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Motor Adaptation as a Process of Reoptimization
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Adaptation is sometimes viewed as a process in which the nervous system learns to predict and cancel effects of a novel environment,
returning movements to near baseline (unperturbed) conditions. An alternate view is that cancellation is not the goal of adaptation.
Rather, the goal is to maximize performance in that environment. If performance criteria are well defined, theory allows one to predict the
reoptimized trajectory. For example, if velocity-dependent forces perturb the hand perpendicular to the direction of a reaching move-
ment, the best reach plan is not a straight line but a curved path that appears to overcompensate for the forces. If this environment is
stochastic (changing from trial to trial), the reoptimized plan should take into account this uncertainty, removing the overcompensation.
If the stochastic environment is zero-mean, peak velocities should increase to allow for more time to approach the target. Finally, if one
is reaching through a via-point, the optimum plan in a zero-mean deterministic environment is a smooth movement but in a zero-mean
stochastic environment is a segmented movement. We observed all of these tendencies in how people adapt to novel environments.
Therefore, motor control in a novel environment is not a process of perturbation cancellation. Rather, the process resembles reoptimi-
zation: through practice in the novel environment, we learn internal models that predict sensory consequences of motor commands.
Through reward-based optimization, we use the internal model to search for a better movement plan to minimize implicit motor costs
and maximize rewards.
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Introduction
Studies of motor adaptation often rely on externally imposed
perturbations to induce errors in behavior. For example, in a
reaching task, a robotic arm may be used to introduce perturba-
tions. On each trial, “error” is measured as the difference between
the observed trajectory on that trial and some average behavior in
a baseline condition (before perturbations were imposed). Im-
plicit in many works is the idea that adaptation proceeds by re-
ducing such errors. However, this approach makes the funda-
mental assumption that the baseline movements are somehow
the optimal movements in all conditions. This assumption is
demonstrably false. For example, when a spring-like force makes
it so that the path of minimum resistance between two points is
not a straight line but a curved path, people adapt to the novel
dynamics by reaching along that curved path (Uno et al., 1989;
Chib et al., 2006). Therefore, at least in these extreme cases, mo-
tor error as classically defined does not drive adaptation.

The above example highlights the idea that the purpose of our
movements is, at least to a first approximation, to acquire re-
warding states (e.g., reach the end point accurately) at a mini-
mum cost. Each environment has its own cost and reward struc-
ture. The trajectory or feedback response that was optimum in

one environment is unlikely to remain optimum in the new en-
vironment (Wang et al., 2001; Burdet et al., 2001; Diedrichsen,
2007; Emken et al., 2007).

Recent advances in optimal control theory (Todorov, 2005)
allowed us to revisit the well studied reach adaptation paradigm
of force fields and make some theoretical predictions about what
the adapted trajectory should look like in each field. In this frame-
work, the problem is to maximize performance. To do so, one of
the required steps is to identify (i.e., build a model of) the novel
environment so one can accurately predict the sensory conse-
quences of motor commands. A second required step is to use
this internal model to find the best movement plan.

As we explored the theory, we found that it made rather inter-
esting predictions in conditions in which the force field was sto-
chastic. Stochastic behavior of an environment introduced un-
certainty in the internal model, and the controller that attempted
to maximize performance took this uncertainty into account as it
generated movement plans. An intuitive example is lifting a cup
of hot coffee in which a lid obscures the amount of liquid. If one
cannot see the amount of liquid, one is uncertain about its mass.
Lifting and drinking from this cup will tend to be slower, partic-
ularly as it reaches our mouth.

In the force-field task, one can introduce uncertainty by
making the environment stochastic. To maximize perfor-
mance (reach to the target in time), the theory takes into
account this uncertainty and reoptimizes the reach plan. We
asked whether adaptation proceeded by returning trajectories
toward a baseline or whether adaptation more resembled a
process of reoptimization.
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Materials and Methods
Our volunteers were healthy right-handed individuals [26.5 � 5.2 years
old (mean � SD)]. Protocols were approved by the Johns Hopkins
School of Medicine Institutional Review Board, and all subjects signed a
consent form. Volunteers sat on a chair in front of a robotic arm and held
its handle (Hwang et al., 2003) that housed a light-emitting diode (LED).
A white screen was positioned immediately above the horizontal plane of
the robot/arm on which an overhead projector (refresh rate, 70 Hz;
EP739; Optoma, Milpitas, CA) painted the screen. In experiment 1, the
projector displayed a cursor to represent hand position, and the LED was
off. In all other experiments, the handle LED was on, and it represented
hand position. Movements were made only to a single direction (90°,
straight a way from the body along a line perpendicular to the frontal
plane), along the midline of the subject’s body.

