

- - 3, L re 4
' =dy =P, (f" = fa)+ P
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Parameter Biceps Triceps Ant del Post del

p' (nu/N) 1.58 1.70 0.66 0.85
p’ (nu) -0.10 -0.14 0.015 -0.034
p’ (nu/N) 0.75 0.71 0.43 0.60
p* (nu) 0.036 0.022 0.024 0.045

Table 2.2: Values of fitted parameters p in Equation 2.7. nu: normalized units of EMG.

where d and ]‘5 are 8 x 1 vectors reflecting recorded EMG and predicted force in all eight directions, and

p are parameters of the fit.

I calculated the parameters to find the least-squared fit of the null field data and found that the fit was
significant for all four muscles, during both the agonist and antagonist bursts (for all eight fits, r > 0.88; p <
1 x 107; the top two plots in Figure 2.2 show the fits for anterior deltoid in the null field). To validate the
fits, I used the same parameters to transform f; ,, ;, the predicted force for field B1, into predicted EMG.
The transformed forces fit the mean EMG recorded from the subjects rather well [for one of the fits (triceps
during the antagonist burst), r = 0.73; p < 0.04; for all other fits, r > 0.80; p < 0.015; the bottom two plots in
Figure 2.2 show, for anterior deltoid, the relationship between transformed force and EMG in the field B1 ].
The parameters used for the fits are given in Table 2. This rather simple muscle model, therefore, was

validated on data not used to fit the parameters.

For each movement direction, each muscle, and both dynamic environments, I used the parameters p to
map predicted force (f) into predicted EMG (e; note that a refers to actual activations) at baseline
attributable to the reciprocal activation (base), during movement initiation (ag, from -50 through 100 msec),
and midmovement (ant, 200-300 msec). I then compared these activation scalars to determine, in the null

field, what increases or decreases from baseline were appropriate for initiating movements. I also
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Predicted force  Direction (°) Biceps Triceps Ant del Post del
direction

Null field, 0 0 0.536 0 0.845
excited (0,+) 45 0 0.971 0 0.241
90 0 0.859 0.513 0
135 0 0.070 0.998 0
180 0.604 0 0.797 0
225 0.975 0 0.222 0
270 0.813 0 0 0.583
315 0.063 0 0 0.998
Null field, 0 0.669 0 0.744 0
inhibited (0,-) 45 0.965 0 0.265 0
90 0.761 0 0 0.649
135 0.080 0 0 0.997
180 0 0.605 0 0.796
225 0 0.944 0 0.331
270 0 0.876 0.482 0
315 0 0.135 0.991 0
Difference 0 0 0.921 0.389 0
between null 45 0 0.182 0.983 0
and B1, 90 0.869 0 0.495 0
excited (1,+) 135 0.997 0 0.074 0
180 0.937 0 0 0.350
225 0.396 0 0 0.919
270 0 0.819 0 0.574
315 0 0.9991 0.042 0
Difference 0 0.863 0 0 0.505
between null 45 0.027 0 0 0.9996
and B1, 90 0 0.825 0 0.565
inhibited (1,-) 135 0 0.988 0 0.154
180 0 0.947 0.322 0
225 0 0.563 0.826 0
270 0.814 0 0.581 0
315 0.9995 0 0 0.031

Table 2.3: Values of the vector operator v, as defined in Equation 2.9.

determined what increases or decreases from null field activations were appropriate to counter the novel
forces produced by field B1 midway through the movement (when field-induced forces were maximal). 1

summarized these predictions in a three-dimensional object x(i, m, n):

x(i,m,0) = e, (i) — e2 (i) ; x(i,m,]) = ™ (i) — e (i) . (2.8)

m,0 m,1 m,0
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For each movement direction i and force field n, x(i, m, n) for two of the muscles were positive; the size of
these activations predicted the proportion that each of those muscles participated as an agonist in making a
movement in the null field (for n = 0) or as an agonist for resisting the forces of field B1 (for n = 1). On the
other hand, x(i, m, n) was negative for the remaining two muscles. These negative values predicted that the
two remaining muscles produced a force opposite that of the imposed field and should be inhibited. I

constructed 1 x 4 vector operators v,

x(i,m,n) if x(i,m,n) >0

v, . (m)= . 2.9
e (M) {O otherwise @9)

—x(i,m,n) if x(i,m,n) <0

Vin- (m) = {

0 otherwise

to identify functional agonists (+) and antagonists (-) in a given force field. The magnitude of each vector v
was normalized to 1. The vector values are shown in Table 3 for the null field and for field B1. Each
vector operator predicts, in the four-dimensional space of muscle activation, in what direction activation
should increase or decrease (at the peak of activity) to effectively make movements in a given field. To
give an example, consider a movement toward a target at 90°. In the null field (n = 0), the vector operator
Voo,0.+ predicts that to initiate an accurate movement, the triceps and anterior deltoid should be activated
above their baseline levels. Furthermore, if one considered the triceps and anterior deltoid activations to
form an (x, y) plane, the model predicts that the average activity over the agonist period would point in the
direction of the unit vector (0.859, 0.513). To move in the field B1 toward 90°, vy . predicts that biceps
and anterior deltoid should be activated more strongly than in the null field. Midway through the
movement (200 =300 msec into the movement), the unit vector pointing in the direction of the most

appropriate increase in activation would equal (0.869, 0.495).

2.2.7 Using model predictions to remap subjects’ EMG

I used the vector operators (Table 2.3) to remap EMG recorded from the four muscles into composite

traces, T
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T,.0)=¥,,. A®, (2.10)

where Ai =[A,,;(1),A,,;(),A,,;(),A,; ()] is a concatenation of EMG from the four muscles in a

movement toward direction i. For example, the composite trace T; . reveals, at each time point, the
projection of the four-dimensional EMG vector (one dimension for each muscle) onto the direction of
activation that performs work against the force field B1. Whereas the original EMG traces were strongly
direction-dependent, the composite traces reveal the direction-independent muscular activity that
compensates for a given field. The composite traces therefore can be compared and averaged across

directions to understand adaptation of neural output across the work space.

The transformation in Equation 2.10 remapped the full time series of EMG traces using the predicted
optimal activation over specific time intervals (the average over the agonist period for null field data, over
midmovement for the increase appropriate for field B1 ). These remappings retained the natural temporal
structure of the EMG traces for each muscle; the activation in each trace at each time point was weighed
equally. When the remapping of the increase appropriate for B1 was instead determined by predictions
during other time intervals, the direction of appropriate activation changed very little over the range from
50 msec before through 300 msec after the onset of movement (averaged across directions of movement,
change in unit vector direction <15°). The unit vectors v, , in Table 3, therefore, accurately reflect the

predicted direction of increased activity throughout the movement.

The composite trace T;; , summarized EMG activity that I estimated as effectively countering the forces of
field B1. This trace was averaged across directions and binned over 64 movements (three bins per target
set of 192 movements). The averaged and binned traces were then fit with fourth-order polynomials. Of
primary interest was the question of how this function evolved as subjects practiced in the force field. A
major component of this change was an apparent shift in the peak of the function. Bootstrapping

techniques (see below) were used to estimate 95% confidence intervals of timing of the peak.
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2.2.8 Wasted contraction: a measure of co-contraction

Previous studies have measured “co-contraction” through the addition of the EMG traces of opposing
muscles (Milner and Cloutier, 1993). If the activation of a single muscle increases, however, the sum of
activation of this muscle and its antagonist would increase. The co-contraction metric would then increase,
even though only one muscle’s activation increased. To avoid this ambiguity, I used a new measure termed
“wasted contraction,” which used the remapped composite traces to determine the amount of contraction
that is cancelled by the opposing groups and therefore does not lead to effective force production. For each
subject, I first remapped the (previously scaled) EMG of each movement into composite traces (Eq. 10).

At each sampling point, I then determined, in each agonist—-antagonist pair of composite traces, which trace
was smaller. Because this activation was cancelled by the larger, opposing activation, the time series of
this smaller activity was termed wasted contraction. This amount was then subtracted from the larger trace,
creating a time series of “effective contraction.” The wasted contractions were averaged across force
directions (n € 0, 1 from above), averaged across movement direction, and binned over 32 movements (six
bins per set). Each subject’s wasted contraction was then scaled by the maximum effective contraction
measured over bins in the null field and in B1. The wasted contraction traces were then averaged across
subjects. This average wasted contraction was fit with a fourth-order polynomial; the maximum of this
polynomial was calculated and compared during different stages of training. The 95% confidence intervals

for the change in maximum wasted contraction were calculated by bootstrapping (see below).

2.2.9 Calculation of force produced by the human controller

I also used the structure and parameters of the model of the human—robot interaction to estimate the amount
of force subjects create during movements. Using Equations 2.3 and 2.4 and using estimates of the human
and robot dynamical parameters, I transformed individual subjects’ hand position and velocity into
estimated torque produced by the subjects’ muscles (the acceleration terms in these equations were
estimated by filtering the velocity data through a second-order Savitsky—Golay [differentiating] filter). I
then multiplied this torque by J, ™, the transposed inverse of the subject’s hand Jacobian, to determine the
force produced at the hand attributable to joint torques. I remapped the forces produced in each direction of

movement into the components parallel and perpendicular to the target direction. I averaged across
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directions and across subjects, fit each force trace with a fourth-order polynomial, and determined the

timing of the maximum of each trace. Confidence intervals were determined by bootstrapping.

2.2.10 Bootstrapping

Confidence intervals for the rotation of EMG resultant vectors, the timing of the first peak of the B1-
appropriate EMG trace, and the maximum level of wasted contraction were determined by using
bootstrapping (Fisher, 1993; Welsh, 1996). The original pool of data from 24 subjects was resampled, with
replacement, 1000 times to create 1000 new sets of 24 data points (for rotation) or 24 time series (of EMG).
Each resampled set was averaged; for time series, each series was fitted with a fourth-order polynomial,
and then the first peak (for Bl-appropriate EMG and forces) or the maximum (for wasted contraction) was
calculated from this fit. The resulting set of 1000 statistics was sorted by rank; the 95% confidence interval

was determined by the 26th and 975th elements of this vector.

2.3 EMG correlates of learning: a single direction of movement

Let us initially consider movements made toward a single direction. When subjects made movements in
the null field at 135°, their EMG traces (Figure 2.3, gray lines) revealed that the anterior deltoid was active
early to initiate the movement, whereas triceps and posterior deltoid were active later to brake the
movement. Early in training in force field B1, when subjects attempted to make movements toward 135°
they generated inaccurate hand paths that diverged from the target direction (Figure 2.3, top trajectory).
Midway through a typical movement, the activity in biceps (Figure 2.3, thin black line) increased; the hand
path was then corrected toward the target. The timing of the increased biceps activation suggested that this
muscle was activated in response to the robot forces that extended the elbow during the reach. The
increased activation of biceps was possibly an error—feedback response mediated via a stretch reflex
mechanism. In contrast to these field-induced changes in the biceps, the time series of activations for
anterior and posterior deltoids in the force field closely resembled the activations recorded in these muscles

in the null field.

As subjects trained in field B1, the movements became straighter (Figure 2.3). The EMG from these

improved movements featured larger biceps activity very early, preceding the movement itself (Figure 2.3,
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Figure 2.3: Hand paths and EMG recorded during movements. Left, Hand paths of a typical subject
in her first (top) and last (bottom) movements toward a target at 135° in the force field B:. Dots are
at 10 msec intervals. The arrow indicates 250 msec into the movement. Remaining plots,
Normalized EMG in the null field (all 24 movements toward 135°, gray line), during initial stages
of training in the force field (first 8 movements toward 135°, thin black line), and late in training
in the force field (last 8 movements, thick black line). Movement begins at t = 0. Each EMG
trace represents data averaged across all 24 subjects. The vertical dotted lines delimit the 150
msec interval over which EMG is averaged to calculate the scalar variable a_, representing time-
averaged agonist burst EMG.

thick black line). The biceps then became less active later in the movement, during the same period in
which it was active when subjects first trained in B1. Therefore, a major component of the adaptation
process was a modification of the EMG patterns necessary to initiate the movement. To summarize the
changes in early EMG in movements toward 135°, I averaged EMG over the time interval from 50 msec
before to 100 msec after the onset of movement. This scalar measure of activation was termed a,,. Figure
2.4 shows the evolution of a,, as subjects moved in the null field and then trained in B1. The figure also
displays perpendicular displacement, a measure of movement error that is computed 250 msec into the
movement. These data show that as subjects trained in B1, the curvature (error) of movements became
significantly smaller (p < 5 x 10™), a,, in biceps significantly increased (p < 1 x 10*), and a,,, in triceps
significantly decreased (p < 0.002) compared with their null field activation. Neither anterior nor posterior
deltoid activation significantly changed with training in B1 (anterior, p > 0.15; posterior, p > 0.35). In
summary, the changes in EMG traces measured in movements toward 135° suggested that when subjects

were first exposed to B1, they generated additional muscle activations late in the movement to correct for

-4 -



biceps triceps

40
20 |{,H|/H
erpendicular displacement of ™ N—-
perp P o Nt gt
0.5 M -20
A O4mvms - mll Bl Bl Bl mll Bl Bl Bl
- [5)
g H ES| . . . .
© : = anterior deltoid posterior deltoid
; - 40
of H~|--H\| :
2
il BlI Bl Bl 20
0 H’}" ~.|_|/|~.‘—|/| g e e
-20
il Bl Bl  BI il Bl Bl  BI

Figure 2.4: Perpendicular displacement (top) and subjects’ a,, (time-averaged agonist burst EMG)
during movements toward 135°. Subjects completed one set of movements in the well learned null
field environment and then three sets in the force field B:. Perpendicular displacement is measured
250 msec into the movement, averaged across directions and subjects; these data reflect change from
average perpendicular displacement in null field movements. x-axis tick marks indicate breaks
between sets of movements. Each point includes data from eight movements (3 data points per set).
Error bars reflect 95% confidence intervals of the mean.

movement curvature. With further training, subjects learned to generate this added activation early in the

movement, predicting rather than responding to the force field.

2.4 EMG correlates of learning across all directions of movement

To quantify the correlation between changes in EMG and the formation of an internal model, I wanted to
extend analysis from a single direction to many directions of movement. This extension is hampered by the
fact that each muscle makes different contributions to movements in different directions. I circumvented
this obstacle by using the predictions of the simulated controller. I considered the time pattern of EMG in
the muscles for a given movement as a path in a four-dimensional space, each axis representing a muscle.
The model also predicted paths in this space: one path for moving in a null field and one for moving in a
force field. The difference between these two predicted paths indicated activity in that space which should
be increased, peaking midway through the movement, to move accurately in B1. In each movement
direction, the increased activity projected into a single component of muscle activity (Eq. 2.9, Table 3; see

Materials and Methods). The discovery of appropriate activations allowed us to project the EMG recorded

-25-



A B

Movements in null field

Movements in field B1

2 6
= —
: iz g g
b
2 < m -
= (5] o o
= 22 =15 <
° L = =
= "z £ 2 3
= 2= 10 =
= = 7 13
= 4&4 — o
= ) /M L
= 5 A
z -6 0
40
0 0.2 0.4 0.6 0 0.2 0.4 0.6

Movement time (s)

Figure 2.5: Subjects’ composite EMG traces (solid lines) and forces (dotted lines). A, Null field-
appropriate EMG and force in the direction parallel to the target, averaged over all subjects and all
movements in the initial null field set (192 movements). B, Bl-appropriate EMG trace and force
perpendicular to the direction of target, averaged over all subjects and over all movements during
the final set of training in force field B1. For the time series of EMG and force, maximum range of

95% confidence intervals of EMG and force were: null field-appropriate EMG, £5.3 units; parallel
force, £0.28 N; B1 -appropriate EMG, £6.2 units; perpendicular force, £0.13 N.

from each subject, during each movement in the field B1, into functionally appropriate composite traces

(Eq. 2.10).

We calculated the null field- and B1-appropriate EMG traces during the first null field set and the third set
in field B1, respectively. The resulting traces were averaged over all movement directions and all subjects
to arrive at a single trace. The results are shown in Figure 2.5 (solid lines). The lefthand plot (Figure 2.5A)
shows the average null field-appropriate EMG trace produced by subjects as they reached in the null field.
The peak of this trace was at 213.3 msec, i.e., before the start of the movement [95% confidence interval of
the mean (CIM), (217.5, 28.2) msec]. In comparison, the average force that was produced by the subjects

(Figure 2.5A, dotted line) had its peak 68.4 msec into the movement [95% CIM, (66.1, 70.6) msec].

The composite EMG trace shown in Figure 2.5A represents the component of activation appropriate for
moving the hand toward a target, i.e., the agonist burst of activity. A second composite EMG trace (data
not shown) produces force in the direction opposite the movement direction. This composite trace (defined
by vy in Table 3) peaked 231 msec into the movement [95% CIM, (222, 240) msec]. This peak of activity
generated the burst of force in the negative direction in Figure 2.5A, which reached a minimum (a
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maximum in the negative force direction) 316 msec into the movement [95% CIM, (313, 319) msec]. As
expected, the temporal profile of the force trace was essentially a delayed version of the transformed EMG

traces.

This close correspondence was maintained when I compared the B1-appropriate EMG with the pattern of
forces that subjects had produced perpendicular to the direction of target during the training. Figure 2.5B
shows the B1-appropriate EMG and the corresponding forces, both averaged across subjects during the last
set of training in the force field. With training, subjects had learned to alter their EMG early into the
movement [Figure 2.5B, peak of the solid line at 78 msec; 95% CIM, (67, 91) msec] so that the muscles
produced a bell-shaped force pattern perpendicular to the direction of the target, effectively canceling the

force field.

The relationship between the composite EMG traces and the subject-generated forces confirms the aptness
of the transformation of EMG into composite traces. The vector operators in Table 3, created from the
predicted activations of the biomechanical model, have elicited the components of EMG appropriate for
moving in the null field and resisting the additional force produced by field B1. I will now examine the
component appropriate for field B1 throughout the training in the force field, to determine how the neural

activation of the appropriate musculature evolves with learning.

Within subjects, we averaged the B1-appropriate EMG across directions and across bins of 64 movements
(three bins per set, nine bins spanning training in B1). The mean trace for each subject for each bin was
averaged across subjects. The resulting traces are shown in Figure 2.6. Because the imposed force field was
a function of hand velocity, and hand velocity was generally unimodal, we expected the EMG that
effectively countered this force to be also unimodal. Indeed, we found that the B1-appropriate EMG was
always unimodal (single-peaked). Furthermore, because of force in the negative direction in Figure 2.5A,
which reached a minimum (a maximum in the negative force direction) 316 msec into the movement [95%
CIM, (313, 319) msec]. As expected, the the response to the imposed force field could initially be only
through a delayed error feedback system (e.g., through spinal reflexes), we expected the initial B1-

appropriate EMG to lag the imposed forces. This was also observed.
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Figure 2.6: The composite EMG trace
appropriate for field B1 shifts with
training. Top: the binned and
averaged increase in the B1-
appropriate EMG trace. Each trace is
averaged over 64 movements and over
all 24 subjects. The progression of
plots from top to bottom show EMG
traces from early to late in training.
The dashed lines in the top and
bottom axes represent the magnitude
of the force created by the viscous
field B1, which remained consistent
throughout training in B1. While early
in training the peak of the field-
appropriate EMG lagged the imposed
force, with training it preceded the
imposed force. The timing of the peak
was estimated by a fit to a fourth
order polynomial. The best estimate of
the peak and its change with training
is marked by the line that crosses the
EMG traces from top to bottom. In
the bottom figure, the timing of the
peak of the EMG traces is plotted vs.
movement number. The dotted lines
connecting data points represent the 3
min breaks between sets. Error bars
reflect 95% confidence intervals of the
mean (across all 24 subjects), as
determined by bootstrapping. The
dotted horizontal line represents the
timing of the peak of the force created
by the force field.



