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Our sensory observations represent a delayed, noisy estimate of the environment. Delay causes instability and noise causes uncertainty.
To deal with these problems, theory suggests that the processing of sensory information by the brain should be probabilistic: to start a
movement or to alter it midflight, our brain should make predictions about the near future of sensory states and then continuously
integrate the delayed sensory measures with predictions to form an estimate of the current state. To test the predictions of this theory, we
asked participants to reach to the center of a blurry target. With increased uncertainty about the target, reach reaction times increased.
Occasionally, we changed the position of the target or its blurriness during the reach. We found that the motor response to a given second
target was influenced by the uncertainty about the first target. The specific trajectories of motor responses were consistent with predic-
tions of a “minimum variance” state estimator. That is, the motor output that the brain programmed to start a reaching movement or
correct it midflight was a continuous combination of two streams of information: a stream that predicted the near future of the state of the
environment and a stream that provided a delayed measurement of that state.
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Introduction
Time delay and noise are fundamental properties of information
processing in the nervous system. When our sensory apparatus
reports an event, that event actually took place some time ago.
Forward models were initially proposed as a mechanism by
which the nervous system could predict the sensory state (Miall et
al., 1993; Wolpert and Miall, 1996). For example, for very brief
actions like saccades in which the movement is complete before
the arrival of sensory information, motor commands are cor-
rected midflight via a process that predicts the state of the eyes
during the movement (Chen-Harris et al., 2008). If we generalize
this idea to movements that have a longer duration (beyond 100
ms), we face an interesting problem: the “top-down” stream of
predicted sensory states always leads the “bottom-up” stream of
delayed sensory observations. Presumably, the brain combines
these two streams to form its estimates of sensory states (Vaziri et
al., 2006). Because our observations are noisy and our predictions
are uncertain, the process of combining the two streams of infor-
mation should be weighted by our confidence about each source
(Körding and Wolpert, 2004). The implication is that, during a
single movement, motor output should depend on a continuous,
weighted combination of the streams of internal predictions and
sensory observations. Here, we report that the motor output dur-
ing a simple reaching movement indeed carries a signature of this
integration process.

Consider a task in which one is reaching to a target but the
target jumps to a nearby location. One view is that, after some
time delay �, the internal representation of the target by the brain
will also jump to the new location. In this scenario, the latency of
reaction and the rate of change in the motor output are only
functions of the visual properties of the second target. However,
in the continuous integration model, the brain has predicted the
state of the target from time t � � to time t when the sensory
system reports that, at time t � �, the target jumped to a new
location. Rather than discarding the predicted states, one com-
bines the predictions with the observations with a weighting that
depends on the uncertainty of each source of information. Be-
cause the process of combining the two streams is continuous, the
belief about the state of the target gradually converges onto the
second target. In this scenario, latency of reacting to the second
target is constant, yet the rate of change in the motor output
depends strongly on the uncertainties associated with the two
targets. For example, the brain should be less willing to change
the motor output if the delayed sensory information is less certain
than its own predictions.

Here, we present a technique that, on a trial-by-trial basis,
allowed us to control the subject’s uncertainties about the sensory
feedback and its own predictions. We used Bayesian estimation
and optimal feedback control theory (Liu and Todorov, 2007) to
predict how the motor output should change as the properties of
the reach target changed during a movement and then tested the
predictions with behavioral experiments.

Materials and Methods
Twenty-eight subjects (7 males and 21 females; age range, 20 – 46 years
old) held the handle of a robotic arm (Ariff et al., 2002) in a darkened
room and reached to “blob”-like visual targets that were projected
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(EP739; Optoma) (refresh rate is 70 Hz) onto a horizontal screen directly
above the plane of motion. All subjects were healthy and naive about the
objective of the experiment. The measured maximum brightness of the
projector on the screen was 3500 cd�sr/m �2, and the minimum was 0.05
cd�sr/m �2. We used Matlab (MathWorks) and Cogent Graphics (Uni-
versity College London, London, UK) to control the visual stimuli. A
light-emitting diode (LED) positioned in the handheld handle of the
robot provided continuous, real-time feedback of hand position at all
times during the reaching movements. Protocols were approved by the
Johns Hopkins School of Medicine Institutional Review Board, and all
subjects signed a consent form.

Typical trials are shown in Figure 1, A and B. A trial started when the
robot positioned the hand inside a start box (5 � 5 mm). A fixation cross
was projected at 10 cm with respect to the start box with maximum
luminance. This fixation was maintained throughout the trial, and head
position was controlled using a chin rest. A blob representing the target of
the reach appeared at a random position (distance of 20 cm with respect
to start position, at an angle of �15 o to 15 o with respect to the center
line) at a random time (0.5–2.5 s after presentation of the fixation cross).
In some trials (see below), the characteristics of the target stimulus, i.e.,
its center and/or its luminance, changed just as the reach started (hand
speed exceeding 3 cm/s). We were interested in quantifying the reaction
to this change.
The visual stimulus. Gaussian blobs have been used extensively to control
uncertainty about the location of a visual target, particularly in the field
of visual psychophysics (Solomon et al., 1997; Schofield and Georgeson,
1999; Solomon, 2002; Baldassi and Burr, 2004; Heron et al., 2004; Tassi-
nari et al., 2006). To produce a blob, we set [R,G,B]� L�[1,1,1], where L�
is associated with luminance of the visual signal. We then drew a Gauss-
ian in which luminance was as follows:

L�� x,y� � A
1

��2�
exp� � ��Tx � x�2 � �Ty � y�2�/�2�. (1)

In this equation, A is the amplitude of the blob, � is its SD, and (Tx,Ty) is
the center of the blob. This parameter A was constant at 27.6 so that the
maximum luminance of the smallest (� � 1.26 cm) blob was 25% of the
maximum luminance of the projector. We manipulated the properties of
the blob in two ways, by changing its center (Tx,Ty) or by changing its
luminance through the parameter �. For example, we found that, as � of
the blob increased, so did the variance of reach endpoints (see Results),
suggesting that the blob was an effective method to vary subject’s uncer-
tainty about target position.