Experiment 1. In this experiment, we repeated the standard force-field
adaptation paradigm (Shadmehr and Mussa-Ivaldi, 1994). Subjects (n �
28) trained for 3 consecutive days, practicing reaching in a single direc-
tion. They were provided with a target at 9 cm (target was a 5 � 5 mm
square) and were rewarded (via a target explosion) if they completed
their movement in 450 � 50 ms. Timing feedback was provided in the
form of a blue-colored target if the movement was slower than required.
After completion of the movement, the robot pulled the hand back to the
starting position.

On day 1, the experiment started with a familiarization block of 150
trials without any force perturbations (null). This was followed by four
blocks of field training. The second and third days each consisted of four
blocks of field training (each block was 150 trials). Overall, subjects per-
formed �2400 field trials.

Let us label the forces produced by the robot as f � Dẋ, where ẋ is hand
velocity in Cartesian coordinates. On each trial, D was drawn from a
normal distribution such that f � D� (1 � �)ẋ � D� ẋ � D� �ẋ, where D� is the
mean of the distribution (see below) and � is a normally distributed scalar
random variable with zero mean and variance � 2. The subjects were
divided in four groups. For the first and second groups, the variance of
the field was zero (i.e., the field did not vary from trial to trial): for group
1 (n � 7), D� � [0, 13; �13, 0] Ns/m [a clockwise (CW) perturbation]; for
group 2 (n � 7), D� � [0, �13; 13, 0] Ns/m [a counterclockwise (CCW)
perturbation]. Group 3 (n � 7) and group 4 (n � 7) practiced in a field
with the same mean as groups 1 and 2, respectively, but with � � 0.3.
Groups 3 and 4 experienced an additional block of 50 movements at the
end of the third day. The variance of the field was set to zero during this
last block. The data from this last block allowed us to compare the be-
havior of the subjects from groups 1 and 2 with groups 3 and 4 in pre-
cisely the same environment.

Experiment 2. In this experiment, we simply presented a field that had
a zero mean but a non-zero variance. The distance between the starting
position and the target was 18 cm. The target was projected as a box, the
size of which was 5 � 5 mm. The movement direction was the same as
that in experiment 1. Subjects (n � 18) were instructed to complete their
reach within 600 � 50 ms. A score indicating the number of successful
trials was displayed on the screen. To encourage performance, we paid
the subjects based on their score.

This experiment was composed of eight blocks of trials (each block was
150 trials) on a single day. The first block was a familiarization null block
with no force perturbations. This was followed by seven field training
blocks. The force field was defined as f � D�ẋ, where D � [0, 13; �13, 0]
Nm/s and � are a normally distributed random variable with zero mean
and variance � 2. The subjects were divided in two groups. In the small
variance group, for the first four blocks of field training, � � 0.3. In the
large variance group, for the first four blocks of training, � � 0.6. For the
remaining three blocks, � � 0.

Experiment 3. To further test how variance in the environment affected
movement planning, we considered a reaching task through a via-point.
The via-point target and the final target were positioned at a distance of 9
and 18 cm from the starting position, respectively. Each target was 5 � 5
mm. The starting, via-point, and final targets were positioned on a
straight line, requiring a movement at 90°. The subjects (n � 22) were
instructed to reach by passing through the via-point target at t � 400 �

50 ms and then stop at the final target no later than t � 1.0 s. If both
timing constraints were met, then both targets exploded at the comple-
tion of the movement. Otherwise, at the completion of the movement,
the subject was provided timing feedback for the via-point with arrows
and for the final target by color. No timing feedback was provided during
the movement. A score indicating the number of explosions was con-
stantly displayed on the screen. To encourage performance, we paid the
subjects based on their score.

This experiment was composed of eight blocks of trials (each block was
150 trials) on a single day. The first block was a familiarization null block
with no force perturbations. This was followed by seven field training
blocks. The force field was defined as f � D�ẋ, where D� � [0, 13; �13, 0]
Nm/s and � are a normally distributed random variable with zero mean
and variance � 2. The subjects were divided in two groups. In the small
variance group, for the first four blocks of field training, � � 0.3. In the
large variance group, for the first four blocks of field training, � � 0.6.
For the remaining three blocks, � � 0.