With practice in the force field, the peak of the B1-appropriate EMG trace shifted to occur earlier into the
movement. To estimate the peak location of each EMG trace, the data were fitted to a fourth-order
polynomial. I found that when subjects started to train in B1, the peak of the B1-appropriate EMG
occurred 246 msec into the movement [95% CIM, (215, 274) msec]. This peak arrived 48 msec after the
peak of the force created by the force field B1; the peak of the robot-imposed force coincided with the peak
tangential velocity of the hand and on average occurred at 195 msec into the movement throughout training
in B1. By the end of the third set of training in B1, subjects had modified their motor commands such that
the peak of the B1-appropriate EMG occurred just 67 msec into the movement [95% CIM, (48, 86) msec;
in t test of time shift, p < 1 x 10™]. Therefore, when subjects first encountered B1, they activated the
appropriate muscles midway through the movement. The timing of this activation, coupled with the
marked curvature of these movements, suggested that subjects activated these muscles through an error—
driven feedback mechanism. With training in B1, subjects learned to activate appropriate muscles earlier in
the movement, in the period during which control was purely feedforward. The changes in timing of the
Bl-appropriate EMG activity revealed that subjects adapted their neuromotor output throughout all three
sets of movements (Figure 2.6, bottom). This measure was much more sensitive than the kinematic
measure of perpendicular displacement, which showed no learning during the second or third sets (compare

Figure 2.8).

With training, subjects generated B1-appropriate EMG earlier in the movement. During the 3 min break
between sets, however, the subjects partially unlearned this adaptation and began the next set with
activation of B1-appropriate muscles shifted later than at the end of the previous set (Figure 2.6, bottom).
In between the second and third sets of training in B1, this shift forward in time, i.e., the “forgetting,” was
significant (mean shift, 31 msec; p < 0.05). The shift of the B1-appropriate activation backward in time
during the second and third sets and forward in time during breaks between sets indicate that the timing of
this component of activation is a valid metric of learning that reveals more about the state of the adaptation

than do kinematic measures alone.
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2.5 Rotation of angular dependence of forces and EMG

2.5.1 Simulation results

These results suggested that subjects initially responded to B1 by generating appropriate EMG quite late in
the movement, perhaps because of an error—feedback mechanism, but with training they learned to activate
the same muscles earlier in the movement. This transition suggested that reactive responses early in
training effected proactive behavior late in training. I then focused attention on the subjects’ initial, purely
feedforward, responses to the task: how do humans generate movement-initiating muscle activations based
on the visual cue of a target, a desired end point of a movement? How does this neural computation,
mapping stimulus to motor neuronal activation, change with learning? To guide investigation of
feedforward muscle activation, I revisited the predicted forces generated by the ideal controller. I
summarized each muscle’s force production in both the null field and in B1 by averaging over the first 150
msec of the time series of force to create a scalar f,,. I used polar analysis (see Materials and Methods) to
visualize the angular dependence of f,, (Figure 2.7, top). I then calculated resultant vectors (radial vectors
in Figure 2.7, top), which indicate the directions of maximal force production and summarize the
dependence of force on the direction of movement. Because I predicted muscle activations using a linear
transformation of muscle force, the same polar analysis reveals the predicted directional bias of the muscle

activations.

The simulation results revealed that by learning to compensate for B1, the resultant vector of each muscle
should rotate by a specific amount (Figure 2.7, top). I found that the degree of rotation was similar over a
wide range of moment arm models (Table 1) and remained constant over all levels of co-contraction. (For
model C, the directions of the resultant vectors were biceps, -130.7° for null and -157.3° for B1 ; triceps,
49.3° and 22.7°; anterior deltoid, 150.0° and 136.3°; posterior deltoid, -29.6° and -43.2°.) In learning B1,
the simulation predicted that the resultant vectors should rotate clockwise by 26.6° for biceps and triceps
and 13-20° for anterior and posterior deltoid, depending on the moment arm model used (Table 1). These
observations suggested that humans might calculate a function mapping desired end point location to initial
alpha-motor neuronal output, and that when subjects learn to move in B1, the activation function rotates to

produce appropriate muscle forces to accurately initiate movements.
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Figure 2.7: Rotations in muscle-tuning curves as predicted from a computational model that
assumes adaptation of an IM and tuning curves as recorded from subjects’ EMG. Top, Movement-
initiating muscle forces as predicted by the model for movements in the null field (gray) and in B1
(black). Polar plots display predicted movement-initiating force (f,,) for each direction of movement.
The radii of the scale circles (centered at the origin of each plot) are 20 N. The thick vector represents
a tuning curve’s resultant vector (preferred direction). The model predicts that the resultant vector
should rotate between the null field and B1 .The bars below each plot reveal the rescaling of the data
(using Eq. 2.7 and the parameters in Table 2) into predicted muscle activations, in normalized units
(nu) of EMG. Bottom, Tuning functions representing subjects’ movement initiating EMG (a,,) during
training in null field (gray lines), early force field (¢hin black lines), and late force field (thick black
lines). Radii are resultant vectors (preferred directions). The error bars around individual data
points reflect 95% confidence intervals of the mean activation.

2.5.2 Rotation of angular dependence of EMG with training in B1

Armed with the result that the simulated controller’s muscle activation resultant vectors rotated between the
null field and B1, I analyzed the EMG generated at the beginning of movements in both the well-learned
null field and in B1. Just as in analysis of movements made toward 135°, I averaged each EMG trace over
the period from 50 msec before through 100 msec after the beginning of the movement to create the scalar
an,. Ithen averaged these scalars over bins of eight movements within directions and then averaged across
all subjects. I compared a,, generated at three stages of training: at the end of the set in the null field; at the
beginning of the first set of training in B1; and at the end of the third set of training in B1. The results are

shown in Figure 2.7, bottom row.
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Figure 2.8: Left, Perpendicular displacement of the hand 250 msec into the movement, averaged
across movement directions, during movements in null field and force field B1. Remaining plots,
Rotation of a,, resultant vectors during movements in force field B1 with respect to null field. Each
point contains data from 64 movements. Each point is mean and 95% confidence interval (across
subjects). Dotted lines represent 3 min breaks in training.

In the null field (Figure 2.7, gray lines), each muscle was strongly activated in certain “preferred”
directions and much less activated in the opposing directions. This directional bias to the activation
function was summarized by using polar analysis to construct a resultant vector for each muscle. The
resultant vectors pointed toward the direction (for biceps, 2130°; triceps, 50°; anterior deltoid, 127°;

posterior deltoid, 217°) of maximal activity presuming a sinusoidal fit of the data.

During the first 64 movements in field B1 (Figure 2.7, thin black lines), subjects began to generate
movement-initiating muscle activations that differed from those generated in the null field. The resultant
vectors of a,, rotated clockwise from the directions recorded in the null field. Through the end of training in
field B1 , the resultant vectors summarizing a,, continued to rotate in a clockwise direction (Fig. 2.7,
bottom). To quantify this adaptation across subjects, we began by determining the orientation of individual
subjects’ resultant vectors during null field and B1 training. We rotated each subject’s activation functions
so that the mean null field resultant vectors pointed toward 0°. We then calculated the mean and 95%
confidence intervals of the orientations of the a,, vectors during training in the null field and B1. The results

are shown in Figure 2.8.
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As subjects made reaching movements in the null field, the orientation of the EMG resultant vectors
remained constant, and the curvature of movements remained small. In the first bin of 64 movements in
B1, subjects’ movements were markedly curved, with mean perpendicular displacement, averaged across
directions, of 0.65 cm [Figure 2.8; 95% CIM, (0.55, 0.75) cm]. By the end of the third set of training,
subjects learned to make much straighter movements [mean perpendicular displacement, 20.03 cm; 95%
CIM, (20.13, 0.07) cm; in t test of curvature reduction, p < 1 x 10‘8]. The a,, resultant vectors revealed that
subjects began to adapt their initial muscle activations in the first 2 min of training. In the first bin of 64
movements in B1, the orientations of the vectors summarizing all four muscles had significantly rotated
from the average null field orientations (p < 0.002 for anterior deltoid; p < 1 x 10” for other muscles).
Although these movements were still markedly curved, subjects had begun to adapt their neuromotor

output.

As subjects continued to train in B1, the orientation of the a, resultant vectors continued to rotate farther
away from the null field orientation. By the end of the third set of training in B1, the final directions of the
a,, resultant vectors were significantly different from the orientations early in training in B1 (p < 0.05 for
anterior deltoid; p < 2 x 107 for other muscles). The magnitudes of rotation of the a, resultant vectors over
the three sets of training in B1 were -33.7° for biceps, -28.0° for triceps, -19.1° for anterior deltoid, and
-15.6° for posterior deltoid. These observed values were similar to the predictions made by the simulated
controller: within 7° for the flexors and within 2° for the extensors. This result demonstrates a technique
whereby a computational model predicts the change that should occur in the activations of muscles if the
brain is learning an internal model specific to a force field. The results show that the evolution of the

changes in muscle activations early into the movement are reasonably close to the model’s predictions.

2.6 Activation function rotation is specific to the force field

I have suggested that subjects learned to rotate their initial muscle activations to accurately reach in the
novel force field B1. An alternate interpretation of the above data would be that the observed rotation was
a function of either an increased familiarity with the task itself, regardless of the force field, or that the
observed changes were a function of fatigue. To test these alternate hypotheses, I presented one group of

eight subjects with the null field after having just completed B1 training. When subjects were returned to
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Figure 2.9: Perpendicular displacement of the hand and rotation of a,, resultant vectors in subjects
who, after training in B1 , trained in the null field 3 min later. Each point contains data from 64
movements. The first three data points are from the third set of movements in B1 . Error bars reflect
95% confidence intervals of the mean (across subjects).

the null field (Figure 2.9), their hand trajectories were initially curved, in the direction opposite the error
initially generated in B1 [mean perpendicular displacement, 20.57 cm; 95% CIM, (20.71, 20.43)]; this
curvature reveals aftereffects lasting minutes after training in B1. After two sets (350 movements) of
training, however, the trajectories again resembled the straight movements made in that day’s first null field

set [mean perpendicular displacement, 0.02 cm; 95% CIM, (-0.04, 0.08)].

As subjects made straighter movements, they generated movement-initiating muscle activations that
reverted back to their original dependence on the direction of the target. Over the last two sets of training
in the null field, the orientation of the a,, resultant vectors all rotated counterclockwise, back to the initial
null field directions [amount of rotation: mean (95% CIM) of the amount of rotation: biceps, 26.8° (14.2°,

40.6°); triceps, 23.6° (16.8°, 29.3°); anterior deltoid, 12.3° (4.7°, 19.1°); posterior deltoid, 17.7° (15.1°,
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20.4°); for all four muscles, p < 0.002]. The average resultant vectors in the last set of movements pointed
in directions statistically indistinguishable from the vectors summarizing the a,,, generated in the day’s first

null field set (for all four muscles, p > 0.35).

The return of the orientation of the a,, resultant vectors to the original direction indicated that the rotation
observed when subjects learned B1 was not attributable to an increasing familiarity with the general task or

to fatigue but reflected a force field-specific change in the neural command sent to the muscles.

2.7 Activation function rotation during training in B2

I have suggested that the subjects may have learned to make movements in B1 by rotating the function
mapping desired end point to early muscle activation. To determine whether a different rotation of this
activation function could underlie learning of other dynamic environments, we trained two groups of eight
subjects each in B2, a force field anticorrelated to B1. One group of eight subjects completed two sets in B2
3 min after the three sets in B1; the other group of eight subjects took a 6 hr break between the two force
fields. Previous work (Brashers-Krug, Shadmehr, and Bizzi, 1996) hasindicated that at 3
min, but not at 6 hr, learning field B1 interferes with subjects’ ability to learn the anti-correlated B2. In
each of the subjects in these groups, we measured the a,, generated for each movement, binned the data
across eight movements, and constructed resultant vectors. We then determined the orientation of these

vectors compared with each subject’s initial null field orientation.

The 6 hr group had their electrodes removed after the first training session and reapplied for the second
training session. Because the preferred direction of EMG is independent of the total signal strength, the

resultant vector orientations calculated from the two sessions are directly comparable.

In the first 64 movements in B2, both groups of subjects made markedly curved movements [Figure 2.10;
across both groups, mean of perpendicular displacement, -1.64 cm; 95% CIM, (-1.45, -1.84) cm]. After
two sets of training, both groups of subjects made much straighter movements [mean, -0.23 cm, 95% CIM,
(-0.12, -0.34) cm]. The 3 min group, however, generated movements that were more curved than did the 6

hr group. A two-way ANOVA (two groups 3 six bins) revealed that the group factor is significant (F(; g4) =
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Figure 2.10: Perpendicular displacement and rotation of a,, resultant vectors in subjects who, after
training in B1, trained in B2 3 min (0) or 6 hr (e) later. Each point contains data from 64 movements.
Error bars reflect 95% confidence intervals of the mean (across subjects). The first three data points
are from the third set of movements in B1.

40.82; p< 1 x 10™) and that in all but the last bin of movements, the larger amount of curvature in the 3
min group is significant (p < 0.05, Tukey test). The 3 min group initially had more difficulty than the 6 hr
group in making accurate movements; this difference remained statistically significant through 10 min of

training in B2.

As both groups of subjects reduced the curvature of their movements, subjects rotated their activation
functions back to and beyond the orientations appropriate for the null field. By the second set of training in
B2, all four a,, resultant vectors pointed in directions that were rotated clockwise from the activity
appropriate for B1 ; three of the four vectors pointed in directions significantly more clockwise than the
directions appropriate for the null field [orientation of a,, vectors in the second set of B2, mean (95% CIM):
biceps, 11.8° (6.2°, 17.3°);p< 1x 104 triceps, 16.9° (11.4°,22.2°);p<1x 10™; anterior deltoid, 4.1°
(-9.9°, 16.3°); p < 0.5; posterior deltoid, 22.2° (17.3°, 26.8°); p< 1 x 10‘4].
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Although both groups produced muscle activations that rotated from the null field activity, the initial
responses of the 3 min group were less adapted to B2 than were the initial responses of the 6 hr group. The
orientations of the a,, resultant vectors were compared over the three bins spanning the first set of training
in B2 (Figure 2.10, open circles represent the 3 min group a,, filled circles represent the 6 hr group a,,). 1
performed a two-way ANOVA (two groups x three bins) on the a,, vector orientations of biceps, triceps,
and posterior deltoid. The orientations of the a,, vectors of the 3 min group had rotated significantly less
than did the 6 hr group (for biceps, F(; 42y = 5.3; p < 0.03; for triceps and posterior deltoid, F; 4)=5.2; p <

0.03).

In the second set of training in B2 (i.e., after 192 movements), the 3 min group continued to lag behind the
6 hr group in their adaptation of their activation of their posterior deltoid. A second round of two-way
ANOVA on the a,, resultant vectors revealed that the posterior deltoid activation of the 3 min group was
significantly closer to the orientation of the null field activation (F; 4, = 11.25; p <0.002). By the second
set of training in B2, the two groups had begun to generate activations of biceps and triceps whose resultant
vectors pointed in similar directions (for biceps, F; 42, = 0.02; for triceps, F; 42y = 0.43; for both, p > 0.5).
Although both groups learned equally well how to appropriately control the biceps and triceps, subjects in

the 3 min group continued to have added difficulty controlling their posterior deltoid appropriately.

Even though the two groups train the same amount in both force fields, the subjects with 3 min separating
the two fields had more difficulty generating muscle activations appropriate to B2. The lagging of the 3
min group suggests that the counterclockwise rotation of the activation function, that is, the internal model

appropriate for B1, had lingered in these subjects and had hampered their ability to adapt to B2.

2.8 Anterior deltoid activation functions in the null field, B1, and B2

Compared with each group’s orientation in the null field, the 3 min and the 6 hr groups have different
rotations of their anterior deltoid activation functions in the last set of training in B1 (Figure 2.10). The
difference between the two groups stems not from differing orientations in B1 but from differing initial
orientations of anterior deltoid activation functions during the null field (Figure 2.11). Across the 24

subjects in all three groups, the variability of individual subject’s activation function orientation in the null
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Figure 2.11: Orientations of anterior deltoid resultant vectors during training in the null field, B1 ,
and B2 . Whereas the previous Figures 2.8 through 2.10 represent the rotation of a,, resultant vectors
with respect to null field orientations, this figure represents the actual orientation during each stage

of training. The symbols indicate the mean orientations in subjects who had a 3 min (0)or 6 hr (e)
separation between Bl and B2 . Error bars reflect 95% confidence intervals of the mean (across
subjects).

field was almost three times larger for anterior than for posterior deltoid (size of 95% confidence intervals
of the mean: biceps, 15.0°; triceps, 14.3°; anterior deltoid, 18.7°; posterior deltoid, 6.4°). Although the two
groups of subjects had the same amount of training in the null field, the two groups generated anterior
deltoid effective fields that pointed in different directions (3 min group mean, 113.7°; 6 hr group mean,
133.8°; in two-way ANOVA, two groups x three bins of movements in null field set, F; 42, = 6.69; p <
0.02). The differences in activations led to different movement profiles in the null field (in comparing
mean perpendicular velocity traces in movements made toward 135° and 180°, mean correlation between
groups, r = 0.04). Once the two groups were well trained in B1, the anterior deltoid activation functions
then pointed in similar directions (3 min group mean, 96.9°; 6 hr group mean, 100.0°; F(; 45, = 0.04; p >
0.8), and the movement profiles of the two groups converged (135° and 180° perpendicular velocity

correlation between groups, r = 0.87).

When the two groups trained in their first sets of movements in B2, the mean of the orientations of the 3
min group’s anterior deltoid activation functions rotated less toward the counterclockwise direction than
did the activation functions of the 6 hr group, but the difference between the groups is marginally

significant (3 min group mean, 104.8°; 6 hr group mean, 125.4°; F; 45y = 4.02; p < 0.055). These results
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suggest that despite the high subject-to-subject variation in anterior deltoid activation function orientation
in the null field, the actual orientations of the anterior deltoid activation functions remained a good measure

of internal model building during the learning of novel dynamics.