Target jump. In one-third of the trials (selected randomly), the blob
was erased and a new blob was drawn to either the right or left (with equal
probability) of the original target. The amplitude of the shift was �5 o

(�1.75 cm perpendicular to the target direction). The timing of the jump
was aligned to reach onset (hand speed exceeding 3 cm/s). Projectors
have an intrinsic and sometimes variable delay in responding to com-
mands. Therefore, we used a photo sensor (S1223; Hamamatsu Photon-
ics) to detect the precise moment when the visual information was up-
dated on the screen (	50 ms after movement start). Hand position data
were aligned by this temporal marker.

Main experiment. Subjects (n � 11) performed 720 trials composed of
10 blocks on 2 d. Each block had 72 trials. On 32 trials, the SD of the target
changed without a change in its center. On eight trials, the SD did not
change but the target center changed. On 16 trials, both the SD and the
target center changed. On the remaining 16 trials, the target did not
change. In trials in which the SD changed, we set the SD of the first and
second targets as follows: [1st SD, 2nd SD] � [�S, �M], [�L, �M], [�M,
�S], [�M, �L], where �S � 3.80 cm, �M � 6.32 cm, and �L � 7.58 cm (S,
small; M, medium; L, large). For trials in which the SD did not change, we
set the SD of the first and second targets as follows: [1st SD, 2nd SD] �
[�M, �M]. For trials in which the target center changed, the blob center
was displaced by �5 o (�1.75 cm with equal probability).

Task instructions. Subjects were instructed that, once the blob ap-
peared, they should react as soon as possible and position the handheld
LED at its center. They were told that, occasionally after movement ini-
tiation, the blob will move and they should react as soon as possible. At

the end of each trial (when the hand speed fell below 3 cm/s), a box of size
5 � 5 mm appeared at the center of the blob. If the handheld LED was
within that box and if the maximum reach speed was between 0.7 and 1.0
m/s, they were rewarded with a positive score. Otherwise, feedback was
provided to increase or decrease speed and the score did not change. Note
that the handheld LED was visible throughout the entire experiment.
Therefore, the objective was to make a movement that accurately placed
the handheld LED at the center of the visual target. The blocks were

Figure 1. Experimental procedures and results from the control 1 experiment. A, Subjects
held a handle that housed an LED (red mark) and fixated a cross at 10 cm with respect to the start
box. The reach target was a fuzzy blob that appeared at a random position and at a random time
(0.5–2.5 s) after the presentation of the fixation cross. Subjects were instructed to start their
reach as soon as they saw the target and terminate their reach by placing the LED in the center
of the blob. The LED was always on. After reach completion, feedback was provided to indicate
distance to the center of the blob. B, On a fraction of trials, at	100 ms after reach initiation, the
center of the blob and/or SD changed. C, Endpoint SDs and reaction times (RT) are shown as a
function of blob SD in the task shown in A. As the target uncertainty increased, reaction times
increased, and movements ended with greater spatial variance with respect to target center.
Data points are mean and SEM across subjects.
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separated by a brief break. Before start of data collection, subjects partic-
ipated in a familiarization block in which target centers occasionally
jumped.

Control 1. The objective of this control experiment was to determine
whether varying the � of the blob effectively varied the subject’s uncer-
tainty about the center of the target. In the experiment, the target re-
mained stationary and its � was held constant throughout the trial but
changed from trial to trial. We tested six � values (the values are indicated
in Fig. 1C). Subjects (n � 28, including the 11 subjects from the main
experiment, 11 subjects from control 2 experiment, and 6 new subjects)
performed four blocks of 72 trials. In each block, the six blobs were
presented 12 times in a randomized order. Our dependent measures were
reaction time and endpoint accuracy.

Control 2. In experiment 1, the center of the blob changed at the
moment its SD changed. Changes in SD of the blob affected its visual
appearance (e.g., its luminance). In this control experiment (n � 11
subjects), first, the SD of the blob changed and then, after 100 ms, its
center changed. Therefore, unlike the main experiment, in control 2, the
luminance values of the first and second targets were identical.

Data analysis. We defined the y-axis as the line that connected the start
point and the fixation cross (direction of initial motion of the hand) and
the x-axis as a line perpendicular to this axis. To compare reach trajecto-
ries with various targets, we rotated each reach so that the line connecting
the start position with the initial target was along the y-axis. We excluded
reach trials in which hand speed at time of target jump was 
2 SDs
outside of the mean for that subject.