Movement analysis. Movement initiation was defined as the time when
the hand velocity crossed the threshold of 3 cm/s. Hand paths were
aligned at the starting position. In the first experiment, we computed
overcompensation by forming a difference trajectory between the null
and field conditions: for each subject, we computed the average hand
path over the last 50 trials of field training and then subtracted the
x-position (axis perpendicular to the direction of the target) of this tra-
jectory from the x-position of the subject’s own average hand path in the
last 50 trials of the null field. To compute how changes in field variance
affected hand speed in experiments 2 and 3, we computed an average
speed profile from the mean hand path of the last 50 trials of each block.
The speed profiles were normalized with the peak speed in the first fa-
miliarization block to remove the effect of personal maximum speed
biases on the average speed profile.

Modeling and simulations. We used stochastic optimal feedback control
(OFC) to model reaching (Todorov and Jordan, 2002; Todorov, 2005). In
this framework, the trajectory of a reach is determined by three components:
an optimal controller that generates motor commands, an internal model
that predicts the sensory consequences of those commands, and a motor
plant/environment that reacts to those sensory consequences. Noise is signal
dependent with an SD that grows with the size of the motor commands
(Harris and Wolpert, 1998; Jones et al., 2002; van Beers et al., 2004). Our
theoretical work here is novel only in the sense that it considers the problem
of optimal control in the context of uncertainty about the internal model. To
tackle this problem, we extended the approach introduced by Todorov
(2005). We found that the problem of model uncertainty was a dual to the
problem of control with signal-dependent noise. The mathematics that we
used to solve the uncertainty problem is very similar to those used by
Todorov (2005) to solve the signal-dependent noise problem. Here, we only
outline the procedures and leave the derivations for the supplemental mate-
rial (available at www.jneurosci.org).

Consider a linear dynamical system: xt � 1 � Axt � But. Here, xt is the
state of the system at time t, ut is the control signal input to the system,
and the matrices A and B are the dynamics of the system. Previous studies
have used deterministic model parameters A and B, leaving no room for
representation of the learner’s uncertainty about these parameters. Here,
we represent the model parameter A as a stochastic variable, leading to
the following equation:

xt�1�(A�V)xt�But�Axt�But�Vxt,

where V is a Gaussian random variable with mean zero and variance Qv .
One can see that the uncertainty in parameter A is state-dependent noise.
We derived the following optimal feedback controller and optimal state
estimator with model noise:

Dynamics: xt�1�Axt � But � �t��c

i�1
�t

iCixt
(1)

Observation: yt � Hxt � �t (2)

Cost: 0 � xt
T Qtxt � ut

T Rut (3)
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where yt is the observation made by the system, H is the observation
matrix, and �t , �t

i, and �t are Gaussian random variables with mean 0 and
variance 1 representing the additive and multiplicative state variability
and the measurement noise, respectively. Ci is the scaling matrices for the
state- and control-dependent noise for each noise source �t

i. Qt is the
weight matrix of state cost, and R is the weight matrix of motor cost. xt is
the actual state of the system that is not available to the controller. The
controller only has an estimate of the state x̂t available through the state
estimation process. For analytical tractability, the state is assumed to be
updated according to a linear recursive filter: x̂t � 1 � Ax̂t � But � Kt (yt �
Hx̂t), where Kt is the Kalman gain. The optimal control policy is of the
following form:

ut��Ltx̂t,

where Lt is the time varying feedback-gain matrix that determines the
controller’s response.

Optimal control provides closed-form solutions for only linear dy-
namical systems. We therefore modeled the arm for the single direction
of movement as a point mass in Cartesian coordinates. The components
of state were x(t) � [px(t), ṗx(t), py(t), ṗy(t), fx(t), fy(t), Tx, Ty], where p is
hand position, f is force, and T is target position. The cost function was as
follows:

wr�u2
x � u2

y� 0 � t � T

wp	� px 	 Tx�
2 � � py 	 Yy�

2


� wv� ṗ2
x � ṗ2

y� � wr�u2
x � u2

y� MT � t � MT � MTH

where MT is the desired movement time and MTH is the time interval
after movement completion for which the controller is supposed to hold
position at the target.

Whereas in the mathematics we could solve the problem only for the
case in which variance was a measure of within-trial noise in the param-
eter D, because of safety concerns, in our experiments we held the noise
constant during a trial and only changed it from trial to trial.