2.9 Reduction of wasted contraction during practice in null field and in B1

It has been shown that as subjects learn to move their wrist against novel forces, they decrease the
coincident activation of flexors and extensors, thereby decreasing the stiffness of the joint (Milner and
Cloutier, 1993). To quantify how co-contraction of muscles changed during learning of multijoint reaching
movements, I defined a measure of wasted contraction. I partitioned subjects’ EMG into composite traces
using the simulation’s predictions of appropriate muscle activations in the null field and field B1 (Table 3).
For each movement, I used these coefficients to partition the four muscle traces into four direction-
independent composite traces. Among these four composite traces, two pairs of traces produced forces that
opposed each other. In each opposing pair, at each moment in time, the weaker of the two composite
activations was cancelled by the stronger. I compared these activations to determine, in each movement,
time series of wasted contraction and effective contraction. The level of wasted contraction decreased with
practice, both during training in the null field and during learning of B1 (Figure 2.12). I averaged the time
series of wasted and effective contractions in each subject across bins of 32 movements, scaled the wasted
contraction as a percentage of maximum effective contraction, and then averaged these scaled wasted
contractions across subjects. The peak of wasted contraction occurred ~200 msec into the movement for all
bins spanning both fields. The magnitude of the peak of wasted contraction was reduced by one-third over
the course of a training set in both the null field (from 43 to 29%; p < 0.005) and the first set in B1 (from 54
to 35%; p < 0.005). Subjects did not decrease their wasted contraction over training in the second or third

sets in B1 (p > 0.5).

During training in the null field, subjects also decreased their wasted contraction generated during the
beginning of the movement, the interval over which the a,, above was calculated (average level in first bin
of null, 24.5%; in last bin of null, 18.3%; p < 0.03). The mean level of early wasted contraction also
changed in the first set of B1 but not significantly (p > 0.2). Whether the robot produced a viscous force
field, the maximum levels of wasted contraction occurred consistently at the midway point of the
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Figure 2.12: Wasted contraction during movements in null field and B1. These plots show the
wasted contraction (as a percent of effective contraction), averaged across subjects, as a function of
time into each movement. Each line represents a bin of 32 movements. The leftmost plot contains
traces from null field movements; the next three plots contain traces from the three sets of training in
B1 .The numbers inside the plot label the wasted contraction from the first, second, and third bins of
movements in each set.

movement. Subjects reduced their peak wasted contraction when they first learned the novel force field
B1, but also, previously, when they again familiarized themselves with the well learned null field. This
suggested that subjects may use wasted contraction to increase stiffness both when first regaining

familiarity moving in previously learned environments and when first learning novel environments.

2.10 Discussion

Subjects learned to reach in a novel viscous force field. The convergence of movements onto previous
(desired) trajectories, and the existence of aftereffects when learned forces are removed, have suggested
that the adaptation of an internal model underlies this learning (Shadmehr and Mussa-Ivaldi, 1994;
Shadmehr and Brashers-Krug, 1997). The internal model hypothesis posits that the CNS effectively
computes inverse dynamics, transforming desired trajectories into appropriate muscle activations. Here |
used a simulation to predict that formation of the IM should accompany specific rotations in the directional
bias of muscle activation functions. I found that the actual rotation of subjects’ spatial EMG tuning curves

closely matched the predictions. The simulation also allowed us to estimate the component of muscle
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activation functions that produced a force that countered those in the force field. Using this transformation,
I found that early in training EMG changes were driven primarily by a delayed error—feedback response.

This feedback response may have formed the template for the eventual learned feedforward response.

In generating reaching movements, the CNS combines two elements of control: feedforward elements,
which generate neural commands based on information available before the movement (e.g., desired
trajectory); and feedback elements, which generate neural commands based on delayed visual and
proprioceptive signals received during the movement. In recent computational models (Jordan, 1995;
Miall, 1995; Bhushan and Shadmehr, 1999), it is assumed that feedback control provides an estimate of
error, i.e., the disagreement between the actual and expected (or desired) sensory signals, and generates a
delayed motor response that attempts to correct that error. Here I found that when subjects first moved in
the field, their field-appropriate EMG was generated quite late in the movement, after the movement had
significantly diverged from the desired trajectory. The timing of this activation relative to the perturbing
force suggested that the EMG was generated by error-driven feedback control. During training, the shape
of this field-appropriate EMG remained essentially invariant, but its peak gradually shifted earlier and
earlier into the movement. The temporal shift culminated in a modification of the EMG pattern very early
into the movement, before proprioceptive or visual information was available. This modified EMG pattern
effectively predicted and canceled the upcoming pattern of imposed forces. Therefore, improvements in
performance occurred as the CNS gradually incorporated the error—feedback response of the system into

the feedforward command that initiated the movement.

Previous computational studies (Kawato et al., 1987; Stroeve, 1997) have shown that the motor response
generated by an error—feedback system may be used to learn inverse dynamics of reaching movements.
These studies suggested that a copy of the error—feedback response may be sent to the brain and then used
to train the IM in a supervised learning paradigm. The results support this general framework by showing
that learning may entail an incorporation of the error—feedback response into the feedforward commands

through a gradual temporal shifting process.
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Using this computational approach, I initially predicted the shape of the directionally tuned muscle
activation functions for null field movements, with no external perturbing forces. I found that the predicted
functions closely matched the measured EMG functions for the four muscles examined (Figure 2.7). 1
summarized the directional bias of EMG functions by calculating the orientation of these functions’
resultant vectors (preferred directions). The resultant vectors remained stable as well-trained subjects
performed reaching movements in the null field. However, as training began in a force field, the preferred
direction of each muscle’s EMG function began to rotate and eventually reached an asymptote. The
internal model theory had predicted a specific rotation in each muscle’s EMG function; that prediction was
confirmed. The preferred directions returned to initial conditions when the force field was removed and
reversed their direction of rotation when the direction of imposed forces was reversed. These results,
therefore, signified an experience-dependent adaptation of the IM. These methods linked the
computational concept of learning an internal model with changes in the directional tuning of muscle
activation functions. After training in field B1, some subjects trained in the anticorrelated force field B2
either 3 min or 6 hr later. I had reported before that the 3 min group has much more difficulty in both their
initial response and eventual adaptation to the second field (Brashers-Krug et al., 1996; Shadmehr and
Brashers-Krug, 1997). Here I found that in field B2, not only are the movements made by the 3 min group
more disturbed than the 6 hr group, but the preferred directions of biceps, triceps, and posterior deltoid are
oriented in directions more appropriate for B1 (less appropriate for B2 ) than the 6 hr group. The lingering
rotations of the preferred directions provide physiological evidence that, 3 min after training, the internal
model appropriate for the field just learned is still active and biasing the subjects’ ability to learn the second
force field. After 6 hr have passed, the internal model no longer lingers, and subjects can learn the newest
dynamics with relative ease. The results also demonstrate the robustness of the methodology in that I could
compare changes in muscle activation functions despite removal and reapplication of surface electrodes in

the 6 hr group.

Previous studies that have recorded EMG changes during motor learning have focused on single-joint
movements and have reported increases or decreases in the magnitudes of EMG traces to demonstrate
changes in neural output (Corcos et al., 1993; Gottlieb, 1994, 1996). Quantitative comparisons of these

changes in magnitude with the concept of learning of an internal model are difficult because of the intrinsic
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variability in the strength of the signal and the difficulty in relating the absolute magnitude of EMG and
generation of force. In contrast, the methods used here focus on the directional and temporal nature of the
data for multijoint movements. The directional bias and the timing of the muscle activations are
independent of the overall signal strength; this independence facilitates the analysis of adaptation across

subjects and the quantitative comparison of EMG and computational models.

The orientation of muscle activation functions are reminiscent of the preferred direction of primary motor
cortical neurons (Georgopoulos et al., 1982, 1986) in that both summarize the dependence of neuronal
activity on the direction of movement. In the motor cortex, the preferred direction of some cells changes
when movements are made in different postures (Sergio and Kalaska, 1997; Scott and Kalaska, 1997). A
recent study has shown that the rotation of preferred direction of some cells was similar to the rotation of
the directional bias of muscle activation functions (Sergio and Kalaska, 1997). Therefore, the rotation in
the muscle activation functions that occurs with learning of an internal model might echo a similar change
in the preferred direction of certain cortical cells. Indeed, preliminary results (Benda et al., 1997; Li et al.,
1998) suggest that the tuning of select cells in a monkey’s primary motor cortex rotates when the animal
learns a force field similar to the one used here. Previous work has also shown that in making single-joint
movements, subjects tend to reduce the level of co-contraction of flexors and extensors as they learn to
move a novel load (Milner and Cloutier, 1993). Here I quantified co-contraction because subjects could
respond to novel dynamics by simply stiffening the limb through co-contraction, rendering the arm less
vulnerable to perturbations (Hogan, 1984). Therefore, one might predict that during learning of a novel
task, co-activation levels should start high but decline as the internal model is acquired. Here I found that
co-contraction levels (termed wasted contraction to denote the EMG that was directly cancelled by
opposing activation) did significantly increase from null field to when subjects were initially exposed to the
force field. With learning in the force field, the co-contraction levels declined rapidly during the initial 96
movements but remained stable with further training. The same reduction in wasted contraction, however,
was also observed when subjects moved in that day’s first set in the null field, a well-learned dynamic
environment. These results suggest that the CNS increases the limb’s stiffness to reduce the effect of
“unmodeled dynamics” early in the learning process and reduces limb stiffness as dynamics are learned.

The increased wasted contraction in the null field extends this idea to well learned dynamics; higher
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stiffness may facilitate the recollection of an internal model that is appropriate but stored in long-term

memory.

Linking IM formation to rotation of the muscle-tuning functions raises two interesting possibilities
regarding the computational organization of the internal model. First, I had previously reported that
learning of a force field at a given arm configuration resulted in generalization at a new arm configuration
(Shadmehr and Mussa-Ivaldi, 1994). Because learning a field at a given arm configuration results in a
rotation of the muscle-tuning functions, it is possible that the magnitude of rotation is conserved when the
arm must make movements at a new configuration. This would result in generalization of the force field in
joint coordinates. Second, I have observed that certain force fields are much easier to learn than others.
Because learning of each field is coupled to a specific rotation in the muscle-tuning functions, it is possible
that the degree of difficulty in learning a field relates to how much each tuning function needs to rotate to
represent that field. Further research is needed to examine whether the link between internal models and

muscle tuning functions can be used to understand representation of IMs by the CNS.
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Chapter 3 Precurvature and cost minimization

3.1 Introduction

A fundamental assumption of many current theories of human motor learning is that subjects move in both
perturbed and unperturbed environments using the same desired trajectories. In their seminal paper in
1994, Shadmehr and Mussa-Ivaldi quantified the learning of the viscous force field by how well
movements made in the force field correlated with movements made in the initial unperturbed null field.
This comparison explicitly depends on the assumption that subjects intend to move in the same trajectories
in the force field as they did in the null field. Other investigators (including this one, earlier in this thesis)
measure other movement parameters, such as movement length, magnitude of curvature ‘Goodbody and
Wolpert, 1998), or area of curvature (Sainberg et al, 1999), and implicitly assume that the goal of learning

is to replicate the null field behavior as quantified by these metrics.

This assumption could be validated by the veracity of the minimum jerk hypothesis. To generate a
reaching movement, humans must first transform initial and desired final states into a full trajectory
(Hildreth and Hollerbach, 1987; Wolpert, 1997). The initial and final states cover relatively few degrees of
freedom, describable by two simple state vectors. The full hand trajectory, however, needs to be described
throughout the movement, requiring state vectors to be represented at many points in time. To make the
transition from the low- to the high-dimensional state, some theories posit that humans strive to minimize
some cost functional throughout the movement. One of these theories, the minimum jerk hypothesis
(Hogan, 1984; Flash and Hogan, 1985), propounds that people generate movements in an effort to be
maximally smooth in hand coordinates. A maximally smooth movement minimizes the third derivative of
hand position, called jerk. In order to produce a maximally smooth movement, humans would need to

produce movements that minimize the cost function
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This cost function depends solely on the kinematic features of movement, and solely on the extrinsic
manifestation of the motor output. Changes in dynamic task demands, therefore, should not alter desired

trajectories if minimizing jerk fully informs movement planning.

A competing hypothesis suggests that instead of generating maximally smooth hand trajectories, the CNS
produces movements which generate maximally smooth time series of joint torque. The minimum torque
change hypothesis (Uno et al, 1989), like the minimum jerk hypothesis, argues that people map boundary
conditions into full trajectories by minimizing a cost function. This cost function, however, integrates the

time derivative of torque made throughout the movement:
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While minimum jerk trajectories can be analytically produced from start and end points and movement

time, minimum torque change trajectories can only be determined numerically (Jordan, 1995).

The typical kinematic features of short, point-to-point movements can be reasonably well explained by both
the minimum jerk and the minimum torque change hypotheses. Free movements in space tend to be gently
curved and smooth in position, and symmetric and bell-shaped in velocity (Atkeson and Hollerbach, 1985).
Both minimum jerk (Flash, 1987) and minimum torque change (Uno et al, 1989) optimizations produce
symmetric, bell-shaped velocity profiles and smooth movements. The minimum torque change hypothesis
posits that the gentle curvature in movements stems from the inherently curved desired trajectories that
result from minimizing an intrinsic (angular) cost (Osu et al, 1997). Minimum jerk movements are
maximally straight, so any curvature in movements would at first seem to indicate that subjects do not
minimize jerk. The hypothesis could still hold, however, if people misperceive their gently curved
movements to be straight. A quantification of subject’s perception of their own movements indeed
indicated that people perceived their curved movements to be straight (Wolpert et al, 1994). Since both
hypotheses explain short point-to-point movements well, the behavior of humans in other tasks needed to

be measured in order to differentiate between jerk and torque change minimization.

- 46 -



Human performance in movements along long trajectories, through intermediate points, and around
obstacles has suggested that dynamic information influences trajectory formation. In the original
formulation of the minimum torque change hypothesis, Uno et al (1989) examined subjects who made 30 to
40 cm long movements in non-horizontal planes. These movements were markedly curved, as were more
complex movements made through via points. A simulated controller that generated movements which
minimized torque change predicted these curvatures well. In a separate group of experiments (Sabes and
Jordan, 1997; Sabes et al, 1998) subjects were trained to avoid virtually projected obstacles. The handpaths
of subjects changed with the angular orientation of start and end points, suggesting that subjects incorporate
inertial properties of their arm into movement planning in order to steer clearly away from the obstacle.
Differing task specifications seems to change the amount of curvature in movements (Desmurget et al,
1998), perhaps indicating that subjects attempt to optimize torque or some other intrinsic variable when

planning movements.

The results of studies in which visual information is altered, however, indicate subjects likely optimize
kinematic variables when planning movements. Subjects were trained to move their hands while a cursor
represented hand position. Subjects were provided either full visual feedback which was perturbed to
display fictitious curvature (Wolpert et al, 1995b; Goodbody and Wolpert, 1999), or visual feedback only at
the end of the movement which exaggerated end point error (Ghahramani et al, 1996; Vetter et al, 1999).
When straight movements were displayed to be curved, subjects adjusted their movements to appear
straight, therefore producing trajectories that were actually curved. When end point visual perturbations
were localized, adapted performance generalized in a pattern resembling a spherical eye-centered
coordinate system (Vetter et al, 1999), further indicating the importance of visual information. The
conservation of visually measured kinematic movement features implies that kinematics are relatively more
important in movement planning than dynamics. The examination of subjects who learn with consistent
kinematics but varying dynamics could provide important supplementary information: just how much

dynamic cost will humans incur to conserve kinematics?

A third optimization hypothesis posits that subjects generate desired trajectories to minimize the variance

of the movement endpoint (Harris and Wolpert, 1998). The simulation of Harris and Wolpert postulates
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that neural commands to muscles are noisy, with variance that increases with the mean signal. Humans
might then vary the intended trajectories in order to minimize the effect of the neural noise on the accuracy
of movement. Although the minimum variance hypothesis was tested mainly on movements of the eye and
a single arm joint, this optimization does generate bell-shaped velocities and appropriately gently curved

handpaths.

These previous studies weigh the relative importance of jerk, torque change, and endpoint variance by
measuring the curvature of movement, then comparing curvature to simulated trajectories that minimize
kinematic, dynamic, or precision cost. The resemblance of actual performance to hypothetical ideals does
provide inferences and circumstantial evidence regarding the importance of jerk and torque change. The
absolute minimization of one cost, however, may produce unacceptable penalties in other costs. Myopia on
one specific cost may ignore movement plans that satisfy reasonable cost limits in jerk, torque change, and
variance. A more direct test of these hypotheses would be to calculate the jerk and torque change costs
actually incurred during movement, along with the endpoint variance associated with actual trajectories. A
calculation of the costs accrued during movement, and the reduction of these costs with learning, would
directly quantify the relative importance of optimizing smooth kinematics, smooth dynamics, or endpoint

accuracy.

Here I examined the kinematics and dynamics of movements made by subjects who train in the viscous
force field. I found in asymptotic performance, subjects produced trajectories that differed slightly but
significantly from trajectories produced in the null field. I then calculated the hypothetical trajectories that
would minimize torque change in the viscous force field. Whereas minimum jerk and minimum torque
change trajectories are similar for many natural movements, jerk and torque change minimization predict
sharply different trajectories in the force field. The slight change in actual subjects’ movements in the
force field agrees with the direction, but not the magnitude, of the gross curvature in minimum torque
change movements. Lastly I estimated how neural noise-induced endpoint variances, cumulative

normalized jerk, and cumulative normalized torque change costs accrued changed with training.
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Figure 3.1: Mean parallel and perpendicular displacements in all eight directions of movement,
averaged over the initial null field set (dots), the first bin of eight movements in B1 (gray), and the
last three bins of eight movements in B1 (black lines). Subplot headings indicate the direction of
movement; the subplot located 90 degrees from the center, for instance, displays mean trajectories of
movements toward the target at 90 degrees. These data are plotted as rotated versions of Cartesian
x- and y-position. I use the sign convention that positive perpendicular displacement reflects
curvature induced by the force field, which is the reverse of the natural abscissa. Note, therefore,
that these abscissae have negative values atop positive values.

3.2 Asymptotic behavior in null and viscous force fields

To investigate the accuracy of the assumption that subjects move in the null and force fields with the same
desired trajectories, at first I simply looked at the trajectories that constant force field subjects generated in
the null and force fields. Within directions, the null trajectories were averaged across the initial null field

set (the first set of training on Day 2); the force field movements were averaged across eight movement
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bins. Irotated each hand path from the original x and y coordinates into parallel and perpendicular

displacement.

In each direction of movement, the mean null field trajectories trace a path toward the target that deviates
from the straight line path by a few millimeters (Figure 3.1, dots). Although this curvature is small, the
difference from the straight path is significant in most directions of movement (more details of this
curvature will be provided below). When subjects first moved in the novel viscous force field, movements
were strongly curved (Figure 3.1, gray lines). All of these curvatures pointed in the clockwise direction, as
the force field pushes subjects perpendicular to velocity in the clockwise direction. As subjects trained in
the field, movements did get substantially straighter. In movements toward 90 degrees, the mean trajectory
late in training deviated from the straight line path by a maximum of less than 0.5 cm, whereas the first bin

of movements had a peak deviation of almost 2 cm.