We categorized data for each subject into 11 sets: no target jump trials
(called baseline) and five combinations of the change of SD of the blob
for the right and left target jumps. For each subject, we calculated the
mean hand path of each category and then subtracted the baseline tra-
jectory. The response to a target jump was quantified as half the differ-
ence between right and left jump in the mean hand acceleration along the
x-axis (equivalent to mirroring the response to the left jump along the
y-axis before averaging it with the right-jump trials). The response onset
was defined as the time at which the acceleration along the x-axis ex-
ceeded 10 cm/s 2 for at least 100 ms. The slope of the response (its rate of
change) was calculated as the difference of acceleration amplitudes at 160
and 140 ms with respect to the onset of the target jump. The maximum
response was calculated as the peak value of x acceleration.

Simulations. The change in target position produced a response in the
trajectory of the hand. The hypothesis that we wanted to test was that,
when the target jumped, the subject’s representation of the target posi-
tion behaved Kalman-like (Kalman, 1960) and gradually moved from its
initial position to the observed position. We performed a set of simula-
tions to determine what the hypothesis predicted regarding hand
trajectories.

We used the approach suggested by Liu and Todorov (2007) to pro-
duce reach trajectories in the context of target jumps. In this framework,
the controller is represented as a time sequence of feedback gains. At each
instant of time, this gain is applied to the estimate of state, producing a
motor command that moves the limb. This state estimate includes the
state of the controlled object (the handheld LED) and the target. A critical
component of our simulations was the feature that we could manipulate
the uncertainty of the state estimates via the blobs that represented reach
targets. We wanted to predict how changes in uncertainty should affect
the motor reaction to the change in stimulus properties.

System dynamics. We modeled the dynamics of the arm as a point mass
in Cartesian coordinates. The state vector is given by [px, ṗx, py, ṗy, fx, fy,
Tx, Ty], where p was hand position, f was a muscle-like force, and T was
target position along the x- and y-axes. We discretized the system dynam-
ics with time step � � 10 ms. Thus, the system dynamics were as follows:

x (k �1)�Ax (k )�Bu (k )�� (k ),

where
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m is a mass (0.3 kg), � is a time constant reflecting first-order dynamics of
muscles (40 ms), and � was Gaussian with zero mean and covariance
�� � diag(0, 0, 0, 0, �u

2,�u
2,�Tu

2 ,�Tu
2 ).

To represent time delay in transmission of information, we extended
the state vector. An event at time step k was sensed by the first stage of
sensory processing and then transmitted to the next stage at time k � �,
where � � 10 ms. This information continued to propagate and became
“observable” with a delay of 100 ms. Thus, we modeled delay by first
extending the state vector xe

(k) � [ x0
(k), x�

(k), x2�
(k), x3�

(k),…, x�
(k)]T and then

allowed the system to observe only the most delayed state x�
(k). The ex-

tended “state update equation” was as follows:
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in which the covariance of the extended state noise is Q � diag(0, 0, 0, 0,
�u

2,�u
2,�Tu

2 ,�Tu
2 ,01 � 88). As a result, our “controller” was able to observe

the hand position and the target position only in the most delayed state
x�

(k). This idea was reflected in the “measurement equation”:

y�k� � Hxe
�k� � ��k�

H � O4�88,Hh�
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The measurement noise 
 was zero mean with covariance R �
diag(�p

2,�p
2,�T

2 ,�T
2).

State estimation. The objective is to optimally (least variance) estimate
the states of our body and the environment despite the noise and the
delay in the sensory measurements. The standard Kalman filter provides
the solution to our problem. Suppose that, in a trial, the discrete time
steps are referred to with variable k. Let us define x̂ (k|k � 1) to be a prior
state estimate at step k given the prior observations up to and including
step k � 1. We define x̂ (k|k ) to be a posterior state estimate at step k given
measurement y (k ). We define the estimation error of x̂ (k|k � 1) and x̂ (k|k )

as

e (k|k �1)�x (k )�x̂ (k|k �1)

e (k|k )�x (k )�x̂ (k|k ). (5)

Then, the uncertainty of the state estimation is as follows:

P (k|k �1)�E[e (k|k �1)e (k|k �1)T]

P (k|k )�E[e (k|k )e (k|k )T]. (6)
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The objective of the Kalman filter, the optimal state estimator, is to
update the state estimation with the following equation:

x̂ (k|k )�x̂ (k|k �1)�K (k )( y (k )�Hx̂ (k|k �1)), (7)

where K (k ) is the Kalman gain. The Kalman gain is a function of the
uncertainty of the estimated state and the measurement noise such that

K (k )�P (k|k )HT(HP (k|k �1)HT�R̂ (k )) �1, (8)

where R is a measurement noise. The Kalman gain updates the uncer-
tainty of the estimation:

P (k|k )�(I�K (k )H)P (k|k �1). (9)

For this computation, the estimator needs a model of the system dynam-
ics (indicated by hat ˆ*), system noise, and the observation noise:

x̂ (k�1|k )�Âex̂ (k|k )�B̂eu (k )

P (k�1|k )�ÂeP
(k|k )ÂT

e �Q̂, (10)

where u (k ) is the efference copy of the motor command.
Optimal feedback control. The target jump task requires subjects to

react to the shift of the target. The reaction to this change depends on the
“gain” of the sensorimotor feedback loop. Optimal control theory pre-
dicts that this gain depends on the accuracy requirements of the task
(Todorov and Jordan, 2002; Diedrichsen, 2007; Liu and Todorov, 2007;
Chen-Harris et al., 2008; Izawa et al., 2008). We used the theory to for-
mulate the feedback controller and then used it in conjunction with the
state estimator to predict hand trajectories.