The force-field parameters used in the simulations were the same as
those used for the experiments. We found that even with extensive train-
ing, subjects learn only �80% of the field. For example, in channel trials
in which we and others have measured the forces that subjects produce,
the force trajectory is at most 80 – 82% of the imposed field (Scheidt et al.,
2000; Hwang et al., 2006; Smith et al., 2006). To account for this, in the
simulations, the environment produced forces that were identical to
those produced by our robot, but adaptation of the subject was modeled
as an internal model that predicted a fraction of these forces D̂ � 
D� �
�D� , where 
 is the fraction and � is a normally distributed random
variable with 0 mean and variance � 2. For simulations of the via-point
task, we set D̂ � �D� (because the mean of the field was zero), and the state
was extended to hold the via-point positions TVx and TVy. The cost for
the via-point task simulations were as follows:

wr�ux
2 � uy

2� 0 � t � MT
wpv�px 	 TVx�

2 � wpv�py 	 TVy�
2

� wr�ux
2 � uy

2� t � MTv

wp�px 	 Tx�
2 � wp�py 	 Ty�

2

� wv�ṗx2�ṗx2� � wr�ux
2 � uy

2� MT � t � MT � MTH

where MTv is the “via-point time.”

Results
Model predictions: reaching in a deterministic or
stochastic field
In the null field, the optimal control policy to move a mass to a
target in a given amount of time is a straight-line trajectory (Fig.
1a, dashed-line trajectory) with a bell-shaped velocity profile.
However, if the mass is moving in a velocity-dependent curl field
that pushes it perpendicular to its direction of movement, then
the best policy is a slightly curved movement (Fig. 1a, trajectory
marked by “l”) that overcompensates for the initial curl forces.

Figure 1. Predictions of OFC theory on mean trajectories of a point mass moving in force
fields. The objective is to arrive at the target by 0.45 s, while minimizing motor costs. a, When
there are no forces acting on the mass, the optimal policy is a straight-line path (dashed line).
When a velocity-dependent field pushes the mass to the right, the optimal policy is not a return
to the straight path but an apparent overcompensation to the left. The amount of overcompen-
sation depends on the accuracy of one’s model of the force field. If the field is described by a
viscous matrix, D, this accuracy refers to 
, where D̂ �
D. The labels “1”, “0.8”, etc. refer to the
value of 
. The arrows are a schematic representation of the force field during an idealized
reach. b, The subplots show the forces along the x- and y-direction that the controller produces
( fx and fy) under an optimal policy (1 in a) compared with forces required to move the mass in
a minimum-jerk path. The controller overcompensates early into the movement and under-
compensates at peak velocity. This results in a total force �f Tfdt that is �16% less than the
minimum-jerk (straight line) path. c, The optimal policy when the controller’s forward model is
uncertain about the strength of the field. Left, The shaded area represents the SD of the force
vectors that the mass would encounter along its path to the target. Middle, The optimum policy
produces less overcompensation as the SD of the field increases from zero (�0), to a small (�S �
0.2), to a larger (�L � 0.3) value. Therefore, overcompensation is a good policy only if one is
sure that the field will be present. In these simulations, 
� 0.8. Right, The speed profiles of the
optimal policy (normalized to the maximum speed in the null condition) for different field
variances. As the field becomes more variable, the optimal plan is a faster start, resulting in a
reduced speed as the mass nears the target.
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That is, if the field pushes the hand to the right, the optimum
policy is a trajectory that is to the left of baseline.

To see the rationale for this, we plotted the forces produced by
the optimal controller and compared it to forces that must be
produced if the mass is to move along a straight-line, minimum-
jerk trajectory (Fig. 1b). The optimal controller produced less
total force (Fig. 1b, �f Tfdt) because by overcompensating early
into the movement, when speeds were small, it could rely on the
environmental forces to bring the mass back toward the target.
Therefore, the curved, apparently overcompensating trajectory
actually produced smaller total forces than a straight trajectory.

We arrived at this result by assuming that the learner had
formed a perfect model of the force field. If the learner’s model
predicted �100% of the effects of the field, then the combined
effect of the controller and the environment are a more compli-
cated trajectory. For example, suppose that the actual field is
represented by f � Dẋ and the learner’s estimate is D̂ � 
D for
0 � 
 � 1. When 
 is small (e.g., 0.2), the field overpowers the
controller and pushes the mass in the direction of its perturbation
(Fig. 1a). Because the controller acquires a more accurate forward
model (
 becomes closer to 1), the trajectory becomes “S”

shaped, displaying an apparent overcompensation. Previous
work suggests that with training, subjects acquire a model accu-
racy of �0.8 (Scheidt et al., 2000; Hwang et al., 2006; Smith et al.,
2006). That is, in channel trials in which force output is quanti-
fied, the peak is �80% of the field.