The reduction of the curvature induced by the force field, however, was coincident with a small but
significant increase in curvature in the opposite direction. In all directions of movement, as a function of
training, the handpaths early in movements late in training (Figure 3.1, black lines) curved away from the
straight line path in the clockwise direction. This early curvature deviates not just from the straight line
path, but also from the null field trajectories. In some directions, this additional curvature appeared as early
as the second bin of movements, three to four minutes after the start of training. The “precurvature” of the
mean trajectories deviated from the null field trajectories by only a few millimeters in each direction. This
small deviation, however, clearly separates asymptotic behavior in the force field from asymptotic behavior
in the null field (Figure 3.2). If one presumes that subjects converge upon desired behaviors, these small

precurvatures indicate a change in desired trajectories with a change in dynamics.

Earlier in this work I characterized the erroneous curvature of movements, induced by unmodeled robot
dynamics, with the metric of perpendicular displacement 250 msec into the movement. The possible
precurvature of constant force field subjects, however, seems to occur very early in the movement; by 250
msec, trajectories seem to be heading back to (perhaps even crossing) the straight line connecting

movement start and target. The perpendicular displacements of the constant force field subjects were
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Figure 3.2: Trajectories averaged across directions. The thick ribbon represents the mean
trajectory in the null field set, averaged across all directions, movements, and subjects. Thin ribbons
represent averages over bins of eight movements in each direction, then averaged over directions and
subjects. Progressing from the front (black) to the back (white) signifies the progression of training
in B1.

therefore measured at 150 msec to test whether the precurvature of the group mean trajectory was

discernable in individual subjects.

In certain directions of movement, there was a clear precurvature of individual subjects’ movements late in
training in the force field (Figure 3.3). In two directions of movement, toward 180 and 225 degrees,
although the mean perpendicular displacement was more clockwise than null field trajectories, the 95%

confidence intervals of the means overlapped. In the other six directions, however, the magnitude of

-51-



Perpendicular displacement at 150 msec (cm)

Figure 3.3: Perpendicular displacement 150 msec into the movement for null field (n) and force field
(B1) movements. Each data point in the force field represents the mean over an eight-movement bin.
Error bars represent 95% confidence intervals of the mean.

curvature is significantly larger at the end of force field training than during the null field set. The center
plot, showing the mean behavior across all directions, shows the clearest separation between the confidence
intervals of the mean. On average, in the third set of training, the magnitude of this precurvature 150 msec
into the movement is 1.3 mm (p < le-5). The perpendicular displacements early in the movement, then,
indicate a small but significant difference between asymptotic behavior in the force field and in the null

field.
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3.3 Calculation of minimum torque change trajectories

The significant precurvature suggests that the desired trajectory of these subjects is slightly different late in
force field training than it was in the null field. The minimum jerk hypothesis demands that movements are
planned in an attempt to minimize a purely kinematic cost function. Since the kinematic feedback of the
task remains constant throughout training, significant precurvature indicates that subjects cannot generate
movements based on kinematic information alone. Although the kinematics of the task stays constant, the
addition of the force field grossly alters the dynamics of the task. The torque change cost function, then,
could be minimized by different hand trajectories in the null field and in the force field. A potential
motivation behind precurvature, therefore, could be an attempt to minimize some combination of the

kinematic cost function of squared jerk and the dynamic cost function of squared torque change.

To investigate this possibility, I utilized the biomechanical controller in order to calculate trajectories that
minimized mean squared torque change. To calculate the minimum torque change trajectory, in each
direction of movement, I first parameterized hand trajectories using five floating knots spaced equally in
time throughout the movement (as in Harris and Wolpert, 1998). The knots specified the position, velocity,
and acceleration of the hand in Cartesian coordinates. The full vector time series of hand trajectory was
therefore parameterized by a 30-element vector (2 dimensions x 3 state variables x 5 knot locations). The
start and end of the movement (set at 600 msec) served as two fixed knots. The full time series of position,
velocity, and acceleration was then specified by six quintics in time, each satisfying the boundary
conditions imposed by each knot. I then used the biomechanical model to determine the dynamics of the
quintic spline trajectory. The dynamic demands of the trajectory finally specified what torques the
anthropomorphic controller would need to exert to produce the trajectory. The numerical minimization
therefore consisted of varying the trajectory, as parameterized by the floating knots, in order to minimize

the cumulative squared torque change.

The parallel velocities of movements of minimum jerk, minimum torque change in the null field, and
minimum torque change in the force field are all similar (Figure 3.4). The minimum jerk velocity profile in
each direction displays the prototypical bell shape, reflecting the analytical fourth-order polynomial relation
between time and speed. The minimum jerk bells are perfectly symmetric about the central time point of
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Figure 3.4: Parallel velocities of minimum jerk (gray lines) and minimum torque change movements
in the null field (thin black lines) and in B1 (thick black lines).

the movement. The parallel velocity profile minimizing jerk in the null field has a slightly faster rise and

fall of velocity, coupled with a slightly broader peak. Since torque has components dependent on velocity

and acceleration, one would expect a minimum torque change trajectory to have some aspects of minimum

acceleration movement profiles combined with minimum jerk. The minimum acceleration velocity profile

rises very quickly and is very broad and flat midway through the movement. The minimum torque velocity

profile in the null field does indeed then hint at some subtle minimum acceleration contribution. The force
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Figure 3.5: Perpendicular velocities of minimum jerk (gray lines) and minimum torque change
movements in the null field (thin black lines) and in B1 (thick black lines).

field minimum torque change trajectory also rises and falls faster and has a broader peak, but the difference
between this profile and the minimum jerk velocity is even subtler. The velocity profiles of minimum
torque change movements in individual directions are slightly asymmetric, with the peak arriving tens of
milliseconds before or after the central time point, but the mean parallel velocity traces (averaged across

directions) are symmetric.

The perpendicular velocities of movements that minimize jerk and that minimize torque change in the null

field are also quite similar (Figure 3.5). The handpath of the minimum jerk movement, not surprisingly,
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moves in a perfectly straight line between the start and end of the movement. The handpath that minimizes
torque change in the null field is slightly curved, most noticeably in movements toward 135 and 315
degrees. In all directions of movement, the small curvature in the minimum torque change trajectories
points in the same Cartesian direction for movements that oppose each other. The inverse dynamics of the
human-robot interaction indicate that torque depends on functions of position multiplying joint acceleration
and on Coriolis terms that depend on the square of joint velocity. Since both joint acceleration and joint
velocity reverse sign between movements of opposite direction, only the Coriolis term would have the
same sign in both outward and inward movements. This small curvature is therefore likely attributable to

Coriolis interactions.

The perpendicular velocities of trajectories that minimize jerk and that minimize torque change in the null
field are markedly different, however, from the trajectory that minimizes torque change in the force field
(Figure 3.5). The handpath that minimizes torque change in the null field is grossly curved in all directions
of movement. The magnitude of the curvature, as characterized by perpendicular displacement 150 msec
into the movement, ranges from 0.5 cm toward 45 degrees to 1.6 cm toward 315 degrees. In trajectories
toward 135 and 315 degrees, the initial movement angle differs from the target location by more than 45
degrees (Figure 3.6). The mean perpendicular displacement across directions is 1.0 cm, an order of
magnitude larger than the precurvature observed in subjects (1.3 mm). The increase in curvature produces
a torque change cost that is 37% smaller than the torque change associated with moving in minimum jerk
(straight line) trajectory. This additional curvature, however, increases the cumulative jerk of the

movement by 103%.

The large difference between actual and hypothetical minimum torque change trajectories, specifically the
curvature magnitude, indicates that the amount that subjects weigh the torque change cost is likely small
compared with the cost associated with jerk. All of the additional curvature generated in the force-field

minimum-torque-change trajectories, however, points counterclockwise, in the same direction as the
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Figure 3.6: Handpaths of minimum jerk (gray lines) and minimum torque change movements in the
null field (thin black lines) and in B1 (thick black lines).

precurvature. This agreement suggests that precurvature in subjects might be producing cumulative torque

change that is smaller than if they moved in the force field with straighter handpaths.

3.4 Perpendicular force profiles: actual dynamics of force field trajectories
and hypothetical dynamics of null field trajectories

As a first step in investigating the possible reduction of torque change cost through precurvature, I studied
the dynamic component of the group mean trajectories produced in the task. Since the force field produced

forces perpendicular to velocity, I first examined the perpendicular forces associated with different
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trajectories. Velocity traces were first averaged across bins of eight movements within directions (three
bins per direction per set), then averaged across subjects. The group mean trajectories were processed
through the biomechanical model to determine the dynamic output of the human controller. Since the
viscous field produces force perpendicular to velocity, I isolated the component of human-generated force
at the hand which pointed perpendicular to the movement direction. Both the force trace and the time
derivative of force were averaged over time to determine the total motor output and to determine a dynamic

cost function associated with the force field.

In order to determine the significance of the changes in trajectory between the null and force fields, in the
calculation of perpendicular force, I processed the null field trajectories as if they were generated in the
viscous force field. This calculation determined what motor output would have been produced and what
dynamic cost would have been incurred if subjects adopted the same trajectories in the force field as they
did in the null field. Comparing the actual dynamic cost incurred late in training with the hypothetical “null
field trajectory” cost determines what, if any, advantage in terms of perpendicular force results from

precurvature.

As suggested by my earlier EMG timing findings, during the course of training, subjects learn to generate
perpendicular force earlier into the movement. In Figure 3.7, the thin black trace shows the increase in
perpendicular force produced during the first 64 movements (eight movements per direction) made in the
force field. Subjects produce a unimodal perpendicular force profile, mimicking the velocity profile, but
the peak of perpendicular displacement arrives 100 msec after the peak in hand speed and thus after the
peak in field-induced force. By the end of training in the force field, subjects produce the perpendicular
force trace shown by the thick black line. This force trace is also unimodally bell-shaped, but peaks earlier,
190 msec into the movement, coincident with the peak in field-induced force. The peak height, however, is
significantly shorter than the peak height of the force trace created early in training. The perpendicular

force created early in training peaks at 4.7 N; late in training it peaks out at only 4.2 N (p < 5e-4).
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Figure 3.7: Perpendicular force produced, averaged over the first 64 movements (thin black line)
and the last full set of 192 movements (thick black line) of training in force field B1. Also shown is
the perpendicular force that would have been necessary if the null field trajectories were produced in
force field B1 (gray line). All force profiles averaged across directions and across subjects.

Although perpendicular force production begins much earlier later in training than at the beginning of

training (just as would be expected), the mean perpendicular force produced during the movement is also

smaller late in training (mean difference across subjects, 0.2 N, p < 5e-4). With training, then, subjects

learn to produce force earlier and produce accurate movements while producing less total perpendicular

force.
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Figure 3.8: Derivative of perpendicular force produced, averaged over the first 64 movements (thin
black line) and the last full set of 192 movements (thick black line) of training in force field B1. Also
shown is the perpendicular force that would have been necessary if the null field trajectories were
produced in force field B1 (gray line). All force profiles averaged across directions and across
subjects.

The perpendicular force produced during actual movements in the third set are significantly different than
the force profile that would have created the null field trajectories in the force field (Figure 3.7, gray line).
The peak of the two force traces occur at roughly the same time; on average, the actual force trace
produced late in training peaks at 199 msec, the hypothetical “null” profile at 184 msec. The force profile
necessary to produce the null field trajectory in the force field, however, is narrower and taller than the

force profile actually produced. The force necessary to produce the null field trajectory peaks at 4.7 N,
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significantly more than the actual force output (p < 5e-6). Although the magnitude of “null trajectory”
perpendicular force output is clearly larger than the force actually produced around the peak of force
production, the actual force profile is larger early and late in the movement. Because of the breadth of the
actual force profile, the mean force produced by subjects up to 500 msec into the movement is actually
slightly larger than the “null trajectory” force trace (mean difference, 0.05 N); across subjects, this
difference is marginally significant (p < 0.07). Deviation from the null field trajectory, therefore, does not

lessen the total integrated force necessary to move in the force field.

The deviation from the null trajectory does, however, lessen the time derivative of force over the course of
the movement (Figure 3.8). The derivative of both actual and “null trajectory” force traces, as determined
by a 130-msec wide Savitsky-Golay filter, shows that both the rise and fall of the perpendicular force has a
smaller absolute value for the trajectories actually produced than for the hypothetical “null trajectory”
traces. During the first 500 msec of movement, to generate the null trajectory in the force field, subjects
would have had to average an absolute value derivative of force of 16.7 N sec”’. The mean actual
trajectories in the third set of force field training required only 14.5 N sec'; this difference was significant
(p < le-4). When movements are combined into bins of eight movements, then, the perpendicular force
traces indicate that subjects might be adopting the slightly precurved trajectories in order to lessen the

torque change cost associated with hand force pointing perpendicular to movement direction by 13%.

3.5 Torque change and jerk costs of individual movements

Perpendicular force and its derivative summarizes well the changes in dynamics associated with the force
field, and therefore serves as an intuitive proxy for torque and torque change. This single component of
hand force, however, cannot fully encompass the torque change. Since cumulative jerk and torque change
costs depend on third time derivatives of displacement, the smoothing created by averaging of movements
over bins also underestimates dynamic and kinematic costs. Finally, both the analytical solution to
minimize jerk and the numerical solution to minimize torque change sensitively rely on the peak speed of
movement, which varies across trials. Therefore, although the analysis of binned trajectories provides a
good thumbnail of kinematic and dynamic cost, a movement-by-movement analysis of jerk and torque
change is necessary to quantify the relative contributions of these costs to movement generation.

-6l -



135° 90° 45°

1.4
1.8
1.3 1.3
1.6
1.2 1.2
1.4 1.1 1.1
1.2 1 1
x B1 n B1 n B1 n
2 180° mean 0°
ie]
o 1.8
= 2
S 1.6
216
®
N 1.4
(_é 1.4 1.5
S 1.2 1.2
2
g 1 1
=}
S B1 n B1 n B1 n
3 225° 270° 315°
1.6 2
1.6
1.8
1.4
1.4 1.6
1.2
1.2 1.4
1 1.2
B1 n B1 n B1 n

Figure 3.9: Cumulative normalized jerk during training in the force field B1 and the null field set (n)
in each direction of movement and the mean across directions. Each data point in individual
direction is averaged over 8 movements; in the mean plot, over 64 movements. Although the null
field training precedes the force field training, the null field data is shown at the end to facilitate
comparison with normalized jerk at the end of training in field B1.

To calculate the cumulative jerk of every individual movement, each velocity vector trace was processed
through a third order Savitsky-Golay filter, then summed over the entire movement data, from 100 msec
before the start to the very end of the movement. To calculate the torque change of each movement,

necessary joint torques were calculated using the biomechanical model, then differentiated, again with a

Savitsky-Golay filter. As with the binned data, the torques calculated from null field trajectories were
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processed as if the movements were made in the force field. Each jerk and torque change score was then
normalized using the minimum values possible for movements of the same peak speed as the movement.
Minimum jerk trajectories were determined analytically. Minimum torque change trajectories were
determined for 21 peak speeds, in all eight directions of movement. Both minimum jerk and minimum
torque change trajectories were resampled at 100 Hz; each resampled trajectory was then processed as was
the actual movements to calculate jerk and torque changes. These steps were taken to replicate the
sampling and filtering bias inherent in processing actual movements. The minimum possible torque change
in each direction at each speed was numerically found by varying the knot locations, as described above.
This simulation indicated a linear relation between peak speed and calculated torque change in all eight
directions of movement. The minimum torque change possible for each actual movement, then, was found
by interpolating between the torque changes found for the 21 calculated speeds. Finally, the cumulative
jerk and torque change from each movement was normalized by the minimum possible values. Each
movement was therefore scored by normalized jerk and normalized torque change. These normalized

scores were finally averaged across bins of eight movements, and compared across subjects.

Although the observation of precurvature early in movements suggests that subjects would have a higher
jerk in force field than catch trial movements, the actual data shows no difference in jerk between null and
late force field trajectories (Figure 3.9). In all eight directions of movement, jerk seems to decrease from
the first bin of movements to the last bin. In no direction, however, is there a clear separation of jerk
between the third set of movements in the force field and in the null field movements. The slight
precurvature should generate slightly more jerk than the less curved null field movements, but the

normalized jerk scores in each of the directions do not indicate any increased jerk.

Revisiting the binned and averaged trajectories and introducing the normalization of jerk scores by peak
velocity provides insight regarding the absence of jerk increase in force field movements. The
perpendicular velocity of the average movement in the third set of force field training is indeed larger early
in the movement than the perpendicular velocity of the null field movement (Figure 3.10a). The peak of
parallel velocity of the force field movements, however, is also slightly larger than the parallel velocity in

the null field (Figure 3.10b). Although the percent change in perpendicular velocity is clearly more than
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Figure 3.10: Comparing null field (gray) and third set of force field B1 (black) movements in
perpendicular (A) and parallel (B) velocity, and raw (C) and normalized (D) jerk. Trajectories
averaged over the entire set, all directions of movement, and all subjects.

the percent change in parallel velocity, the absolute change in parallel velocity in m/sec is actually larger.
The raw calculation of jerk in the force field movements does indicate that higher jerk is incurred in the
curved, force field movements than in the straight, null field movements (Figure 3.10c). A fair
quantification of jerk, however, requires normalization based on peak speed. When the two time series of
jerk are normalized by the minimum jerk possible for the two different peak speeds, the early curvature no
longer adds more jerk cost (Figure 3.10d). In fact, the small curvature in null field movements actually
adds more normalized jerk than the larger curvature in the force field movements, since the force field

movements are faster. Against intuition, the small increase in curvature actually does not increase the jerk
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Figure 3.11: Cumulative normalized torque change during training in the force field B1 and the null
field set (n) in each direction of movement and the mean across directions. Each data point in
individual direction is averaged over 8 movements; in the mean plot, over 64 movements. Although
the null field training precedes the force field training, the null field data is shown at the end to
facilitate comparison with normalized jerk at the end of training in field B1.

of even the stereotypical binned trajectories. The lack of increased normalized jerk in the movement-to-

movement analyses of force field movements, therefore, is no longer surprising.

Unlike the cumulative jerk score, the cumulative torque change does significantly differ between late force
field and “null field” movements (Figure 3.11). With training, the binned normalized torque change scores

decrease. By the third set of training, in four directions of movement (90, 135, 270, and 315 degrees), the
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normalized torque change was significantly smaller than it would have been had subjects instead moved in
the straighter, null field trajectories (p < 0.01). In a fifth direction (180 degrees) the difference was
marginally significant (p < 0.06). When the torque change scores were averaged across directions, the
difference between actual force field and hypothetical “null trajectory” torque change costs is strongly
significant (p < le-4). By precurving their trajectories by an average of 1.3 mm, subjects reduce their total
torque change cost by 6%. Subjects therefore significantly reduce their cumulative torque change cost

without increasing their cumulative jerk cost.