The accuracy and motor costs of the tasks were specified by

J � �
K�0

n�r�1

u�k�TLu�k� � xe
�k � 1�T S�k�1�xe

�k � 1�, (11)

in which the first term penalizes the motor commands and the second
term penalized the reach/tracking error. L and S weigh each cost term.
Because the cost function is quadric, system dynamics are linear, and the
noises follow a Gaussian distribution (LQG problem), the problem of the
optimal feedback control comes down to the two separate problems:
estimation of the gain for the deterministic system (LQ problem) and
estimation of Kalman gain. The cost is minimized with the following
feedback control law:

W�k� � S�k� �k � n � r�

W�k�1� � Âe
T�I � W�k�B̂eL

�1B̂e
T�W�k�Âe � S�k�1� �k � n � r�

(12)

u�k� � �L�k� � B̂e
TW�k�1�B̂e�

�1B̂e
TW�k�1�Ăex̂e

�k|k�1�

For the simulation, our cost function was

J�wp( px�Tx) 2�wp( py�ty) 2�wr(ux
2�ux

2), (13)

where wr was set to 0.1 8 throughout the reaching duration, and wp was
5 � 0.1 5 between 0 and 500 ms and grew linearly thereafter with slope
5 � 0.1 4.

Model parameters. We assumed that, when a target blob was presented,
it produced measurement noise with a variance that was scaled by the
variance of the blob. We supposed that the scaling factor of the subject’s
uncertainty of the target was 3% of SD that we used to project the visual
blob. We explored this scaling factor so that the endpoint variance of the
simulation could be similar to the experimental data (compare Figs. 1C,
2 D). In the simulation of the target jump task, the target position in the
state vector was placed at (0, 20) cm and jumped at time step k � 12 to
(1.75, 20) cm. A target update noise (a random walk model of the target
position) represented the increase of the uncertainty of the target posi-
tion attributable to the target jump, which was �Tu � 0.0015. We set the
measurement noise of the hand position at �p � 0.01, and the SD of the
initial uncertainty of the hand position was 0.0035. All noise factors were

scaled by the time step of the simulation. The complete Matlab code used
for all simulations is available at www.shadmehrlab.org.

Results
Subjects moved a handheld LED in a darkened room and placed
it as accurately as possible in the center of a blob-like visual target
(Fig. 1A). The handheld LED was illuminated at all times. In our
control experiment (control 1), we wanted to determine whether
the luminance of the visual stimulus (� in Eq. 1) was an effective
method in controlling the subject’s uncertainty about the loca-
tion of the center of the target. Indeed, we found that, as the
luminance properties changed, both the latency of the reaction
(i.e., movement start time) and the distribution of the movement
endpoints was altered (Fig. 1C). That is, as the � of the blob
increased, the SD of reach endpoints (two-way ANOVA, F(5,135)

� 4.04; p � 0.002), as well as reaction times (two-way ANOVA,
F(5,135) � 23.19; p � 0.0001), tended to increase. However, de-
spite the longer reaction times for blobs with larger �, the move-
ment speeds (peak acceleration, F(5,135) � 1.45; p 
 0.21) were
not affected by the properties of the target. Furthermore, al-
though target uncertainty affected endpoint variability, it did not
introduce a bias: reach endpoints on average undershot the target
center by only 0.19 mm (about our display accuracy), and chang-
ing blob � did not introduce a change in the endpoint mean
(F(5,135) � 1.38; p 
 0.2). It is noteworthy that, although endpoint
variability was affected by the � of the blob, it was not equal to it.
Figure 1C suggests that the subject’s uncertainty about target
center was approximately an order of magnitude smaller than the
displayed �. Therefore, a blob in a darkened room introduced
uncertainty in the subject’s estimate of target position. As the
luminance of the blob was changed through manipulation of the
parameter � (Eq. 1), movements exhibited longer reaction times
and increased endpoint variance.

The computational problem of reacting to a change in
the environment
In our main experiment, as the movement started, we occasion-
ally moved the center of the visual stimulus by a small amount
(�1.75 cm), changed its luminance, or both. In this section, we
consider how in theory one should react to these changes.

The objective of the task is to place the handheld LED at the
center of the blob. We can represent the problem of estimating
the center via the graphical model in Figure 2A. In this figure, the
shaded circles are known quantities and the unshaded circles
represent unknown quantities. The arrows indicate conditional
probabilities. The state variable x describes the position and ve-
locity of the handheld LED and the position of the center of the
blob. Because of delay and noise in our sensory measurements,
these states are unavailable to us. When at time t we make a
measurement y (t ), the sensory signal reflects a noisy measure of
the state of the LED and the blob center at � time ago, x�

(t). The
best way (least variance) that we can estimate the current state
x̂0

(t), i.e., the position of the handheld LED and our target, is to
take what we measured about the past and then integrate it for-
ward in time with what we predict will be the future of these states
to produce an estimate of what the state is at current time.