We produced these results using a linear, point-mass model of
dynamics. We wondered whether overcompensation was also
present for a more realistic nonlinear model of the two-link arm.
In this case, closed-form solutions are not possible, but Li and
Todorov (2007) have provided tools that aid the search process.
We simulated reaching to various directions using a determinis-
tic, nonlinear model of dynamics and again found that the con-
troller produced an overcompensation in all directions (see sup-
plemental material, available at www.jneurosci.org).

The above results were in a condition in which the task dy-
namics were invariant from trial to trial. How should planning
change when one is uncertain of the strength of the force field?
That is, what is the best way to perform the task if the field is
stochastic? We returned to the linear model of dynamics and
derived the closed-form solution for this stochastic optimal con-
trol problem (see supplemental material, available at www.
jneurosci.org). We found that the overcompensation in the con-
troller was a function of its uncertainty: as the variance of the field
increased, the controller produced smaller amounts of overcom-
pensation and had larger errors in the direction of the field (Fig.
1c). Furthermore, the simulations uncovered an interesting pre-
diction: as field variance increased, the optimum plan no longer
had a bell-shaped speed profile. Rather, the speed profile became
skewed with a peak that was larger (Fig. 1c), slowing the hand as it
approached the goal (i.e., the target).

In summary, theory predicted that in a deterministic curl
field, the optimal trajectory is a slightly curved hand path that
appears to overcompensate for the forces. In a stochastic field, the
optimum trajectory loses its overcompensation tendencies, peak
velocities become larger, and the timing of the peak shifts earlier
in time, allowing the hand to approach the target more slowly.

Experiment 1: deterministic versus stochastic curl fields
In experiment 1, subjects experienced either a CW (groups 1 and
3) or a CCW (groups 2 and 4) velocity-dependent curl field. In
groups 1 and 2, the field was constant from trial to trial. In groups
3 and 4, the field had the same mean as in the constant group but
had a non-zero variance.

Trajectories in the constant field did not return to the straight
paths recorded in the null condition. Rather, they tended to show
an overcompensation. Data from two subjects during various
stages of adaptation are shown in Figure 2a. The hand paths
tended to overcompensate early into the movement and then
slightly undercompensate as the hand approached the target, re-
sulting in S-shaped paths. This basic result was reported before
(Thoroughman and Shadmehr, 2000). The only novelty here is
that we see that this shape was attained on the first day of training
and was maintained for the duration of the 3 d experiment.

By the end of training on day 1, the success rates had reached
levels observed in the null condition (Fig. 2b), and rates tended to
improve with more days of training (repeated-measures ANOVA
for the two groups and 3 d; effect of day: F(2,2) � 5.9, p � 0.009;
effect of group: F(1,12) � 2.76, p � 0.12; interaction, F(2,28) � 1.67,
p � 0.21). We quantified overcompensation as the within-subject
maximum perpendicular displacement from their null trajectory
(Fig. 2c). Overcompensation would imply a negative measure for
the CW group and a positive measure for the CCW group. The
timing of this measure was early in the movement: in the CW

Figure 2. Reaching in a deterministic curl field. Subjects learned to reach in a single direction
in a CW or CCW velocity-dependent force field that pushed the hand perpendicular to its direc-
tion of motion. The objective was to arrive at the target by 0.45 s. a, The arrows are a schematic
representation of the force field during an idealized reach. The plots show hand paths of two
representative subjects in the CW and CCW groups. The average trajectory in the null set and the
first, third, and the average of the final 50 trials on days 1–3 are labeled. The dashed line is the
trajectory in the null field, measured on the first day. b, Success rates (probability of arriving at
target in time). Null, The last 50 trials in the null field; 1st and 3rd, the first and third trials of
training on day 1; Day 1, Day 2, and Day 3, the last 50 trials of training on each day. c, A measure
of overcompensation (maximum difference along the x-axis from the path of null trials). For the
CCW group, this measure is positive to the left of the null trajectory and zero otherwise. For the
CW group, this measure is positive to the right of the null trajectory and zero otherwise. Error
bars are SEM.
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group, at 149, 139, and 154 ms (SD for each day, �40 ms); and in
the CCW group, at 176, 180, and 179 ms (SD, �22 ms). For the
CCW group, this measure was significantly greater than zero for
all 3 d (paired t test; df � 6; p � 0.05 for each day). For the CW
group, this measure was significantly less than zero for all 3 d
(paired t test; df � 6; p � 0.05 for each day). Importantly, when
we examined performance of each subject on each day, we found
a significant correlation between overcompensation and success
rates (CW field: r � 0.51, p � 0.02; CCW field: r � 0.61, p �
0.005). Therefore, both groups had hand trajectories that ap-
peared to overcompensate for the field. As the overcompensation
increased, there was a tendency for performance to improve.