3.6 Neural-noise induced variance and precurvature

Harris and Wolpert (1998) suggest that desired trajectories are determined not by optimizing kinematic or
dynamic smoothness, but by an attempt to maximize movement endpoint accuracy in the face of noisy
neural commands. To estimate the relevance of neural noise on trajectory formation, I added noisy torque
generators to the biomechanical model used above. A Simulink/Matlab implementation of the
biomechanical model (provided by Maurice Smith) simulated a realistic anthropomorphic controller
moving the dynamics of the manipulandum. The simulation transformed desired trajectories into
feedforward motor commands using an inverse dynamic model. These feedforward commands, along with
stiffness and viscosity feedback (Shadmehr and Brashers-Krug, 1997), drove the simulated plant to produce
movement. Controller-produced torque at the elbow and shoulder was split into agonist and antagonist
torque using Equation 2.6. Noise was added to each agonist and antagonist torque. The noise was white
with zero mean and standard deviation set to 25% of the total (feedforward plus feedback) deterministic
torque, the maximum of the range of noise magnitudes considered by Harris and Wolpert (1998). The
accuracy of the simulated controller in its attempt to overcome torque noise was quantified by running the
simulation 1000 times, then measuring the standard deviation across iterations of position immediately
after the desired movement ending time (600 msec). All simulated movements were toward the target at 90
degrees. To quantify the effect of precurvature on endpoint variance, I drove the noisy model with nine
different desired trajectories. I parameterized trajectory space with A, where A = 0 corresponded to
minimum jerk and A = 0 corresponded to minimum torque change. I then varied A between —1 and 1, with

steps of 0.25, to generate nine trajectories with different curvatures.
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Figure 3.12: Standard deviation and 95% confidence intervals of standard deviation of endpoints of
simulated movements, produced by noisy agonist and antagonist torque actuators. The curvature of
movements were parameterized with A, with A equaling 0 and 1 indicated minimum jerk and
minimum torque change trajectories.

I found that torque noise did produce some endpoint variance, but that precurvature only increased this
variance (Figure 3.12). Although endpoint variance was smallest for straight movements, the increase in
variance caused by curvature added a very small (<100 micron), statistically insignificant amount of
standard deviation. The hypothesis of Wolpert and Harris (1998) suggested that minimizing variance
motivated movement planning. I found little changes in variance with large changes in desired curvature;
furthermore, since straight movements generated the smallest curvature, the goal of minimizing endpoint

variance could not account for precurvature generated by subjects.

3.7 Discussion

When subjects train in a consistent viscous force field, they learned to generate movements that were much

straighter than their initial error. Coincident with the decrease in force field induced curvature, however,
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subjects slightly increase the curvature during the beginning of movement. The increase in curvature is
opposite the direction of the initial erroneous curvature. Although the magnitude of this "precurvature" is
small, across subjects it is highly significant. Since well-learned force field movements are significantly
more curved than catch trial movements, a first-order analysis of precurvature would suggest that subjects
cannot only minimize jerk to plan movements. The magnitude and direction of curvature has previously
been the benchmark for verifying or falsifying optimization hypotheses (Uno et al, 1989; Wolpert et al,
1994; Nakano et al, 1999). The change in asymptotically generated trajectories with learned dynamics,

then, indicates that jerk minimization cannot by itself motivate movement planning.

Varying simulated movement trajectories revealed that in order to minimize cumulative torque change,
subjects would need to produce grossly curved movements. The minimum jerk and minimum torque
change solutions to natural movement tasks produce very similar trajectories (Desmurget et al, 1998).
Minimum torque change trajectories in the viscous force field, however, are very different from minimum
torque trajectories. Initial directions of minimum torque change movements can point as much as 50
degrees away from the target location, while minimum jerk trajectories are perfectly straight. Such gross
curvature could not be confused with the millimeter-scale errors in human estimation of straightness
(Wolpert et al, 1994). Although the minimum torque change trajectories are also grossly different from
movements actually made late in force field training, the small precurvatures in each direction of
movement point in the same direction as the increased curvature in minimum torque change trajectories.
The correlation in curvature direction, but not in magnitude, suggests that subjects may combine a small

regard for torque change into their plan to minimize jerk.

Previous studies differentiating kinematic from dynamic planning simply compared the curvature of actual
to predicted movements. While these comparisons provided important inferences regarding movement
planning, curvature alone does not quantify the costs associated with movement. Here I quantified the
kinematic and dynamic costs of the actual movements produced by subjects. I first focused on
perpendicular force output, as the viscous force field pushed subjects in the direction perpendicular to
instantaneous velocity. Trajectories actually generated late in force field required a smaller peak of

perpendicular force than if subjects would have generated their null field trajectories in the force field.

- 68 -



Since the actual perpendicular force profile was also broader than the “null field” force, the cumulative
perpendicular force exerted was actually slightly greater than if subjects would have moved in the original
null field trajectories. The broader and shorter force profile, however, associated with less cumulative
force change during the movement. Since force change is closely related to torque change, the shorter and
broader forces produced by subjects suggests that deviation from null field behavior could be driven by an

attempt to lessen torque change cost.

To directly evaluate the relative costs of jerk and torque change, I calculated the actual kinematic and
dynamic costs incurred during individual movements in the force field. Since torque change costs change
with dynamics, I processed null field movements as if they were made in the force field, in order to
determine if subjects changed their incurred dynamic cost by altering trajectories from their null field
behavior. As subjects trained in the force field, they did reduce their torque change cost: the cumulative
torque change incurred was in fact significantly less than if subjects would have generated null field
trajectories (Figure 3.13a). Precurvature does seem to lessen the dynamic cost of movement in the force

field.

Surprisingly, however, the additional curvature does not significantly increase the normalized cumulative
jerk during the movement (Figure 3.13b). Any additional curvature does increase the raw jerk of a
movement. Since jerk depends so sensitively on movement velocity, however, a fair quantification of
cumulative jerk must normalize each movement’s jerk score by its peak velocity. Movements in the force
field are slightly faster than in the null field; the normalized cumulative jerk cost of these faster movements
is not significantly different than the null field movements. Although precurvature does indicate that
subjects may consider torque change costs in movement planning, the dynamic cost savings does not seem

to add any more kinematic cost.

A third optimization theory recently developed posits that subjects plan movements to minimize the
variance of endpoints as caused by noisy neuromuscular commands. The proponents of the theory (Harris
and Wolpert, 1998) varied trajectories in order to minimize endpoint variance, and discovered that

minimum variance trajectories grossly resemble natural movements. Our realistically stiff and viscous
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biomechanical controller, however, produced quite accurate movements even at the maximum estimate of
torque noise. Furthermore, the precurving of movements very slightly increased the endpoint variance of

movements. Precurvature, then, cannot result from an attempt to minimize endpoint variance.

Previous attempts to support or reject the minimum jerk and minimum torque change hypotheses were
hampered by the high correlation between both theories’ optimal trajectories in most tasks (Desmurget et
al, 1998). The viscous force field, however, produces unique dynamics. The minimum torque change
hypothesis predicts very curved movements, very different from the perfectly straight minimum jerk
trajectories. Although subjects precurve their movements late in force field training, overall trajectories are
very straight and the additional curvature does not significantly raise normalized jerk above null field
levels. Subjects therefore seem to care primarily about minimizing jerk, as predicted by visual perturbation
experiments (Wolpert et al, 1995; Ghahramani et al, 1996; Goodbody and Wolpert, 1999). Inside the space
of movements with acceptably smooth kinematics, subjects discovered a way to lessen their torque change
cost. Since precurved movements actually require slightly more force, the consideration of dynamics in
movement planning seems to concern torque change, not torque itself. The planning of reaching
movements then likely involves a primary requirement to move straight, followed by a secondary goal of

reducing cumulative torque change.
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Chapter 4 Human motor learning of a nonstation ary dynamic
environment

4.1 Introduction

Robotic and computational theory has indicated the necessity of an accurate inverse model of dynamics to
move the human arm in desired trajectories. The human motor learning of perturbing forces indicates that
human subjects can adapt their internal model of inverse dynamics (Shadmehr and Mussa-Ivaldi, 1994;
Lackner and DiZio, 1994). In studies of kinematic learning where the mapping between the visual
representation of the limb and its proprioceptively sensed position was altered, investigators tested for the
motor adaptation to kinematic perturbations by observing behavior after the perturbation was removed
(Kitazawa et al, 1997). Subjects produced errors during the unperturbed period that opposed the direction
of initial error during the perturbations. These “aftereffects” were deemed to be a hallmark of specific

motor, rather than cognitive, learning.

Inspired by the kinematic aftereffects, investigators altered the mechanical dynamics of the limb and
measured subjects’ behavior in three stages. Subjects first trained making movements in natural,
unperturbed dynamics. Next subjects learned to train in novel but systematic dynamics. Finally, the novel
dynamics were removed to test for possible aftereffects. Akin to kinematic aftereffects, the first discoveries
of these dynamic aftereffects provided an important hallmark specifying computation of inverse dynamics
(Shadmehr and Mussa-Ivaldi, 1994; Lackner and DiZio, 1994). The magnitude and direction of aftereffects
suggested that inverse models are learned in joint space (Shadmehr and Mussa-Ivaldi, 1994), learned
dynamics was directionally local (Gandolfo et al, 1996) but generalize across speeds and movement length
(Goodbody and Wolpert, 1998), and learned dynamics may not have an explicit temporal component
(Conditt and Mussa-Ivaldi, 1999). The temporal evolution of aftereffects generated by several groups of
subjects also suggested that different short-term and long-term motor memories likely underlie human

behavior (Shadmehr and Brashers-Krug, 1997).
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In order to quantify the state of the inverse model during training, some of investigators interspersed “catch
trial” movements during novel force training (Shadmehr and Mussa-Ivaldi, 1994; Shadmehr and Brashers-
Krug, 1997). In these catch trials the novel forces were unexpectedly removed, resulting in aftereffects.
Other investigators interspersed the usual novel dynamics with other novel dynamics, in order to test the
generalization across movement parameters (Goodbody and Wolpert, 1998) or to investigate the interaction
between feedforward, feedback, and postural controllers during movements in unexpected dynamics
(Sainburg et al, 1999). In these studies the interspersing of surprise movements is intended to interrogate

the feedforward control system while it is learning the usually applied dynamics.

These occasional, sudden changes in dynamics, however, introduce a nonstationarity to the training
paradigm. A trademark of motor learning is that testing and training cannot be separated. Although
investigators introduce sudden dynamic changes to interrogate the human motor learning system, these
changes very likely also train the inverse model. Each catch trial, then, could induce an unlearning of the
learned dynamics in the usual environment. When a block of learning one dynamic environment is
followed closely in time by a block of another environment, the second training interferes with the memory
of the first dynamics (Brashers-Krug et al, 1995; Brashers-Krug et al, 1996). On a shorter time scale, catch

trials may have a similar disruptive effect on the very learning that catch trials were intended to measure.

Although catch trials may disrupt the human motor learning system, this very disruption may reveal
important characteristics of that system. Two classic methods of system identification quantify the steady
state and the impulse responses of unknown systems. The differential responses to consistent, long-term
input and short bursts of greatly changing input provides complementary, sometimes supplementary,
information regarding the system’s inner workings. In neural network implementations of inverse model
learning, the calculation of the inverse model output has depended on weights multiplying basis functions
which depend on the desired trajectory of the movement (Kawato et al, 1987; Schaal and Atkeson, 1998;
Sanner and Kosha, 1999). These architectures imply motor learning through weight adaptation. The
weight adaptation that minimizes squared error depends on both movement error and the basis function
generated for that movement. Since the torque output from the inverse model depends on the updated

weights multiplying the basis functions, the relation between error and subsequent performance may
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provide important information regarding the basis functions that underlie inverse dynamic models. The
occasional but sudden changes in input created by catch trials supplies the necessary errors to investigate

the properties of these basis functions.

This chapter will explore the effect of catch trials on the learning of the viscous force field. I quantified the
kinematic ramifications of force field removal from movement-to-movement and across the training
session. Electromyographic traces indicated how neural output changed with each catch trial, and how the
overall training in nonstationary dynamics differentiated subjects’ neural response from subjects who
trained in the constant force field. I developed a state-space model to identify the effect of force field
undulations on performance, and to measure the extent to which the effects generalized across movement
direction. I developed the theoretical relation between dynamic error and subsequent dynamic output of the
inverse model. The kinematic parameters elicited from the state-space model were processed through the
biomechanical model to determine errors in torque space. These errors were finally examined, using the
theoretical result, to discover the spatial extent of basis functions underlying the inverse model. This
spatial extent provides insight into the relative contributions of previously hypothesized basis functions to

the human motor system’s response to sudden dynamic changes.

To determine the effect of nonstationarity on motor learning, I examined the behavior of 40 subjects who
trained in the viscous force field that was occasionally turned off in catch trials. Catch trials occurred
during 33 of the 192 movements in each force field set. The catch trials arrived pseudorandomly
throughout the set, but during the same movements in every set in every subject. Data from 27 of the 40
subjects were retrospectively analyzed, as they were trained for previous studies (Shadmehr and Brashers-

Krug, 1997). In the other 13 subjects, EMG was recorded, processed, and analyzed as in Chapter 2.
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Figure 4.1. Perpendicular displacement 250 msec into movement, during null field and force field
training; means over constant force field (<const>) and catch trial (<ctg>) groups, and the subset of
fielded movements before (ct-1) or after (ct+1) catch trials.

4.2 Kinematic peformance during training with catch trials

4.2.1 Performance over the duration of training

Previous investigators have trained subjects in force fields with catch trials, presuming that occasional
removal of the forces did not affect the long-term performance of subjects. To test this presumption, I
calculated perpendicular displacement generated by the 40 subjects in the catch trial group during
movements made in the force field, excluding catch trial movements. I binned perpendicular displacements
across directions and over bins of 64 movements. The catch trial subjects’ movement curvature was then

compared to the 24 other subjects who trained in a constant force field, without catch trials.

Throughout training in the force field, the subjects who trained with catch trials produced significantly
more curved trajectories than did subjects who constantly trained in the force field (Figure 4.1, solid lines).

During the initial null field set, both sets of subjects produced very similar, small curvatures in their
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movements. In the very first bin of 64 movements, during the first two minutes of training in the force
field, constant force field subjects produce an average perpendicular displacement of 0.65 cm, whereas
subjects who trained with catch trials produce 0.87 cm of perpendicular displacement. Although both
groups of subjects improve over the next two minutes of training, the group without catch trials improves
more over their initial two minutes’ performance than the catch trial group improves. This gap becomes
wider and wider until the end of the three sets of training. Although the catch trial group experiences catch
trials only one movement out of six, the occasional removal of the catch trials significantly affects the

performance of the catch trial subjects throughout the 20 minutes of training.

The catch trials affect the overall performance during training; do they also affect performance in the
shorter term? Over the course of training, do the catch trials generally hinder the performance of all force
field movements, or is there a specific effect after each catch trial? To address this question I examined
specific subsets of force field movements. Inside each direction of movement, I identified catch trial
movements, then examined force field movements that immediately preceded and immediately followed
each catch trial. Note that consecutive movements in each direction of movement are always interleaved
with at least one, usually several, movements to other directions. For this analysis (and all analyses below
until Section 4.5) I indexed movements within each direction. A movement that I identify as preceding or
following a catch trial movement are the movements that occur most recently before or soonest after the
catch trial, in the same direction as the catch trial. Iam therefore investigating how catch trials could

possibly affect force field movements in the same direction as the catch trials.

In each of the 64 movement bins (8 movements in each of 8 directions), I binned together the perpendicular
displacements of the subsets of force field movements that immediately preceded or immediately followed
catch trials. During the first 64 movements, the perpendicular displacements of movements preceding and
following catch trials are quite similar (Figure 4.1, dotted lines). Starting with the next 64 movements,
however, the curvature of movements preceding catch trials is noticeably, if not significantly, different
from the mean curvature in fielded movements. These valleys of curvature, however, do not approach the
performance of the constant force field subjects. During the third set of training, movements made just

before catch trials average 0.30 cm of perpendicular displacement, 0.42 cm more than the average
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Figure 4.2. Perpendicular displacement 150 msec into movement, as a function of movement
direction, for null field movements (solid) and movements preceding (lower dotted line) and
following (top dotted line) catch trials.

curvature during their movements in the initial null field set. These movements have 0.12 cm less
curvature, on average, than the total mean for force field movements, a significant difference (p < 0.03).
Even just before catch trials, however, subjects with catch trials move with much more curvature, with 0.49
cm more perpendicular displacement, than do constant force field subjects moving in the third set of

training (p < 1 x 10°°).

The perpendicular displacement data, averaged across bins of 8 movements per direction and averaged
across directions, suggests that catch trials have two effects on the performance of human subjects. Each
catch trial might induce a jump in curvature, generating a short term unlearning of the force field. This
short-term unlearning, followed by a recovery to the next movement just preceding a catch trial, seems to
produce an oscillation in kinematic performance. The cumulative effect of all the catch trials seems to
elevate the asymptotic level of curvature higher than the final curvature of the constant force field subjects.
Even the bottom of the curvature envelope sits clearly above the performance subjects who train in the

constant force field.
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The asymptotic behavior of subjects who trained in the constant force field was characterized by not only
reduced curvature in the direction of perturbing forces, but a slight early precurvature in the opposite
(counterclockwise) direction. I therefore also examined the perpendicular displacements of movements
made by catch trial subjects, measured 150 msec into the movement, to determine whether these subjects
exhibited any precurvature. I examined again the subset of movements that immediately preceded and
followed catch trial movements. The early perpendicular displacement was averaged within each direction
of movement, across the second and third sets of training. These displacements were then compared to the

mean null-field perpendicular displacement generated by the 24 subjects in the constant force field group.

In none of the eight directions of movement did the early perpendicular displacement of movements
preceding catch trials significantly differ from null curvature (Figure 4.2; solid lines, null; upper dotted
lines, after catch trials; lower dotted lines, before catch trials). In six out of the eight directions of
movement, the mean early curvature was actually greater in the force field movements than in the null
field. The mean perpendicular displacement in movements preceding catch trials was actually larger than
in the null field, but by only 0.03 cm and insignificantly (p > 0.9). There was no evidence, therefore, that
the catch trial subjects adopted the precurvature that the constant force field subjects did. The catch trials,
therefore, hamper the ability of subjects to fully reduce the perturbations caused by the force field, but also

seem to prevent the adoption of precurvature to lessen the dynamic cost of moving in the force field.

4.2.2 Movement-to-movement kinematic effects of catch trials

I next explored whether the possible unlearning due to catch trials could be identified in individual
movements. Figure 4.3a shows the hand trajectories during five movements of a single subject toward a
single direction, 90 degrees. The very first movement in the viscous force field is toward this direction.
When this subject first moved in the novel force field (trajectory labeled “1st”), her handpath was markedly
curved compared to the null field trajectory (“n”’). By the midpoint of her second set of training, during the
263rd movement overall and 38th movement in this direction, the handpath is much straighter (“ct-1").