When the sensory system reports the properties of the target at
time t � �, this information should be combined with the prior
predictions about the immediate future of that target, i.e., pre-
dicted states for time t � � to t, written as x̂�

(t), x̂� � �
(t) ,…,x̂0

(t) (Fig.
2B). As a result, when the sensory system reports that the target
has jumped (Fig. 2C, gray line, top subplot), our estimate of the
target position does not jump but rather converges gradually to
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the sensory measurements. The key pre-
diction is that, on each trial, the rate of this
convergence will depend on the uncertain-
ties that we have about our measurement
and our predictions. The change in the un-
certainties dictates how the motor output
will change in response to the change in
the stimulus.

For example, suppose that the first tar-
get has luminance properties described by
�S, i.e., small SD. As a result, we are fairly
certain about this target position (Fig. 1C).
Now suppose that the stimulus jumps to a
new location and acquires a medium SD
�M (we refer to this as the S–M condition)
(Fig. 2C). Contrast this condition to a sit-
uation in which the first target has a large
SD �L (we refer to this as the L–M condi-
tion). One may predict that, because the
second target is the same in the S–M,
M–M, and L–M trials, the response to the
target jump will be similar. That is, during
presentation of the second target, the sub-
ject will estimate its center and correct the
hand trajectory toward it. However,
theory predicts that the subject’s estimate
of target center will gradually move from
the first target to the second target (Fig. 2C,
sensory estimate). The rate of this apparent
motion will be faster in the L–M condition
than in the S–M condition (Fig. 2C, sensory
estimate, left column). As a result, the motor
response will be larger, producing faster
hand acceleration and an earlier peak in the
L–M condition than S–M condition (Fig.
2C, left column). Similarly, if the first target
has �M properties and changes its center and
acquires a small SD (M–S condition), the
peak hand acceleration should be larger and
the timing of the peak should be earlier than
the M–M or M–L conditions (Fig. 2C, right
column).

Although the model predicts that the re-
action to a given change in the stimulus will
be affected by the luminance properties of
both stimuli, it also predicts that the latency
of the reaction will be constant (Fig. 2C, mo-
tor response or hand acceleration). This is
somewhat puzzling because earlier we saw
that the latency of reactions were affected by
the luminance of the stimuli (Fig. 1C). Why
should there be a difference in reaction times
in one case but not the other?

In Figure 2E, we have plotted the un-
certainty of the model about the position
of the target as a function of time (i.e., Eq.
6). Before the first target is displayed, the
uncertainty is very large. When a target
with �S luminance is displayed, uncertainty
of the target rapidly declines as a function of time. Importantly, the
rate of decline in the uncertainty is faster for �S compared with �L. If
we assume that a movement starts when uncertainty falls below an
arbitrary threshold, then reaction times will be faster for �S than �L,

just as we saw in our data. Now as the movement is proceeding, the
target changes. The uncertainty will increase or decrease, which in
turn affects the rate of change in the motor output but not the latency
of the reaction because the change in the uncertainties can never

Figure 2. The computational problem of estimating the state of the environment despite delay and noise in the sensory
measurements. A, A “graphical model” representation of the delay and noise problems. Each circle depicts a random variable. The
shaded circles are variables that are observed, and the unshaded circles are unobserved variables that must be estimated. The
arrows describe conditional probabilities, or simply causality. The vector x represents information about state of the hand (posi-
tion and velocity) and the target (its center). Observation y (t ) is a measure of the delayed state x�

(t). Given this observation, we
need to estimate the current state x0

(t) and then produce motor commands u such that the hand arrives in the center of the target.
B, A simplified example of the estimation problem. The observation suddenly changes at time t. x�

(t | t � � ) is the prior estimate
before observation y (t ) and x̂�

(t | t ) is the posterior estimate after the observation. With repeated observations, the mean of the
estimate converges onto the observation. C, Simulations of a point mass system controlled by a time-delayed controller. Top row,
The target jumps at t � 0. This change is observed after a time delay � � 100 ms. After the system observes the change in the
target position, the estimated target position gradually converges to the observed target position. However, the speed of the
convergence is affected by both the uncertainty of the prior (position of the target before it jumped) and the uncertainty of
the observation (position of the target after it jumped). If the first target had a small uncertainty with respect to the second uncertainty,
then the convergence rate is slow (e.g., S–M condition or M–L condition). If the first target had a large uncertainty with respect to the
second uncertainty, then the convergence rate is fast (L–M and M–S conditions). Middle row, The motor command in response to the
target jump. The peak response to the target jump is highest for L–M and M–S conditions. The duration of the response (time at which
the curve crosses 0) is smallest for the L–M and M–S conditions. Bottom row, Motion of the simulated hand in response to the target jump.
The peak response is higher and earlier in the L–M and M–S conditions. D, The endpoint SD of the simulated trajectories (500 trials in each
condition). E, The time evolution of target uncertainty. Left, The uncertainty during the reaction time. Before the first target is displayed,
uncertainty is very large. When the first target is displayed, the rate of reduction in the uncertainty is faster for the S target than for M or L
targets. If we suppose that the system starts to initiate a reach a constant time after the uncertainty crosses an arbitrary threshold, then
reaction times are shorter for S targets than for M or L. Right, The uncertainty during the reach when the target changes. By the time the
reach starts, target uncertainty is near asymptotic levels. The uncertainty increases or decreases when the target changes. In the L–M
condition, the uncertainty is higher than in the M–M or S–M conditions after the target jump, resulting in a greater reliance in the delayed
sensory observations and therefore a faster correction.
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increase beyond the asymptotic value produced by �L [presumably,
the movement would come to a halt if uncertainty about target lo-
cation increases above our arbitrary threshold]. Because the asymp-
totic uncertainty is different for each target luminance, the model
also reproduces the observation that varying target luminance affects
the variance of the movement endpoints (Fig. 2D).