Theory had predicted that overcompensation should disap-
pear and velocity peaks should rise as the field acquires stochastic
properties. We trained a new set of volunteers (groups 3 and 4) in
a field that had the same mean as in groups 1 and 2, respectively,
but with a non-zero variance. Figure 3a shows the average hand
trajectories in the last 50 trials of each day for subjects who
trained in the deterministic (�0) or stochastic (�L) CW fields. In
the stochastic field, movements gradually lost their overcompen-
sation (Fig. 3b) (overcompensation in the �0 vs �L group on day
3; p � 0.05; df � 12). There was one additional data point for the
last block on the last day of training for the �L group. During this
block, subjects from the �L group were exposed to a zero variance
field. That is, in this block of 50 trials, the environments for the �0

and �L groups were identical. Despite this, the overcompensation
remained significantly smaller for the stochastic group ( p � 0.05;
df � 12). Because the �L groups kept the success rate high in the
test block, the change of the trajectory is not a result of interfer-
ence from the force perturbations.

Another prediction of the theory was that hand trajectories in
the �L group should show larger errors in the direction of the
force perturbations (Fig. 1c): we quantified the interaction be-
tween the early overcompensation and the late undercompensa-
tion as the within-subject difference in the signed area enclosed
between the hand trajectory in the training session and the hand
trajectory in null session (Fig. 3c, inset, A1–A2). Simulations had
predicted that with increased field variance, this parameter
should become more positive. We observed this tendency in our
subjects: for the parameter A1–A2, the differences between �0

and �L were significantly different in day 3 ( p � 0.02; df � 12), as
was the difference between �0 (day 3) and �L (day 3: test) ( p �
0.02). As overcompensation declined, performance in the �L

group improved (Fig. 3d).
Finally, the model had predicted that the stochastic and deter-

ministic groups would show different speed profiles (Fig. 1c).
Figure 3f shows the speed profiles for the last training block on
each day of training, and Figure 3e shows the peak speed distri-
bution on each day. The speed profiles were normalized with
respect to the individual peak speed in the last 50 trials of the null
block on day 1. By day 3, the �L group displayed a hand speed that
was skewed and had a higher peak value ( p � 0.05; df � 12). Even
in the same environment (day 3 test), the peak speed was signif-
icantly larger in �L versus �0 ( p � 0.01; df � 12).

The same tendencies were observed when subjects were
trained in a stochastic CCW field (Fig. 4): overcompensation
disappeared (Fig. 4a,b), the measure A1–A2 became more nega-
tive (Fig. 4c) as performance rates improved (Fig. 4d), and peak
speeds increased (Fig. 4e). For example, the average within-
subject correlation between overcompensation and success rates
was �0.52 ( p � 0.01). That is, people responded to the increased
field variance by eliminating their overcompensation and pro-

Figure 3. Reaching in a stochastic curl field f�Dẋ. On each trial, D was drawn from a normal
distribution such that f � D�ẋ � D�ẋ, where D� � [0, 13;�13, 0] Nm/s (same value as in the
deterministic field) and � are a normally distributed scalar random variable with zero mean and
SD � � 0.3. The data for the deterministic and stochastic groups are labeled as �0 and �L. a,
Mean hand path (averaged for the last 50 trials of training and across subjects) for the two
groups. The dashed line represents the across-group average hand path in the null condition. In
the stochastic field, the overcompensation disappeared (trajectories are mean � SE). b, Over-
compensation of the hand path as measured with respect to the null trajectory. The measure
refers to the maximum perpendicular displacement to the left of the null trajectory. Test, An
extra set of 50 trials that is included in day 3, in which field variance was reset to zero. c, A
measure of the entire shape of the hand paths in the two groups. A1–A2 areas are shown on the
right. The dotted line is the trajectory in the null field. d, Success rates (arrival at target in time)
for the two groups. Null, The last 50 trials in the null field; First, the first 50 trials in the force field;
Day 1, Day 2, and Day 3, the last 50 trials of training on each day. e, f, Hand speed corresponding
to the hand paths shown in a, normalized to the peak of hand speed in the null condition. In a
zero variance field, speeds returned to near baseline, whereas in the high variance field, speeds
remained elevated. All error bars are SEM.
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ducing an increasing peak speed that skewed the profile and
slowed the hand as it approached the target.