The next movement in this direction (the 283rd movement overall) is a catch trial; this trajectory (“ct”) is

quite curved, but in the opposite direction of the initial error (“1st”). The next movement toward 90
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Figure 4.3. Handpaths of movements toward 90 degrees in single subject (A) and mean across
subjects (B); mean in null field (n), first movement in B1 (1st), and, mid-training, movements just
before (ct-1) and after (ct+1) a catch trial (ct). Error bars in B indicate 95% confidence intervals of
the mean of parallel and perpendicular displacement 250 msec into movement.

degrees (287th movement overall; 40th movement toward 90 degrees) is more curved than the movement

toward 90 degrees preceding the catch trial.

Across all subjects who trained with catch trials, this particular movement toward 90 degrees had greater
curvature than the movement toward 90 degrees preceding the catch trial (Figure 4.3b). From the 1st
movement in the force field to the 38th, subjects' perpendicular displacement decreased from 2.38 cm to

0.45 cm (95% confidence intervals of the mean (CIM), [2.15, 2.61] cm for the 1st movement and [0.30,

-78 -



perpendicular displacement in
catch trial movements (cm)

change in perpendicular displacement
across catch trials (cm)

-100 0 100 -100 0 100

movement direction (degrees)

Figure 4.4. Perpendicular displacements in catch trial movements (A) and change in perpendicular
displacements across catch trial movements (B) in all directions of movement. Error bars reflect
95% confidence intervals of the mean.

0.60] cm for the 38th movement). In the next movement toward 90 degrees, a catch trial, subjects produce
a large negative perpendicular displacement (mean —1.35 cm, 95\% CIM [1.14, 1.56] cm). In the next
movement toward 90 degrees, the perpendicular displacement significantly increased to 1.22 cm (95% CIM
of the increase, [0.54, 1.00] cm). Before this particular catch trial, after 37 movements toward 90 degrees
and 262 movements overall, subjects had eliminated 81% of their perpendicular displacement. After the
catch trial toward 90 degrees, subjects increased their curvature substantially, losing over half of the
improvement in their curvature. These trajectories suggest that the catch trial induced a short-term

unlearning of the force field that causes the increase in curvature.

In all directions, catch trials caused an increase in perpendicular displacement in subsequent (force-field)
movements in the same direction. Within each direction of movement, within each subject, we averaged
perpendicular displacements across catch trials occurring during the second and third sets of training in the
force field. We also calculated the increase in curvature between the movements preceding and following
the catch trial, in the same direction as the catch trial. Figure 4.4a shows the mean and 95% CIM for the
perpendicular displacements of catch trial movements. In all eight directions, perpendicular displacement
was significantly less than zero; the mean magnitude of the curvature ranged from less than 1 cm for catch

trials toward -180 degrees to more than 1.5 cm for catch trials toward 45 degrees, 90 degrees, and 135
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Figure 4.5. Latency of post-catch-trial increase in perpendicular displacement: mean across
directions (A) and in movements toward 90 (B) and 135(C) degrees.

degrees. Figure 4.4b shows the mean and confidence intervals of the mean for the change in curvature
between force field movements that sandwich catch trials. In all eight directions, perpendicular
displacement increased after a catch trial. The mean jump in perpendicular displacement ranged from 0.2
cm in movements toward -180 degrees to greater than 0.5 cm in movements toward 135 degrees. The
spread of after-effect magnitude in catch trials and of catch-trial induced jumps in curvature suggests that

more unlearning occurs in directions which have large after-effects.

The increase in curvature after catch trials decayed quickly during subsequent force field movements. 1
next examined consecutive force field movements following catch trials, once again focusing on the order
of movements only within direction. All force field movements that occurred two, three, or four
movements after the most recent catch trial movement were grouped together. All such movements during
the second and third sets of training were combined within subjects. The typical jump in perpendicular
displacement after catch trials, averaged across directions, is 0.35 cm with respect to the movement before
the catch trial (Figure 4.5a). In the next force field movement, the additional curvature has been cut in half.
No increased curvature is discernable in the third or fourth movements after the catch trial. In two specific
directions of movement, increases in curvature lingered for three movements (90 degrees, Figure 4.5b) or
four movements (135 degrees, Figure 4.5c), but did not linger beyond that. The kinematic manifestation of
catch-trial induced unlearning seems to be short-term, lasting only two to four movements after the catch

trial.
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Figure 4.6. Timing of B1-appropriate EMG activation during training. A: Evolution of B1-
appropriate EMG over the course of training. From top to bottom, subplots represent mean B1-
appropriate activation averaged over bins of 64 movements (eight in each direction) and over
subjects. The dotted lines in the first and last subplots represent the force produced by the field. The
dotted line traversing the subplots identifies the location of the activation peak, as quantified by a
fourth-order polynomial fit. B: Timing of peak EMG as a function of training. Each data point
includes 64 movements in the force field. Error bars represent 95% confidence intervals of the
mean.

4.3 Electromyographic correlates of catch trial-induced unlearning

To determine the neurophysiological basis for the differences in behavior induced by catch trials, 1
analyzed the electromyographic traces generated by catch trial subjects and compared their metrics of
learning with constant force field subjects. I began by analyzing the B1 appropriate component of
activation. As with the constant force field subjects, I binned the B1 appropriate EMG across eight
movements per direction, then averaged across movement directions (Figure 4.6a). At the beginning of
training in the force field, the catch trial subjects, like the constant force field subjects, generated
appropriate activation which peaked 200 milliseconds into the movement. Since the force induced by the
field peaked at 190 milliseconds and there was a delay of 80 — 100 msec between recorded EMG and force

production (from Chapter 2), this activation came too late to compensate completely for the force field.
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Figure 4.7. Bl-appropriate EMG in movements before (ct-1) and after (ct+1) catch trials.

Between the first and second bins of movements, the appropriate activation significantly shifted to earlier
in the movement, to 145 milliseconds. However, throughout the rest of training the appropriate activation
peak remained at 145 milliseconds (Figure 4.6b). Constant force field subjects moved their peak of
activation all the way back to 70 milliseconds — significantly earlier than the catch trial group. The shift in
the timing of the peak of appropriate activation in constant force field subjects (Section 2.4) marked a
transfer of dependence on feedback control to feedforward control. The later activation of the appropriate

musculature indicates that throughout training catch trial subjects may rely more heavily on feedback

control.

The kinematic features of movements made by catch trial subjects shows that, although movements
improved over the course of training, catch trials induced a short term unlearning of the force field. To
focus on the neurophysiological basis of this short term unlearning I binned movements in the same
direction as catch trials but arriving one movement before or after the catch trial (Figure 4.7). Force field
appropriate EMG peaked 5.3 msec later after the catch trial than before the catch trial (162.8 vs. 157.5
msec), but this shift was not significant (p>0.3). The integrated activation under these traces, however, are

significantly different. In particular, the activation occurring during the agonist burst (-50 to 100
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Figure 4.8: Rotation of movement-initiating EMG resultant vectors from null field orientations,
before (ct-1), during (ct), and after (ct+1) catch trials. Error bars reflect 95% confidence intervals of
the mean.

milliseconds) is significantly larger before the catch trial (mean increase 2.7 normalized EMG units,
p<0.03). This suggests that although the timing of the activation does not change across the catch trial, the

ability to produce appropriate feed forward control may have been partially unlearned.

To quantify this possible unlearning, I constructed resultant vectors of movement initiating EMG produced
by each muscle in each direction of movement. As with the constant force field subjects the rotation of
resultant vectors away from their initial null field orientation quantifies the learning of the inverse model.
In movements preceding catch trials, the EMG resultant vectors have all rotated significantly away from
their null field orientations (Figure 4.8). The magnitudes of all four muscles’ rotations were not
significantly different from the orientations of the constant force field group. During catch trials, as
previously noted, subjects generated large curvature in the opposite direction of initial error. Despite this
kinematic aberration, the orientation of the movement initiating activation resultant vectors remained

unchanged from the previous movement. This result confirms the assumption that what I term the agonist
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period of activation represents feedforward control that is unaltered by catch trials. In movements
following catch trials, each resultant vector points in a direction less appropriate for the force field than
before the catch trials. This change in orientation is significant in all four muscles. Analysis of the force
field appropriate EMG traces and resultant vectors of movement initiating activation indicates that while
catch trial subjects rely on feedback control throughout training, catch trials induce specific unlearning of

appropriate feed forward control, indicating short term unlearning of the inverse model.

4.4 Modeling force field learning and unlearning using a state-space
representation with scalar input

My analysis of movements has revealed that subjects learn to reduce the large curvature produced in initial
exposure to the force field; that during catch trials, subjects produce curvature in the opposite direction of
initial error; and that force field movements subsequent to catch trials in the same direction exhibit
increased curvature. We used these three characteristics as a guide to build descriptive state-space models
of learning and unlearning the force field, one model per direction of movement. These models fit the
relationship between the input, the application or removal of the force field; and the output, curvature of

movements as measured by perpendicular displacement 250 msec into the movement.

Each direction of movement was modeled independently with a different state-space model. Each model

was described by the pair of equations:

X, =ax, tbu, .1

y, =x,+du,, 4.2)

where y represented perpendicular displacement and x represented the the contribution to perpendicular
displacement generated by the feedforward output of the CNS. The state of the system, X, at time step n+1
depended only upon the last state (x,) and the last input value (u,). The parameter a determined how the
previous feedforward input affects the current feedforward input. For values of a between 0 and 1, this

component of the state equation describes an exponential decay; if the system were not driven by input, the
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solution to the discrete system X, ,, = ax, would be a pure exponential decay with a time constant of
_%1( a) movements. The input, u, was a binary measure of the force output of the robot; u was equal to

1 for movements in the force field, -1 for catch trial movements (for computational purposes, the full input
time series was mean corrected). The parameter b quantified the difference in adaptation following force
field or following catch trial movements. Note that, as in the kinematic and EMG analysis, the
characterization of movements as “following catch trial movements” refers to the order of movements
within the modeled direction, and ignores movements that occur in other directions; a vector input model
below will consider the influence of catch trials across directions. The adaptation of the state, representing
the feedforward control of movement, depended solely on information from the previous time step; the
system had no explicit memory of earlier states. The state adaptation also depended solely on previous
state and the binary measure of whether, during the previous movement, the force field was on; it did not

depend on the curvature of the movement itself.

The second equation (4.2) mapped state and robot dynamics into curvature. Since the state represented the
portion of curvature that resulted from feedforward control, the state is mapped directly into output. The
second term describes the relationship between robot dynamics and kinematic output. The parameter d
quantified the difference in perpendicular displacement between force field and null field (catch trial)
conditions. This parameter multiplied the same binary input u as in the state equation. The two equations
of the state-space formulation, then, model an adaptive controller and its interaction and adaptation when

controlling a system with alternating dynamics.

In each direction of movement, the relationship between perpendicular displacements and the binary inputs
of robot dynamics was fit with a state-space model. All fits were calculated using Matlab and its System
Identification Toolbox. Inputs to the fit were perpendicular displacements y and the pattern of force field
movements and catch trials as flagged by u. The fit used Equations 4.1 and 4.2 to produce the hidden
variable x and estimate parameters a, b, d, and the initial value of x, termed x,. The original data pool of 40
subjects was resampled with replacement 1000 times. Each resampled data set was averaged across

subjects, then fit to generate 1000 models. Since any model representing the large negative curvatures of
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Figure 4.9: Perpendicular displacements 250 msec into movements toward 90 degrees, fitted by
scalar-input (thin line) and vector-input (thick line) state-space models, as a function of movement
number. Dots represent average across subjects, mean corrected (for computational purposes).

catch trials would correlate well with the entire series of perpendicular displacements, the quality of each fit
was quantified by the correlation between the predictions and the actual perpendicular displacements of the
force field movements. The 1000 estimates of each parameter were sorted by rank; the 26™ and 975"
elements of the sorted parameters provided a bootstrap estimate of the 95% confidence interval of the

mean.

The scalar input state-space model provided a significant and reasonably good fit of the series of
perpendicular displacement in all eight directions of movement. Figure 4.9 shows the mean perpendicular
displacements for movements made toward 90 degrees. Both the plotted data and all data fit with the

models were mean corrected. The best scalar-input state-space model fit to this data is displayed with the
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Figure 4.10: Parameters of the scalar-input state space model for all eight directions of movement.
“Mean” represents the mean subtracted out from the perpendicular displacement data before
processing; “r”’ represents the correlation between the model fit and the actual displacements during
force field movements. Error bars represent 95% confidence intervals of the mean as determined by
bootstrapping.

thin line. The model output represents well three key features of the variation in perpendicular
displacements: the initial large error decays quickly, large negative curvatures are generated by catch trials,
and movements following catch trials have larger positive curvatures. The correlation (r*) between the

force field movements and the model output equaled 0.82 (95% CIM, [0.77, 0.85]).

The parameters of the best fitting scalar input state-space models reveal that directions with larger

aftereffects have larger catch-trial induced unlearning. Figure 4.10 shows the parameters, subtracted
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means, and qualities of fit for scalar state-space models fit to the eight directions of movement. The
variance of a across directions shows that error generated upon initial exposure to the force field decays
more quickly in certain directions than others. The relationship between b and d relates the kinematic
effects of unlearning to the magnitude of the catch trial error. These parameters are highly correlated (r* =
0.81). This correlation suggests that when perpendicular displacement in the catch trial is large, unlearning
due to the catch trial is also large. Large catch trial errors, then, could induce large changes in the weights

underlying inverse model formation, producing larger unlearning of the appropriate force field.

4.5 Modeling force field learning and unlearning using a state-space
representation with vector input

In the scalar input formulation of the state-space model, x,,; is influenced only by its prior state and by
whether the previous movement was a force field or a catch trial movement. Movements in each target
direction were modeled separately; each model considers as input only recent dynamic history in the
modeled direction. These models fit well the initial learning of the force field, the negative curvature due
to catch trials, the jump in positive curvature after catch trials, and the slow decay in curvature after catch
trials. This model, however, allows only for a very stereotypical response to the catch trials. The actual
perpendicular displacement produced by subjects reveals some variance in the magnitude of negative
curvature in catch trials and the magnitude of the increase in curvature after catch trials. In addition, in
between the jump in curvature and the next catch trial, the mean perpendicular displacement often does not

decay monotonically, but rather has some bumps and valleys.

Whereas the scalar input formulation incorporates the pattern of catch trials and force field movements in
the modeled direction, these movements are interleaved between force field movements and catch trials in
all the other directions. To investigate whether the movement-to-movement variance in catch trial and
force field curvature could be attributed to experience in these other directions, I developed a second class
of state-space model which, for every time step, inputs a vector which represents immediate history of
forces in all directions of movement. In the previous model, the scalar input u was equal to 1 for force field
movements and —1 for catch trial movements. Since the state equation relates feedforward control at time

n+1 to state and input at time n, the scalar b indicated the differential influence of force field and catch trial
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movements on subsequent feedforward control. I generalized this concept to include an eight-dimensional

vector input U , one dimension per direction of movement:

4.3)

Since this input vector will differentiate the feedforward control in the modeled direction i between time

steps n and n+1, I at time step n actually indicated the existence of catch trial or force field movements

between movements n and n+1 in direction i. If no movement occurs in direction j between movements n

and n+1 in direction i, then the jth element of % at time step n equals 0. If there are one or more
movements in direction j between movements n and n+1 in direction i, only the movement that occurs the
latest (the closest in time to movement n+1 in direction i) counts. If this movement is a force field

movement, then the jth component equals 1; if it is a catch trial movement, then the jth component equals

-1. The parameter vector b therefore maps recent dynamic history in all directions of movement into

subsequent dynamic behavior in the modeled direction.

The vector-input state space model was fitted to the mean perpendicular displacement across subjects. The
thick line in Figure 4.9 compares the fit of the scalar and vector input state space models to the mean
(across subjects) perpendicular displacement of all movements made toward 90 degrees. The vector input
model, like the scalar input model, fits well the initial reduction of curvature, the large negative curvature
due to catch trials, and the increase in curvature after catch trials. In addition, the vector-input model seems
to capture more of the smaller variation in the curvature of force field movements. For instance, between
the catch trials in movements 46 and 55, the vector model seems to capture more of the bimodal sequence.
In addition, the magnitude of the post-catch-trial increase in perpendicular displacement varies in the

model, capturing some of the actual variance in the data.

In fitting the model to the force field movements made in all three sets toward 90 degrees, the vector input
model, not surprisingly, accounted for more of the variance in perpendicular displacement than did the
scalar input model (r* = 0.91 for the vector model, [0.87 0.93] 95% CIM). The improvement in fit was

more impressive, however, for the force field movements made during the second and third sets of training
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(= 0.68 for the scalar model, [0.55 0.75] 95% CIM; r* = 0.87 for the vector model, [0.79 0.91] 95% CIM).
The models of all directions of movement share this characteristic, fitting the second and third sets of
training particularly well (mean of r* across directions in scalar model = 0.60, [0.49 0.69] 95% CIM; in
vector model, r* = 0.81, [0.72 0.87] 95%CIM). The expansion of the input states seems to fit the initial
recovery from the first exposure to the field about as well as the scalar input model. The improvement in
fit seems concentrated on curvatures generated during the second and third sets, when the overall envelope
of performance has reached an asymptote and the variance in performance seems to be dominated by catch

trials.

The improvement in the quality of fit is somewhat unremarkable, as we are increasing the number of
parameters of each state space model from four (a, b, d, x) to eleven. To investigate whether the
expansion to vector input actually revealed a meaningful dynamic of learning, I bootstrapped the curvature
data across subjects to produce 1000 samples. I averaged over each of these resamplings, then fit each
mean with the vector state space model. The resulting statistics of the parameters would determine whether

the interactions in the model were significant. In particular, I focused on the statistical significance of the

bootstrapped values for the vector parameter l; , which in each modeled direction fit the differential effects
of catch trials and force field movements in all directions. Components of b which, across the
bootstrapping, were significantly different from zero would indicate that the pattern of forces in those
directions have a significant effect on feedforward control, rejecting the null hypothesis that the parameters

merely fit each resampling without any other significance.

In Figure 4.11, the mean and 95% CIM of the values for l; are plotted for each modeled direction. The
location of the subplot indicates the direction of movement modeled. Within each subplot, “0” indicates

the same direction of movement as the direction modeled; for example, in the subplot corresponding to 90

degrees, the data point at “0” represents the value of b for 90 degrees, quantifying the differential effect of
catch trials and force field movements toward 90 degrees on movements made toward 90 degrees. The x-
location of the remaining data reflect how catch trials and force field movements made in other directions

affect each modeled direction, as a function of each direction’s the distance away from the modeled
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Figure 4.11: State-space model parameter vectors b, in each modeled direction of movement. The x-
axis represents the difference in angle between the input and output directions. Negative angle
differences indicate that the input direction is farther clockwise than the input direction. Error bars
represent 95% confidence intervals of the mean as determined by bootstrapping.

direction. In the subplot for 90 degrees, for instance, the data at x equal to -45 and 45 degrees correspond

to the components of l; for movements made toward 45 and 135 degrees, respectively. In movements
toward 90 degrees, then, the unlearning induced by catch trials occurring at 45 or 135 degrees is much

smaller than unlearning induced by catch trials occurring at 90 degrees.