Reacting to a change in the environment
In the main experiment, during each reach there was a one-third
probability of a change in the center of the target and, given this
event, a two-thirds probability of SD change. We rotated the reach
data so that the first target was along the y-axis (Fig. 3A). As before,
we found that, as the uncertainty of the first target decreased, reac-
tion times decreased (F(2,20) � 32.41; p � 0.0001). That is, move-
ments started earlier when subjects were more certain about the
center of the target. However, once the movement begun, the trajec-
tories were indistinguishable, as illustrated by the y velocities and

accelerations in Figure 3, A and B ( y peak velocity, F(2,20) � 1.58, p 

0.23; y peak acceleration, F(2,20) � 0.77, p 
 0.47).

Examination of hand acceleration profiles suggested that the
target jump produced a change only in the x-axis of the trajectory
of the hand (Fig. 3B). However, the response to a given second
target was larger if the first target of that trial had a larger �. That
is, when second target had �M characteristics (Fig. 3C, left col-
umn), peak acceleration was largest for the L–M condition (main
effect of �, F(2,20) � 10.8, p � 0.001; L–M vs S–M, t test, p �
0.001). Conversely, for a given first target, response to a second
target was larger if its � was smaller than the first target. That is,
when the first target had �M characteristics (Fig. 3C, right col-
umn), peak acceleration was largest for the M–S condition (main
effect of �, F(2,20) � 9.3, p � 0.002; M–S vs M–L, t test, p � 0.01).

We next computed the rate of change in hand acceleration
(the derivative at 150 ms post-target jump). When the second
target had �M characteristics, the rate of change in acceleration

Figure 3. Main experiment. A, Left, The mean hand path of the response induced by target jump. The mean was calculated with data across all subjects. Right, Temporal patterns of y velocity.
Data was aligned by the onset of target jump. The mean data for all conditions are shown but are almost precisely overlapping. B, Top, There were no detectable changes in the y accelerations as a
function of target conditions. Middle, However, there were clear changes in the motor response along the x-axis (x acceleration) with changing uncertainty of the target. When the first uncertainty
was small with respect to the second target, the motor response was large. When the uncertainty of the first target was large with respect to the second target, the motor response was small. Bottom,
An enlarged scale of the motor response (x acceleration). The peak and zero-crossing point were delayed when the peak response increased. C, There were main effects associated with target
uncertainties in peak response. Top, Rate of initial response (middle) and time of peak response (bottom).
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was largest in the L–M condition (main effect of �, F(2,20) � 5.5,
p � 0.01; L–M vs S–M, t test, p � 0.001). When the first target had
�M characteristics, the rate of change was largest for the M–S
condition (main effect of �, F(2,20) � 17.2, p � 0.001; M–S vs
M–L, t test, p � 0.001).

We also computed the timing of the peak acceleration along
the x-axis for a given second target. This measure was earliest if
the � of that target happened to be smaller than the � of the target
that preceded it. That is, when the second target had �M charac-
teristics, the timing of the peak response was earliest in the L–M
condition and latest in the S–M condition (main effect of �,
F(2,20) � 5.1, p � 0.016; L–M vs S–M, t test, p � 0.011). When the
first target had �M characteristics, the timing of the peak response
was earliest in the M–S condition (main effect of �, F(2,20) � 21.2,
p � 0.0001; M–S vs M–L, t test, p � 0.001).

All of these changes are consistent with the predictions of the
theory. Furthermore, as the theory had predicted, there were no main
effects of combinations of target uncertainty in the latency of the reac-
tion to the jumped target (F(4,40) � 0.81; p � 0.526; mean is 128 ms).

In summary, when during a reaching movement the target
moved by a small distance and changed its luminance to affect the
uncertainty with which the subject could estimate its center, the
response (hand acceleration) to the second target became stron-
ger, its rate of change became greater, and its peak shifted earlier
as the uncertainty associated with the first target increased. For a
given first target, the response to a second target became stronger,
its rate of change became greater, and the peak acceleration oc-
curred earlier as the uncertainty of the second target decreased.

Confounding factors
A concern is that, in the S–M, M–M, and L–M conditions, the
response to the second target might have been different because
of the response to the first target. Recall that the S target provided
a more certain center location, and this might encourage a faster
movement that produced a faster response in the S–M versus
L–M condition. This prediction, however, is opposite of what we
found (the response to the second target was fastest in the L–M
condition). Regardless, we checked whether properties of the first
target affected hand accelerations toward it and found no evi-
dence to support this idea: in the control 1 experiment noted
above, peak accelerations were unaffected by the changes in �
(F(5,135) � 1.6; p 
 0.15). This was also confirmed in the main
experiment (F(3,20) � 2.22; p 
 0.13), as demonstrated by the y
accelerations plotted in Figure 3B.