Experiment 2: deterministic versus stochastic
zero-mean fields
The reduced overcompensation in the high-variance field was
consistent with the optimal policy, but it may have been attribut-
able to another cause: if the field is more variable, people may
learn it less well (Donchin et al., 2003). Although this would not
explain the increased speed in the �L group, it can account for the
reduced overcompensation. This motivated us to test the theory
further. In experiment 2, the task was to reach to a target at 18 cm.
Importantly, the field was now zero-mean with zero, small, or
large variance. Because the mean of the field was zero in all blocks,
this helped ensure that any differences that we might see regard-
ing control policies should be attributable to the variance of the
field and not a bias in learning of the mean.

Volunteers (n � 18) were separated into two groups: a group
that experienced a field with small variability �S and a group that
experienced a field with larger variability �L. They began with a
familiarization set (150 trials, no forces), followed by four sets of
training in a zero-mean stochastic field, followed by three sets of
a zero-mean deterministic field �0. Figure 5 shows the mean hand
paths and speed during the last 50 trials of each condition. The
hand paths were essentially straight in the �0 condition. With
increased variance, there was a small tendency for hand trajectory
to curve to the right of the null, but this tendency did not reach
significance (maximum displacement from null, p  0.1 for both
groups; note that the difference in scales on the x- and y-axes).
However, as the theory had predicted, peak speeds gradually in-
creased when the field became variable (Fig. 5b,c). Furthermore,
the timing of the peak speed shifted earlier in the trajectory of the
hand: from 243 ms in the baseline (zero-variance) condition to
231 and 209 ms in the �S and �L conditions, respectively (within-
subject change across all subjects: main effect of condition, p �
0.005; for the �L group: main effect of condition, p � 0.012). A
more detailed view of these changes in peak speeds is shown in
Figure 5c. Increased variance produced a gradual increase in peak
speed. Return to zero variance resulted in a gradual reduction in
peak speed.

In summary, when we considered an environment in which
the mean perturbation was zero, people responded to the unpre-
dictability of the environment by gradually increasing their peak
speeds and skewing the speed profile to reduce speed as the hand
approached the target.

Experiment 3: via-point in a stochastic zero-mean field
The theory explained that increased uncertainty should make one
more cautious as the movement approaches the target. In our
previous examples, the target was always at the end of the move-
ment. If one has a target in the middle of a movement, then
increased uncertainty should make the movement through that
target change as uncertainty increases. We tested this idea in ex-
periment 3. Here, the task was to reach to an end point target (at
18 cm) by passing through a via-point (at 9 cm), as illustrated in
Figure 6a. The field was zero-mean with either a zero or a non-
zero variance. The experiment began with a few blocks of no
forces. For another few blocks, a field was introduced that, from
trial to trial, had zero mean but non-zero variance. Intuitively, we
expected that the optimal trajectory in a low-uncertainty field
should be a straight line with a bell-shaped velocity profile. As
field uncertainty increased, the movement should slow down as it

Figure 4. Same as Figure 3, except for a CCW stochastic curl field. The data for the
deterministic and stochastic groups are labeled as �0 and �L. a, Mean hand path (aver-
aged for the last 50 trials of training and across subjects) for the two groups. The dashed
line represents the across-group average hand path in the null condition (trajectories are
mean � SE). b, Overcompensation of the hand path as measured with respect to the null
trajectory. The measure refers to the maximum perpendicular displacement to the right of
the null trajectory. Test, An extra set of 50 trials that is included in day 3, in which field
variance was reset to zero. c, A measure of the entire shape of the hand paths in the two
groups. Areas A1–A2 are show on the right. The dotted line is the trajectory in the null
field. d, Success rates (arrival at target in time) for the two groups. Null, The last 50 trials
in the null field; First, the first 50 trials in the force field; Day 1, Day 2, and Day 3, the last
50 trials of training on each day. e, f, Hand speed corresponding to the hand paths shown
in a, normalized to the peak of hand speed in the null condition. All error bars are
SEM.
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approaches the via-point, effectively producing a segmented
movement.