The bootstrapping revealed that in each modeled direction, the b parameters were significantly different
from zero in multiple input directions. In each direction of movement, the self-influence of catch trials was

significant; this was expected, since this component corresponds to the influence of catch trials modeled in
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the scalar input formulation. The value of the self-influential component of b , averaged across directions,

is 0.15. The difference between the input values (# ) corresponding to catch trials and force field
movements equals 2. Since the feedforward control component is mapped directly into perpendicular
displacement (Equation 4.3), this result indicates that on average, a catch trial induces 0.3 cm more

curvature in the same direction’s next movement than does a force field movement.

Also in each direction of movement, there was at least one direction of movement, 45 degrees away (either
clockwise or counterclockwise), which also exerted a significant influence on the feedforward control of
movements. In seven out of eight directions of movement, this second direction’s influence on the
modeled direction was not significantly different than the self-influence. In the eighth direction, toward 90
degrees, there was a sharp drop between self-influence and the influence of 45 degrees away; the influence
of movements made toward 135 degrees was small, but significant. This result indicates that other

directions of movement can have a positive effect on the modeled direction.

Much more surprisingly, in each modeled direction, at least one other direction of movement has a

component of l; which is significantly less than zero. In the model for 90 degrees, for instance, the

influence of catch trials and force field movements made toward —135, -90, and —45 degrees are all

significantly smaller than zero. A negative component of b for an input direction 0 indicates that,

following catch trials in that input direction, perpendicular displacement in the output direction will

actually decrease. The sign change of l; across input directions indicates that the differential effect of catch
trials and force field movements can actually have opposite effects on feedforward control, depending on

the direction of input.

To determine the typical response to force field movements and catch trials across the workspace, in each

of our bootstrapped data sets I averaged the parameter vectors b across directions of movement, then

determined the confidence intervals across the bootstrap. The mean and confidence intervals of the

generalized parameter vector l; reveal three key features of the typical response of feedforward control to
force feedback (Figure 4.12). First, the self-influential effect of force field input is the strongest, producing
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Figure 4.12: The mean across directions of the state-space parameter vector b, as a function of the
difference in angle between input and output. Error bars represent 95% confidence intervals of the
mean as determined by bootstrapping.

on average a 0.3 cm difference in curvature between force field and catch trial input. Second, the effect of
neighboring inputs is half as strong as the self-influential effect, indicating a full-width half-maximum of
90 degrees. Thirdly, and most surprisingly, four out of the eight directions show a significant effect of
force field input which opposes the self-influential effect. The magnitude of this opposing influence is 0.15

cm, also half the effect of self-influence.
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4.6 Theoretical relationship between map of error into subsequent
performance and inverse model basis functions

Surprisingly, the parameter vector l; indicates that force field and catch trial exemplars have different,
even opposite, effects on subsequent movements depending on the direction of the exemplar movement.
This finding strongly suggests that learning a representation of dynamics in some directions of movement
can adversely affect dynamic representations in other directions. To test this hypothesis, I examined extant
theories describing the representation and learning of inverse models using basis functions. I then
transformed these equations into a formulation that made possible the calculation of the projection of these

basis functions across directions of movement.

The neural implementation of the inverse model was modeled presuming the architecture of a layered
feedforward neural network. The input of this network depended on desired trajectory; the output equaled
the feedforward torque command. A particular subset of this architecture presumes that learning of the

inverse model takes place at the output layer. The adapting weights, w, would therefore relate to the torque

output from the inverse model (7 ) using the equation

t=w'g(d.q.4). @4)
where g is a concatenation of basis functions of the inverse model, depending on desired position, velocity,
and acceleration. In all equations, hats indicate the output of the forward model (the hat signifying
“estimate of”). Since torque is two-dimensional, while g has n x 1 elements, w" has 2 x n elements. Since
desired position, velocity, and acceleration depends on the direction of movement, the values of these basis
functions change with movement direction. Since learning takes place by updating weights, however, this

architecture postulates that the basis functions of the inverse model do not change with learning.

The inverse model updates its weights based on the error created during movement. To directly update the

inverse model, the weight adaptation should aim to minimize a cost function of error in torque,
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J=Y@-tyE-1). )

where 7" represents the appropriate feedforward torque which would produce the desired trajectory q*.
Using a gradient descent technique, the least-mean-squared learning rule to try to minimize J would be

Wn+l = wn _nvw‘]n’ (46)

where 1 is a small constant. Note that rather than calculating the actual derivative V  J , the system uses

the online approximation V J, . Presume this system makes a movement, indexed 1, which is imperfect.

The change in weights that would result based on Equation 4.6 would be

dt 4.7

Aw, = -nN—=rH| T,
l ndle

7.

In (4.7) and in all other equations, the tilde indicates error, hence T represents torque error. The vertical

A

bar and subscript in indicates that the derivative is evaluated along the trajectory in movement 1.

T
Wl

This learning rule is common to three different previous studies that examined how the human nervous
system could learn an inverse model. The direct inverse modeling technique used by Kawato et al (1987)
directly multiplies error in torque by the basis functions to determine weight changes. Sanner and Kosha
(1999) adapt weights by multiplying the inverse model basis function by an error state combining position
and velocity. The same error state, however, is used to compute feedback torque, which is equal in
magnitude and opposite in direction to error in torque. The weight update rule of Sanner and Kosha differs

from (4.5) only in that 7] is a small positive definite matrix, rather than a small scalar. The distal

supervised learning algorithm of Jordan and Rumelhart (1992) calculated weight change with the equation
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dr dj - 5

The last two terms of this equation, however, uses the derivative of the forward model to transform distal
error into torque error. All three formulations, then, rely on the same least-mean-squared technique to map

errors in torque into appropriate weight changes.

The weight change responding to error in movement 1 would then alter the system’s performance on a

subsequent movement indexed 2. The torque generated by the inverse model (7 ) during movement 2 can

be simplified using a Taylor expansion:

R R of 5 4.9)
T,(w+Aw,) =‘L’2(w)+W Aw, +0(M").
2

A sufficiently small n permits the negligence of terms second order and higher in the Taylor expansion.

Let the change in torque generated in movement 2 caused by the learning from movement 1 to be termed

AT, , such that

AT, =T,(w+Aw)—1,(w), (4.10)

then, using (4.7) and (4.9),

T 4.11
A%, =—n ot ot P @D
i ow'’ , ow' | g
Presuming that all the adapted weights multiply the inputs to the output layer of the inverse model
(Equation 4.3), the change in torque in movement 2 due to learning from movement 1 becomes
AT, = _nngglﬁ . (4.12)
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where g, = g(q;.4;,qG;)-

Up to this point, I have considered the effect of error in one movement on the subsequent movement. The

state-space parameter vector b , however, estimates how the effect of one movement on the next changes
with the direction of the first movement. Consider therefore directions of movement i and j. If a force field

movement in direction i is indexed “if” and a catch trial movement is indexed “ic,” then

Ayt =-ng; g, @13

and

s T =~ 4.14
Aich =-Ng;87T- (@.14)
Note that since basis functions depend on only desired trajectories, the evaluations of basis functions are

equal in catch trials and force field movements. Subtracting these two equations, and defining

A

Aidfj = Aiffj _Aich and T, = ‘Fif — T, (where “d” indicates difference), then

Aidfj = _ngfgifid . @15

Equation (4.15) therefore indicates that errors in torque in direction 1 are mapped into changes in torque in

direction 2 by the projection between the basis functions generated for the two movement directions. This

formulation now can be compared to the spatial dependence of b to determine unlearning receptive fields

in terms of torque. These receptive fields will then reveal features of the basis functions g.

4.7 Specifying basis function properties using parameters of vector-input
state-space model

The state-space model considers the relative effects of catch trials and force field movements on subsequent
behavior. Since catch trials induce large errors, and Equation 4.15 relates errors to subsequent performance

via inverse model basis functions, the model parameters could provide information about the basis
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functions. The state-space model, however, fit the input in terms of the binary presence of the force field,
and fit the output in terms of perpendicular displacement 250 msec into the movement. Equation 4.15
relates errors in torque to subsequent production of torque. The biomechanical simulation of movement in
the force field, however, estimates the torque requirements of movements made in the null field and in the
force field. The biomechanical controller and the inherent nature of force field and catch trial movements
can be utilized to use the state-space model parameters to investigate the nature of inverse model basis

functions.

To quantify the torque error in Equation 4.15, first assume that the proper additional torque required to
move in the force field is represented by T " . In force field movements, the error in torque T equals the

difference between the appropriate torque and the additional output of the inverse model (T -1 ). In
catch trial movements, no force field is applied, so any torque generated in addition to the null field

requirements is in error (T = —T ). The difference between torque error in the force field and in catch

trials precisely equals the additional torque necessary to move in the force field (T . ). All 77'; 4 S, therefore,

simply equaled the corresponding force-field appropriate additional torque T i* .

To quantify the change in torque output on the left hand side of Equation 4.15 required the estimation of
the relation between torque and positional error. I therefore simulated many trajectories, holding the
parallel component of velocity fixed and varying the perpendicular component. I found that the

relationship between perpendicular displacement and torque was almost perfectly linear. Remember that
each direction of movement j was fit with a separate model and therefore was fit with a separate vector b ;-

The quantity 2b ; (7) indicates the effect that recent dynamic input in direction i has on subsequent

kinematics in direction j. The linear mapping of this kinematic error into dynamic error therefore requires

only the correct constant multiplying 2b, (i) .

The appropriate constant for this linear mapping can be discovered by looking to catch trial movements.

The difference in perpendicular displacement between force field and catch trial movements in direction j
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equals 2d ; (from Equation 4.2). The difference in error between force field and catch trial movements in

.
direction j is T , as discussed above. The proper ratio between torque and perpendicular displacement

*

T.
errors in direction i, therefore, is / Dd The change in torque on the left hand side of Equation 4.15 can

J

finally be expressed as
At =7-b;0)/d,. (4.16)
Transforming Equation 4.15 into known quantities generates
T b,()/d, =-ngl g7, 4.17)

The product of the basis functions can now be estimated using the torque predictions of the biomechanical

model and the parameters of the vector input state-space models.

Both the input and output torques were converted to scalar measures by integrating over the first 200 msec

of simulated torque production. As a final simplifying assumption, I focused on the change of the basis

function projections as a function of the angle between movements i and j, so if ¢ =6 i 0., then

G($)=g6,)" g@®,). (4.18)

The magnitude of the desired positions, velocities, and accelerations are consistent in all directions of our
task; these desired trajectories differ only in their angular information. This task specification makes

reasonable the focus on the angular dependence of basis function projections.

To estimate the mutual basis function projections (G for a particular difference in input and output

directions ¢, I first calculated the output (left hand side) of Equation 4.17 for all eight instances (indexed

by i) of the input and output angles differing by ¢ :
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. b - (91) " 4.19)
0¢ (l) = 0% Aﬁ(p 7:91+¢ .

I also calculated the corresponding torque error inputs:

I¢ (l) — T;,»+¢ ) (4.20)

Since the individual basis functions are scalar valued, G(¢) is a scalar. Torques, however, are two-

element vectors, so Equation 4.17 is of the form Vv, = sV, . I estimated s by determining the ratio between

N VeV
the projection of v, into v, with the length of v, (§ = 2L For each input-output pair, I estimated
V-V
1"
—1NG(¢) using the equation:
0¢ ()- I¢ (@) (4.21)

E,(0) =

An average over each estimate provided the best overall estimate of —NG(¢) :
-nG(9)= Y E,(i)/8. (4.22)

From my bootstrapping of the initial perpendicular displacement data, I produced 1000 data sets resampled,

with replacement, from the original pool of 40 subjects. From these resamplings I found 1000 parameters
of the state-space model fits for each modeled direction i, including d; and l_); . I therefore produced 1000

estimates for —1G (@) for each angle difference ¢ from which I estimated confidence intervals.

The mean values of -nG reveal that the receptive field of torque learning strongly peaks around ¢ = 0, but

has significant positive components in directions far away from ¢ = 0 (Figure 4.13). Echoing the central

peak of the receptive field of angular kinematic error, the torque learning is twice as strong if torque input
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Figure 4.13: The mapping of torque error into torque compensation, as a function of the difference
between input and output movement directions. Dotted lines indicate reduced confidence in values at

0 =-90 and 90 degrees (see text). Error bars represent 95% confidence intervals of the mean as
determined by bootstrapping.

and output are in the same direction than if the input direction is —45 or 45 degrees away. At 90 degrees,
the center of the bootstrap reveals a small positive effect that is marginally significant; at 90 degrees, the
mean eigenvalues are essentially zero. The torque learning at 135, -180, and —135 degrees, however, all
have significant positive values, the mean of which are 25 — 35% of the peak in torque learning transfer.
Note that Equation 4.15 indicates that -nG maps torque error into subsequent torque output, whereas these

eigenvalues are of nG.

Recall that the torques used in Equation 4.17 are the appropriate torques (additional to the null field)
necessary to move in the force field. The two-dimensional torque appropriate to move in one direction is

roughly orthogonal to the torque appropriate to move in a direction 90 degrees away. This orthogonality

renders troublesome the estimates of the basis function projections for ¢ equal to —90 and 90 degrees. A

fairer estimate of the relation between NG and (0, then, might ignore these points, as illustrated by the

dotted lines in Figure 4.13.
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To better understand the consequences of the values of NG as a function of ¢), consider a specific

movement that generates a specific torque error 7 early in the movement. The eigenvalues at ¢) = 0
indicates that in the next movement in the same direction torque would be augmented in the opposite

direction of T , with 16% of the magnitude of 7 . In the next movement in the opposite direction
(¢ =180"), torque would also be augmented in the opposite direction of 7 , but with 4% of T ’s

magnitude. For all seven values of ¢ which have significant values of NG, subsequent torque compensation

is always in the opposite direction of the torque error input.

4.8 Modeling and simulating unlearning receptive fields using velocity-
dependent Gaussian basis functions

I next explored whether learning inverse models using Gaussian basis functions could replicate the catch-
trial unlearning receptive field measured in subjects. I considered the class of inverse models that

estimated dynamics by multiplying adjustable weights by velocity-based Gaussians
. 2 2 4.23
g() = exp(fi—c,[ 120™) 429

The centers of the basis functions were fixed in a grid spanning hand velocity space from —40 to 40 cm/s. 1
varied o to investigate how the width of the basis function altered the learning and unlearning of force
fields. As I changed basis function width, I also changed the density of the basis functions across the

velocity range: the centers of the basis functions c, were always spaced 1 ¢ apart.

Using Equation 4.17 and evaluating each basis function at a specific instant in time, the basis function

width predicts the receptive field parameterized by l; . The evaluation of wide basis functions substantially
overlapped each other in movements toward different directions (Figure 4.14A). This overlap induced
error in one direction of movement to propagate into compensation in other directions; when this overlap
spills into opposing directions, the reversal of force error parlayed into an increase in curvature in
subsequent movements. A calculation of the receptive field of force feedback using basis functions

evaluated 100 msec into movements reveals substantial negative components of the receptive field for
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sigma = 0.1 m/s, basis fns eval @ 100 msec
0.4
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Figure 4.14: Estimating receptive fields using snapshot evaluations of basis functions. A:
Evaluation of Gaussian basis functions with o = 0.1 m/s, 100 msec into the movement. Position of
subplot reflects direction of movement. Remaining figures: estimation of receptive field (b(¢)) with
varying basis function widths when bases are evaluated at 100 msec (B) or 200 msec (C) into the

movement.

|#[>90 degrees only if basis functions are sufficiently wide (Figure 4.14B). Receptive fields show very

little negative-going effects, however, when basis functions are calculated 200 msec into the movement

(Figure 4.14C). Since the estimates of receptive fields depended heavily on when into the movement basis

functions were evaluated, I built a simulation that generated full movements using the basis function



data and simulated learning of mvmts toward 270 degrees
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Biomechanical simulation: receptive fields of catch-trial induced unlearning
I
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Figure 4.15: Simulation of catch trial learning using inverse model with Gaussian bases. A: Actual
perpendicular displacement (*) with simulated perpendicular displacements of models using bases
with ¢ = 0.04 (thin) or 0.12 (thick) m/s. B: Receptive fields of simulations with different widths of
Gaussians.

representation of external forces. The simulated controller knew perfectly well the dynamics of its own
arm; the passive dynamics of the robot were omitted from this simulation. The simulated controller made

movements in the same 192 movement target set, with catch trials, that subjects experienced. The forces

- 104 -



generated by the controller were determined by an inverse model, with F=w' g, and by stiff and viscous

elements. After each movement, weights were updated by Aw = —ngﬁ , with m = 0.025. The sequences
of perpendicular displacements created by 3 sets of simulation were modeled by the state-space formulation

to determine sensitivities to dynamic input (the catch-trial receptive fields) and to determine how the

sensitivities changed with basis function width.

Although simulated controllers using narrow and wide basis functions unlearned with catch trials, only
wide basis functions featured receptive fields with appropriately negative components. For instance, in
simulated movements toward 270 degrees, an inverse model in which ¢ = 0.04 m/s adapted to reduce initial
error, unlearned with catch trials, and smoothly recovered after catch trials (Figure 4.15A, thin line). An
inverse model with wide basis functions (¢ = 0.12 m/s) also reduced initial error and unlearned with catch
trials, but dynamic input from other directions of movement induced variance other than smooth recovery
after catch trials. During fielded movements in the 2™ and 3™ sets of movement, when variance in
performance is dominated by catch trial-induced unlearning, the correlation of simulation to data jumped in
this direction of movement from r* = 0.48 to r* = 0.80. Across directions of movement, the correlation

between simulated and actual perpendicular displacements was highest for 6 = 0.10 and 6 = 0.12 m/s.

Wide basis functions also replicated the dependence of the catch-trial receptive field to input direction

(Figure 4.15B). When the simulated inverse model was driven by narrow basis functions, the state-space

parameter l; was strongly peaked at ¢ = 0, dropped off rapidly, and remained at zero for ¢ far from zero.
With increased width of basis functions, the peak of sensitivity broadened, and negative values appeared
for ¢ far away from zero. Surprisingly, just as in the state-space model fit to actual perpendicular
displacements (Figure 4.12), the receptive field of the simulated controller featured a trough which was
deepest at ¢ = -135 degrees, not ¢ = -180 degrees as the algebraic calculation predicted (Figure 4.14B).