Another concern is that the change of the luminance at the timing
of the target jump may alter the subject’s perception about the in-
tensity of the target jump significantly. In other words, if we replot
the dependent variables in Figure 3C as a function of change in target
luminance (but not luminance), the trends are unchanged. To in-
vestigate this, we performed a second control experiment (control 2)
in which, after a target was displayed, in a fraction of trials its SD
changed for 100 ms, and then its center moved. In other words, the
luminance of the target was identical before and after the change in
its center. Figure 4 displays the results of this control experiment. We
found that we were able to reproduce all the results of the main
experiment. When the second target had �M characteristics (Fig. 4C,
left column), peak acceleration, the rate of change in acceleration,

Figure 4. Control experiment 2. A, Left, Mean hand paths of the response induced by target jump. The mean was calculated with data across all subjects. Right, Temporal patterns of y velocity.
B, Top, The response along the y-axis was indistinguishable across various conditions. Bottom, However, changing the target uncertainty produced clear variations in the response along the x-axis.
When the uncertainty associated with the first target was small with respect to the second target, the motor response to the second target was large. When the uncertainty associated with the first
target was large with respect to the second target, the response was small. The peak and zero-crossing points were delayed when the peak response increased. C, There were main effects associated
with target uncertainties in peak response (top), rate of initial response (middle), and time of peak response (bottom).
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and timing of peak response were all significantly affected by the SD
of the first target (paired t tests, S–M vs L–M; peak acceleration, p �
0.001; rate of acceleration, p � 0.05; timing, p � 0.05). Similarly,
when the first target had �M characteristics (Fig. 4C, right column),
peak acceleration, the rate of change in acceleration, and timing of
peak response were all significantly affected by the SD of the second
target (paired t tests, M–S vs M–L; peak acceleration, p � 0.001; rate
of acceleration, p � 0.001; timing, p � 0.001).

Discussion
Our sensory system presents us with a delayed, noisy view of the
world. To deal with delay, our brain might continuously predict
the near future of sensory states. To deal with noise, our brain
might assign measures of confidence to both our predictions and
our observations so that, by integrating the two streams of infor-
mation, we continuously have the best estimate of the state of the
world. According to this theory, even during a single movement
our motor response to a change in a sensory stimulus should
carry the signature of the relative confidences that the brain has
assigned to the two streams of information. Our goal here was to
predict what this signature might look like and then see whether
in healthy subjects the motor output depended on a continuous
integration of the two hypothetical streams.

We considered a simple reaching task in a darkened room in
which the goal was to place a handheld LED (always on) at the center
of a blob. The blob was a collection of pixels with intensities de-
scribed by a Gaussian with SD �. Theory predicted that, as the sen-
sory system continuously reported the state of the stimulus, uncer-
tainty about its center would decrease (as a function of time). The
rate of this decrease would be more rapid for a blob that had a smaller
� than for a blob with a larger �. Suppose that the brain starts a
movement when uncertainty about the location of the target falls
below an arbitrary threshold. In that case, the reaction times should
be faster, i.e., movements should start earlier toward a target for
which one has greater confidence than one for which one is uncer-
tain. Indeed, we found that, by increasing � of the visual stimulus,
subjects increased their reaction time and their endpoint variance.
Therefore, it appeared that, by manipulating the visual stimulus, we
increased the uncertainty in the subject’s estimate of target center.

We next considered how the subjects reacted to a change in the
stimulus as the movement was unfolding. The idea was to start the
movement with a stimulus that had a given uncertainty, presumably
affecting the uncertainty with which the brain predicted the near
future of that stimulus. Next, we changed the stimulus in mid-
movement, producing a difference in the delayed sensory measure-
ment (bottom-up stream) with respect to its predicted future (top-
down stream). Theory predicted that the response to the change in
the target would depend on the relative uncertainties associated with
the two streams. That is, despite the fact that the sensory stream
reported a jump in the target position, the subject’s estimate of target
position would only gradually converge to the sensory observation
with a rate that was a direct measure of the relative confidences that
the brain assigned to the two streams.

Indeed, we found that the response (hand acceleration) to a
given second target was larger, had a faster rate of change, and an
earlier peak if the first target had a larger �. For a given first target,
the response to the second target was larger, had a faster rate of
change, and an earlier peak if the second target had a smaller �.
Therefore, people not only delayed their movement initiation
when they were uncertain about the target of the movement, but,
during the movement, they made more forceful corrections when
a change in the target decreased their uncertainty.

These results appeared unrelated to low-level visual properties

such as absolute luminosity of the second target. In a control
experiment in which we decoupled the time at which � changed
(affecting luminosity) from the time at which the center changed,
the main results remained unchanged.

When one is reaching to a target and the target changes, the
simplest view is that the brain uses the information about the new
target to correct the movement. This would predict that the response
to a given second target should depend only on its properties. Our
results in Figure 3A reject this view. An alternative view is that, when
the target jumps, the new estimated target position is a weighted
combination of the first and second targets. Such a single-step inte-
gration model was used previously to explain corrections in response
to brief sensory feedback (Körding and Wolpert 2004). Although
this approach may be reasonable for conditions in which sensory
feedback is very brief, its application here would predict that reach
endpoints should be biased by the first target, something that we
never observed (supplemental Fig. S1B, available at www.
jneurosci.org as supplemental material). Finally, another view may
be that our problem is akin to a decision-making process in which
the evidence for the new target location is compared with the evi-
dence for the old. In this process, one reacts to the new target when
the ratio of its evidence to the old exceeds some threshold (Carpenter
and Williams, 1995; Kim and Shadlen, 1999; Reddi and Carpenter,
2000), predicting that the latency of the corrective movement should
depend on the relative uncertainties associated with the internal rep-
resentations of each target (supplemental Fig. S1A, available at
www.jneurosci.org as supplemental material). However, we did not
see a change in timing of the start of the corrective movements.
Rather, although the correction started at a constant time after the
target changed, the rate of the change in the motor output depended
on the properties of both the first and the second targets. If we imag-
ine that the brain predicts the future properties of the target and
combines it with the delayed measurements, the continuous integra-
tion of these two streams predicts the effects observed in our data.

