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In the main document, we used the framework of state estimation to consider the problem of 

reacting to environmental changes.  In that framework, the stream of predictions about the near 

future is integrated with the stream of observations. In order to consider how the state estimation 

approach compares to other approaches, here we present two alternative models. 

 

Alternate Hypothesis 1 

One hypothesis, called “decision making model”, predicts that reaction time to a stimulus 

increases as the uncertainty about that stimulus increases.  For example, according to Hick’s law 

(a standard theory regarding latency of the movement), the reaction time of the movement 

increases as uncertainty increases (Hick, 1952; Hyman, 1953). In a more recent extension of this 

model (called LATER), the model explains that reaction time is determined by the log likelihood 

ratio between two choices (Carpenter and Williams, 1995): when the task is to choose one of two 

options as soon as possible, the latency is described with the equation ( ) /RT S rθ= − , where 
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=  , θ  is a threshold of neural activity, and  is the rate of the increase of the 

neural activity.  This equation indicates that the reaction can be made if a neural activity has 

reached the threshold.  In this model, activity linearly increases as time progress, starting from the 

bias S. For example, if the likelihood of the sensory stimulus E for hypothesis 1 was higher than 

that for hypothesis 2, the subjects reacted sooner. The LATER model has been applied to a large 

body of data in decision making task (Bichot and Schall, 1999; Kim and Shadlen, 1999; Reddi 

and Carpenter, 2000).    
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To apply the LATER model to our data, suppose that reaction to the jumped target is a decision 

making process: switch the estimated target position form the first target  to the jumped target 

.  We show the predictions of this model in Fig. S1A.  In order to calculate the response, we 

used the optimal feedback controller when the estimated target position was forced to change 

from  to  when the decision making about the switch was made. We see that it predicts very 

different results than what we saw in our data.  For a given 2nd target uncertainty, reducing the 1st 
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target uncertainty makes the reaction time longer.  For a given same 1st target uncertainty, 

reducing the 2nd target uncertainty makes the reaction time shorter.  However, we did not find any 

evidence in support of this prediction, as there were no main effects of combinations of target 

uncertainty in the latency of the reaction to the jumped target (F(4,40)=0.81, p=0.526, mean is 

128msec), while the latency of the reaching were clearly altered by the 1st target’s uncertainty 

(Figure 1C).  Instead of the variation in the latency in the reaction to the jumped target, we saw 

clear variation in the profile of the response.  

 

Alternate Hypothesis 2 

Let us consider another hypothesis, this time based on Bayesian integration.  In this hypothesis, 

we have a prior observation for the target, and see that it has jumped to a new location.  We 

integrate the new information with the old, and arrive at belief about target position.   The 

weights of the Bayesian integration are determined by the variances of prior and the measurement 

information. In the Bayesian integration, the integrated target follows this equation: 
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This prediction was examined with a simulation, as shown in Figure S1B. In order to calculate the 

response, we used the optimal feedback controller when the estimated target position was forced 

to change from  to . Because the integration is conducted just a single time step, the 

estimated target does not converge to the jumped target but is simply a weighted average of the 

1st and 2nd targets.   We see that the response (X-accel.) has an invariant peak response time, 

which is indicated with the gray line. As a result, the zero crossing time is also invariant.  This 

characteristic was held even when the motor command was smoothed with a running average 

( ) as shown in Figure S1C. Both are inconsistent with our data because we 

found that the peak time from the target jump shifted later as the peak response was larger (Figure 

4B). 
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Figure S1.  Predictions of alternate models.  A. Decision making model.  B. Single-step Bayesian 

integration model.  C. Smoothed single-step Bayesian integration model.  Format is as in Fig. 2C. 
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