The simulation’s receptive field most closely approximated the actual findings when 6 = 0.12 or 0.16 m/s.
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Width of Gaussian in simulation Simulation-to-data correlation of ~ Simulation-to-data correlation of
(m/s) mean perpendicular displacement mean state-space estimate of
in force field movements, 2" and  receptive field parameter “b” (1%)
3" sets (r%)

0 (producing by-0=1, b(z0=0) ---- 0.707
0.04 0.582 0.769
0.05 0.630 0.787
0.08 0.723 0.876
0.10 0.749 0.920
0.12 0.743 0.939
0.16 0.701 0.935
0.20 0.654 0.913

Table 4.1: Correlation between simulation and actual data, of force field movement perpendicular
displacement and receptive fields, as a function of the simulation’s basis function width.

In these simulations, the width of the Gaussians (6) also described the spacing of the basis functions.
When I doubled the number of basis functions such that the spacing between basis function centers was
0/2, the simulation-to-data correlation of both perpendicular displacement and receptive field went down
(average 1* reduced by 0.058 for the receptive field and 0.118 for perpendicular displacement). The
increase in density seems to lessen the interference caused by broad basis functions. This finding indicates
that basis functions need to be both broad and sparse in order to mimic subject performance and estimated

catch-trial receptive fields.

4.9 Learning constant force fields using velocity-dependent Gaussian basis
functions

Finally I removed the catch trials from the training of the simulation in order to investigate how varying
basis function widths altered adaptation to the constant force field. The perpendicular displacements of the
first movements made in the force field (toward 90 degrees) are equally bad (Figure 4.16). Inverse models
dependent on wide basis functions, however, recovered from the initial error more quickly than narrow
basis functions. The overlap between evaluations of basis functions in neighboring directions seems to aid
initial adaptation to the force field. Curvature of movements generated by narrow bases decays directly to
zero. Very surprisingly, by the eighth movement toward the target at 90 degrees and by the 25" movement
overall, movements generated by wide basis functions begin to generate curvature in the opposite direction
of the initial error. This behavior mimics the precurvature seen in subjects learning the constant force field

in Chapter 3. This result introduces the intriguing possibility that precurvature results not from torque
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Figure 4.16. Response of simulated learning using inverse model with Gaussian basis functions. A
through C: Trajectories of simulated controllers with varying Gaussian widths in first (A), 11" (B),
and 21* (C) movements toward 90 degrees. D: Perpendicular displacement of simulated movements
made toward 90 degrees, in first two sets of simulated movements. E: Perpendicular displacement of
simulated movements in all directions, smoothed with a 13-movment wide window.

- 107 -



change considerations, but as a behavior emergent from wide basis functions. Whereas the precurvature in
the simulation is transient and disappears in the second and third sets of training, actual precurvature
increased throughout the three sets of training. Despite this inconsistency between simulated and actual
behavior, the precurving of movements by the simulated controller suggests that wide basis functions could

describe the computational basis of adaptation to both stationary and nonstationary environments.

4.10 Discussion

Kinematic and electromyographic features of subjects’ movements indicate that occasional catch trials do
indeed disrupt the learning of the usually applied force field. Catch trials induced an increase in curvature
in subsequent force field movements in all directions of movement. The increase in curvature decayed
within two to four movements, but even movements immediately preceding catch trials were significantly
more curved than the movements generated by subjects who trained in a constant force field. The peak of
force-field appropriate EMG arrived at the same time into the movement both before and after catch trials.
Since the timing of the peak activation quantifies the relative contribution of feedforward and feedback
processes, the constancy of the peak timing suggests that throughout training subjects rely more heavily on
feedback control than the constant force field subjects. Previous studies that included sudden changes in
dynamics interspersed within dynamic force training (Shadmehr and Brashers-Krug, 1997; Goodbody and
Wolpert, 1998; Sainberg et al, 1999) represented the performance during the sudden changes in dynamics
as representing the activity of an inverse model which was learning the usually applied force field. The
sudden changes themselves, however, generate a different response to training than stationary dynamic

training.

Although training in a nonstationary dynamic environment induces different learning and behavior across
the training session, the response of the subjects to sudden changes in dynamics reveals important new
details of the human motor learning system. As evidenced in movements toward 90 degrees, catch trial
subjects do learn how to move substantially straighter and more accurately in the force field. With each
catch trial, however, the force field-specific knowledge of dynamics is partially unlearned, and subsequent
movements have significantly more curvature. As demonstrated in Chapter 2, the orientations of resultant

vectors of movement-initiating EMG provide a window into the adaptation of the inverse model. Before
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catch trials, the resultant vectors pointed in a direction appropriate for the force field, clockwise from null
field orientations. After catch trials, however, each muscle’s resultant vector rotated counterclockwise,
back toward the null field orientation. The catch-trial induced rotations indicates that the sudden removal

of the force field caused specific unlearning of the inverse model.

The state-space models reveal how the human adaptive motor control system could both learn in the initial
exposure to the force field and unlearn after catch trial exposure. States in these models equaled the
component of perpendicular displacement created by the human feedforward controller. The scalar input
state-space representation depended on only four parameters: the initial state value, an exponential decay of
state, a scalar input response which changed state based on the last dynamic environment, and a scalar
quantifying the component of curvature attributable to the robot. This simple model fit well the initial
recovery to large curvatures early in training, large negative curvatures in catch trial movements, jumps in
curvature after catch trials, and recovery after jumps. The interaction between the a and b parameters even
fit the high level of curvature in movements before catch trials, compared to constant force field subjects.
The scalar input state-space architecture confirms that the human CNS could implement a simple adaptive
control algorithm to learn and unlearn the viscous forces. The scalar input model, however, left some
unexplained variance in the time series of movement curvatures. Much of this additional variance was
explained by a vector-input formulation, which also considered how catch trials affect subsequent

performance across directions of movement.

This vector model revealed an unexpected receptive field of learning. The parameter vector b represented

how the curvature of subsequent movements was differently affected depending on the movement direction

of dynamic input. Averaged across directions, the parameter vector b revealed that subsequent curvature
was most strongly affected by recent dynamic history when the input (force field on or off) and the output

(subsequent movement) were in the same direction. As observed in kinematics and the scalar input model,

this element of b indicates an increase in curvature following catch trials. Catch trials in neighboring

directions affect curvature half as much, indicating a sharp peak of unlearning. When catch trials occurred

—180, —135, or 135 degrees away from the output movement direction, however, the elements of l; are
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significantly negative. These significant negative values indicate that catch trials in these directions
actually induce small reductions in curvature in the output direction. The receptive field of learning, as
represented by curvature, reflects a “Mexican-hat” function, in which the response of the human adaptive

controller can have opposite signs depending on the input movement direction.

Since the viscous force field always pushes subjects 90 degrees clockwise from their instantaneous velocity
vector, the natural metric of motor error in our task is movement curvature, as measured by perpendicular
displacement. Curvature, however, is defined in reference to movement direction. The relationships
between curvature and hand kinematics, joint kinematics, force applied at the hand, and joint torque all
change with movement direction. The natural coordinates of dynamic properties lie in fixed hand and joint
coordinate systems that do not rotate with direction. To elicit information about human estimation of
inverse dynamics, the angular error needed to be transformed to a natural dynamic metric. I therefore used
the biomechanical model to transform the perpendicular state-space parameters into errors and subsequent

compensations in torque.

The mapping of torque errors into torque adjustments reveals interesting properties of the human inverse
model, especially if inverse dynamics are computed using basis functions. A technique to model unknown
functions is to fit the input/output relationship with basis functions multiplied by scalars. Each basis
function depends on input variables and spans some subset of input space. Function approximation using
focused radial basis functions is mathematically equivalent to approximating input/output mappings using
layers neural networks (Poggio and Girosi, 1990; Girosi et al, 1995). A particularly simple representation
of inverse dynamics calculates nonlinear functions of movement states, then calculates inverse dynamics by
specifying appropriate weights to multiply basis functions spanning those nonlinear functions (Equation
4.4). This simplification restricts the update of weights to the output layer. Such a simplification, however,
is reasonable, as the inverse dynamics of robotic and human arms can be represented as nonlinear
transformations of position, velocity, and acceleration linearly multiplying a vector representing inertial
quantities (Slotine and Li, 1991; Sanner and Slotine, 1995). This simplified representation has been
simulated to replicate human motor learning of viscous fields (Slotine and Kosha, 1999). The neural

computation of inverse dynamics, therefore, can be reasonably considered to be represented by basis
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functions (Mussa-Ivaldi, 1999). The relationship between torque error and subsequent torque
compensation, then, reveals how these basis functions project onto each other as a function of movement

direction (Equation 4.15).

The estimates of the mutual projection between basis functions G(¢) showed that the inverse model basis
functions have a sharp peak in correlation around zero angle difference in movement direction, but

significant positive correlation with large angle differences in movement direction. The estimates were

largest when ¢ =0°, or when the input movement direction (where torque error occurred) equaled the

output movement direction (where responsive torque compensation occurred). The estimates were 50%

smaller when the input and output movement directions were 45 degrees apart, and approached zero when
¢ =90°. These data points suggest a narrow overlap between the spans of basis functions. Many models

of inverse model formation presume that inverse models formed when training in viscous fields realized the
velocity dependence of force (Kawato et al, 1987; Shadmehr and Mussa-Ivaldi, 1994; Sanner and Kosha,
1999). Computational (Schaal and Atkeson, 1998) and psychophysical (Gandolfo et al, 1996) studies have
suggested that each basis function spans a local subset of velocity space. The shape of the estimates curve
between —90 and 90 degrees would support the hypothesis that inverse model basis functions are local and

depend on velocity.

Mutual projections at -180, -135, and 135 degrees, however, have significant positive values. Basis
functions that are local should not have significant positive correlations when they are realized at two far
away, even opposing, directions of movement. This finding suggested that basis functions were wide
enough to generate interference across directions, which was confirmed by simulating a controller with an
inverse model with velocity-dependent basis functions. Simulations that relied on wide, sparse basis
functions to estimate the viscous field mimicked both the variance across movements in subjects’
performance and the angular dependence of the sensitivity to catch trials. Previous models of human motor
learning presumed narrow basis functions, since wider basis functions could lead to interference across
velocity space (Schaal and Atkeson, 1998). The discovery of interference across velocity space indicates

that computational elements in the adaptive motor system are not fully optimized to minimize error. A
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computationally efficient method of constructing a basis function representation strives to both
approximate arbitrary functions and to constrain solutions to smooth forms (Poggio and Girosi, 1998). The
high correlation between wide Gaussian basis functions and subject performance may indicate that the
adaptive motor system is optimized to learn only dynamics with low frequency components in velocity

space.
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Chapter 5 Discussion: Computational and neur al bases of
human motor learning

In this thesis, psychophysical and electromyographic metrics have been recorded from humans learning
stationary and nonstationary viscous force fields. These metrics reveal that movement-to-movement and
across multiple sets of training, subjects learned force-field specific dynamics which informed their
feedforward control. Our subjects used this information to produce straighter, more accurate movements
over the course of training. Catch-trial induced unlearning and subsequent recovery indicated that the
force-field specific knowledge rose and fell with each new exemplar. The difference in performance in
stationary and nonstationary environments, however, also indicates that humans optimized performance
based on longer term features of dynamics. Learners of the stationary force field did not converge upon
unperturbed trajectories, but slightly precurved their movements, which lessened the incurred torque
change cost. Learners of the nonstationary force field peaked their force field appropriate muscle
activation 80 msec later into the movement than their stationary environment counterparts. Since the
timing of peak activity remained constant even across catch trials, the lateness of activation suggests a
heightened dependence on feedback control in order to produce good movements in the force field and not-
so-bad movements during catch trials. The asymptotic performance of both sets of subjects suggests both
specific learning of forces, generating predictions of the dynamics of each movement, and broader

adaptation of strategies requiring accommodation over many movements.

The inverse dynamic model, providing feedforward control, is likely trained by the output of the feedback
controller. Three theories compete to explain how inverse model weights could be updated, based on distal
error in acceleration (Jordan and Rumelhart, 1992), sliding variables of position and velocity error (Sanner
and Kosha, 1999), or directly from the feedback error command (Kawato et al, 1987). The previous two
models presume stiff and viscous error feedback, however, and presume feedback torque is proportional in
magnitude and opposite in direction to distal error. All three models therefore specify feedback control that
is available to the CNS as a training signal. The electromyographic composite traces most appropriate for
force field movements are consistently shaped, but shifts to earlier into the movement as subjects train.

The neural output of subjects who learn stationary dynamics suggests a simple learning algorithm: in an
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attempt to minimize future error, the previously generated feedback torque simply augments subsequent

feedforward torque.

The transition from feedback to feedforward torque, on a shorter time scale, founds the quantification of
receptive fields and basis functions of short-term dynamic learning. During catch trials, the sudden
removal of learned viscous forces produces kinematic and torque error in the direction opposing initial
error caused by the forces. The torque error is corrected by feedback torque that actually points in the same
direction as force-field appropriate feedforward torque. Weights of the inverse model adjust in response to
this odd exemplar, producing increased curvature in the next movement in the force field in that same
direction. The same weights adjusted by the catch trial feedback, however, could inform movements in
other directions as well. The dependence of the feedback-induced torque change describes receptive fields
of motor learning, where here receptive fields connote the full transformation between learning and
behavior. Previously, motor learning receptive fields have been shown to have positive transfer across a
narrow range of movement directions (Gandolfo et al, 1996) and across different workspaces, with
information transferring in joint coordinates (Shadmehr and Mussa-Ivaldi, 1994). These studies relied on a
steady-state approximation to learning, however, and could not investigate the fine structure of learning in
response to single movements. In the space of movement curvature, catch trial induced unlearning reveals
a narrow band of positive transfer, but also a reciprocal band of negative transfer. The adaptation of
movement accuracy due to catch trials actually reverses depending on the location of dynamic input. In
torque space, when input and output movement directions are far away, feedback torque direction is
conserved in subsequent augmentation of feedforward torque. This conservation is inappropriate, however,

since the direction of field generated force reverses in opposing directions.

The negative transfer of learning in certain directions of movement indicates unexpected properties of the
basis functions underlying the calculation of inverse dynamics. Presuming a neural network architecture of
inverse modeling, adapting weights multiply basis functions which depend on desired trajectory parameters
and therefore change with direction of movement. Radial basis function representations approximate well
arbitrary functions (Poggio and Girosi, 1990), but are especially warranted for inverse dynamics since they

can be represented by a vector on inertial parameters multiplying known nonlinearities of movement states
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(Slotine and Li, 1991; Sanner and Kosha, 1999). The least-mean-squared learning rule of inverse dynamics
specifies a weight change opposite in sign and proportional to the product of the basis function and the
error in torque. The augmentation in torque in a subsequent movement equals that realization of the basis
function times the weight change. The mapping of inputted torque error to outputted torque compensation,
as quantified in the receptive field, therefore reveals the projection between the basis functions calculated
in the input and output movement directions. The receptive field in torque space suggests that the basis
functions have a sharp positive peak, but also significant positive components in directions where velocity
and acceleration have reversed signs. Previous hypotheses have suggested that inverse dynamic basis
functions could be sharply focused in velocity space (Gandolfo et al, 1996; Schaal and Atkeson, 1998) The
basis functions suggested by receptive fields require a wider basis function spanning larger regions of

velocity space, possibly producing interference.

The results of this thesis could indicate the involvement of more than simply motor cortical cells in motor
learning. A first approximation of my results could be explained by the firing patterns in the motor cortex.
Rotation of movement-initiating muscle activation correlates well with the predictions of our
anthropomorphic biomechanical controller. Since changes in EMG correlate well with changes in motor
cortical activity (Sergio and Kalaska, 1997), the rotations in muscle activation could indicate a rotation in
the directional dependence of neurons in the primary motor cortex (Georgopoulos et al, 1982). Preliminary
studies have indeed measured such a rotation of motor cortical preferred direction in monkeys learning a

viscous force field (Benda et al, 1997; Li et al, 1998).

The receptive field suggested by catch-trial induced unlearning, however, indicates a neuronal substrate
which is broadly tuned to velocities. To account for the negative-going components of the receptive field
which approach one half of the peak strength, basis functions need to have sizeable components across all
directions of movement. The tuning of cerebellar cells to velocity has been measured as much broader than
motor cortical cells (Fortier et al, 1993). Just as the receptive fields of neurons in the visual system subtend
larger angles in higher centers (Ahissar and Hochstein, 1997), neurons in higher motor cortical areas and
the basal ganglia may also span larger velocity spaces than do motor cortical cells. When humans learn a

visual discrimination task, the grain of the relevant information determined the level at which plasticity
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occurred (Karni, 1996; Ahissar and Hochstein, 1997). A motor task featuring high frequency information
could reveal one of two possibilities. If humans cannot learn fields with high frequencies, then perhaps
plasticity is only possible in higher centers and the link between motor cortex and muscles is relatively
hard-wired. On the other hand, a higher frequency task could uniquely spark plasticity in the more finely
tuned motor cortex, which could be verified by testing for generalization outside the trained workspace

(Shadmehr and Mussa-Ivaldi, 1994).

My work has focused on an inverse model of dynamics as the sole driver of feedforward control. A second
computational model, termed a forward model, calculates the forward process of the plant. A forward
model transforms an efferent copy of descending commands into a prediction of state, or position and
velocity of the arm (Miall and Wolpert, 1996). Previous work has established the importance of forward
models in canceling self-induced afference, preparing other systems for the consequences of movement,
and combating neural delays in order to stabilize control (Miall et al, 1993; Wolpert et al., 1995a;Flanagan
and Wing, 1997). An accurate forward model could even help train an inverse model (Jordan and
Rumelhart, 1992). A novel control architecture has hypothesized that forward models could go beyond
complementing the inverse model to actually supplementing information early in the movement, generating
commands that are incorporated into the movement-initiating feedforward control signal. Kinematic
movement features near the end of movement support such an involvement from the forward model
(Bhushan and Shadmehr, 1999). The work presented here can only determine the receptive fields and basis
functions associated with the computation of inverse dynamics. These experiments do not determine
whether the forces produced result from a true inverse model or a forward model in a feedback loop that
effectively inverts the plant. Further theoretical and psychophysical work is necessary to determine
whether the adaptation and computation presented here lies in a forward model, and inverse model, or some

temporally changing combination of both.

I have presented here evidence that humans adapt an inverse model of dynamics while training in a novel
viscous force field. The aim of this adaptation is not to replicate unperturbed behavior, as well-learned
movements of learners of the stationary force field significantly curve their movements to lessen dynamic

cost. While precurvature rules out a strict interpretation of the minimum jerk hypothesis and necessitates
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the consideration of dynamics in movement planning, asymptotic behavior differs markedly from minimum
torque movements, indicating that kinematic smoothness likely outweighs dynamic smoothness. The
modeling of inverse dynamics makes possible the execution of much straighter and more accurate
movements than during initial force field exposure. Groups of subjects who train in stationary and
nonstationary dynamics both learn to rotate muscle activation functions, which likely indicates a force-field
specific adaptation of sharply-tuned velocity-dependent basis functions. The short-term unlearning induced
by catch trials constrains the inverse dynamic basis functions to broadly tune and sparsely represent
velocity space. Further studies of behaving animals and humans are necessary to determine the importance

of these neural substrates on the full repertoire of biological motor control and learning.
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