In one respect, however, the model failed to predict an aspect of
the data. The simulations predicted that we should see a greater
range of responses for M–L and M–S conditions versus S–M and
L–M conditions (Fig. 2C, compare right and left columns). In fact,
the range of responses was similar (Fig. 3B, right and left columns).
The reason for this is that, in our simple integration model (Kalman
filter), the target jump produced a fairly rapid convergence of uncer-
tainty to the noise inherent in the observation. That is, in our model,
the “prior belief” rapidly converged to the sensory feedback (Fig.
2E). The data, however, suggest that this convergence took longer
than expected. This failure of the model is not attributable to as-
sumptions regarding parameter values but rather the mechanism
with which one updates one’s uncertainty. The reason for this dis-
crepancy in the speed of the uncertainty update is unknown to us.

Regardless, our simulations predicted and our experiment
confirmed that the convergence of the internal estimates to the
delayed sensory measures must take much longer than 100 ms
(Fig. 2C). The idea that the integration period for a step change in
the sensory information is longer than 100 ms is directly sup-
ported by the neurophysiological experiments in which monkeys
attempt to guess the direction of motion of a visual scene. Huk
and Shadlen (2005) found that a 100 ms step change in the on-
going visual scene produced changes in neural discharge that
after a 220 ms delay, gradually increased over a 200 ms period
before declining back to baseline after an additional 300 ms. Why
does it take so long for new information to be integrated with old?

In any time-delayed system in which measurements at time t
inform us about state of the world at time t � �, if we could predict
the states from time t � � to t, then the delayed observation can be
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integrated with predictions and then projected forward to produce
an updated estimate of state at time t. This is advantageous because it
allows us to change our beliefs about the current state despite the fact
that we only have a measurement about the past. The disadvantage,
however, is that, in our response to a step change in the environment,
we are unable to change our estimates in a step. Rather, the rate of
this gradual change depends on integration of our predictions about
the near future with the stream of delayed sensory observations. Our
results here demonstrate that the rate of correction in response to a
change in the stimulus is a proxy for the process in which the brain
integrates real-time sensory information about the past with prior
predictions about its future.

Previous works have demonstrated that, as the uncertainty of the
measured sensory information increases, the brain increasingly re-
lies on a prior. For example, Körding and Wolpert (2004) showed
that, during a reach, subject’s reaction to a given sensory feedback
depended on the long-term history of the subject’s experience in that
task. In their example, it was assumed that the prior predictions are
combined with current observations in a single integration step. Al-
though this is a reasonable approximation, it is difficult to directly
apply it to more realistic scenarios in which there is a continuous
stream of delayed sensory feedback, requiring continuous process-
ing of that information. For example, when the target jumps, people
do not reach to a point somewhere in between the first and the
second targets. Rather, the timing and rate of change of their motor
reaction depends on the properties of the two targets, suggesting that
there are continuous changes in the prior and continuous integra-
tion of it with the sensory information.

The reaction time that we observed (	128ms) is in the range of
movements termed “autopilot” (Prablanc and Martin, 1992; Bren-
ner and Smeets, 1997; Day and Lyon, 2000; Saunders and Knill,
2004). Damage to the posterior parietal cortex extinguishes the au-
topilot adjustment (Desmurget et al., 1999; Pisella et al., 2000; Grea
et al., 2002). A change in the reach target engages the posterior pari-
etal cortex (Diedrichsen et al., 2005), and a single pulse of transcra-
nial magnetic stimulation to the anterior interparietal area slows the
rate of adjustments in the grip aperture when the target of the reach
changes orientation (Tunik et al., 2005). Indeed, we (Shadmehr and
Krakauer, 2008) and others (Deneve et al., 2007) have speculated
that one of the major functions of the posterior parietal cortex is to
integrate the predicted and observed sensory information, changing
the integration ratio as a function of the uncertainties of the two
streams. Uncertainty of visual information is reflected in the dis-
charge of cells (Gold and Shadlen, 2001; Huk and Shadlen, 2005),
and the rate of increase in the discharge reflects a process of accumu-
lating information about the stimulus. Once the discharge reaches a
threshold, monkeys start their movement. In our task, we found that
people started their movements later when they were less certain of
the target’s center, which is consistent with the idea that the process
of accumulating information had to reach a threshold before initia-
tion of action. A strong prediction of our results is that, in experi-
ments that include a sudden change in the stream of sensory infor-
mation (Huk and Shadlen, 2005), the change in activity of cells in
lateral interparietal area in response to a given change in the stimulus
will depend on both the uncertainties of the new stimulus and the
uncertainties of the predictions regarding the prior stimulus.
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