Figure 6a shows the predictions of the theory for various levels
of field variance �0 � 0, �S � 0.3, and �L � 0.6. The predicted
hand paths remained straight, unaffected by the different levels of
variance (Fig. 6a). However, as the field variance increased, the
controller separated the two movements into “segments,” show-
ing a dip in velocity as the mass approached the via-point.

To test these predictions, volunteers (n � 22) were divided
into two groups. They began with a familiarization set (150 trials,
no forces), followed by four sets of training in a zero mean but
variable force field �L � 0.6 or �L � 0.3, followed by three sets of
zero mean, zero variance force fields �0 � 0. Figure 6b shows the
mean hand paths and speed during the last 50 trials of each con-
dition. The hand paths were essentially straight in the �0 condi-
tion with a speed profile that had a single peak. With increased
variance, we did not detect a significant difference in the mean of
hand paths across subjects (maximum displacement from null,
p  0.1), but the speed showed two peaks, suggesting of a seg-
mentation of the reach. Indeed, the speed at via-point (0.4 s) in

the �0 condition was significantly higher than the �L and �S

conditions ( p � 0.01 in each case).

Discussion
If the purpose of a movement is to acquire a rewarding state at a
minimum cost (Todorov and Jordan, 2002), then the idea that
the brain computes a desired movement trajectory and that tra-
jectory remains invariant with respect to environmental dynam-
ics is untenable. Rather, a broad implication of OFC theory is that
when the environment changes, the learner performs two com-
putations simultaneously: (1) finds a more accurate model of
how motor commands produce changes in sensory states; and (2)
uses that model to find a better movement plan that reoptimizes
performance. Here, we performed a number of experiments to
test this idea.

In experiment 1, we revisited the well studied reaching task in
which velocity-dependent forces act perpendicular to the direc-
tion of motion. Thoroughman and Shadmehr (2000) reported
that with adaptation, hand paths curved out beyond the baseline

Figure 5. Reaching in a stochastic environment in which mean force is zero. Here, the envi-
ronmental forces were f � Dẋ, where D � [0, 13;�13, 0] Nm/s and � are a normally distrib-
uted random variable with zero mean and variance � 2. The task is to reach to the target in 0.6 s.
a, Left, Schematic representation of a low-variance zero-mean curl field. Middle, Average hand
paths in the deterministic (�0, dashed line) and small variance (�S, solid line) conditions. Right,
The speed profiles. Data are for the last 50 trials in each condition. b, Same as in a, except for a
high-variance condition. c, Peak speed for the two stochastic conditions during the experiment.

Figure 6. Reaching through a via-point in a stochastic zero-mean field. The task was to have
the hand at the via-point target at 400 ms and at the final target at 1.0 s. a, The trajectory
produced by the optimal controller when the environment had zero (�0), small (�S), or large
(�L) variance. The hand path was always straight. However, the speed profiles showed a seg-
mentation of the movement with increased variance, slowing the hand as it approached the
via-point. b, Mean trajectories (last 50 trials of training) of subjects in the �0 and �S conditions.
c, Trajectories in the �0 and �L conditions. Gray bars are SEM.
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trajectory, suggesting an overcompensation in the forces that
subjects produced. They interpreted those results as a character-
istic of the basis functions with which the brain might be approx-
imating the force field (Donchin et al., 2003; Wainscott et al.,
2005). However, experiments that measured hand forces in chan-
nel trials found that the maximum force was, at most, 80% of the
field (Scheidt et al., 2000, 2001; Smith et al., 2006). How could
one produce hand paths that appeared to overcompensate for the
field, yet only produce a fraction of the field forces? Here, OFC
solved this puzzle. It explained that both the curved hand path
and the undercompensation of the peak force were signatures of
minimizing total motor costs of the reach.

We next considered an environment in which the dynamics
were stochastic. Intuitively, the idea is that if we do not know the
amount of coffee in a cup (or how hot it may be), we lift it and
drink from it differently than if we are certain of its contents. For
example, Chhabra and Jacobs (2006) found that when motor
noise was artificially increased, subjects learned to alter their con-
trol policy in stabilizing a tool. Inspired by these results, we
slightly extended the mathematics of OFC (see supplemental ma-
terial, available at www.jneurosci.org) to make predictions about
how reach plans should change when the learner is uncertain
about the dynamics of the environment. If the force field is sto-
chastic, theory predicted that overcompensation should disap-
pear and peak speeds should increase. We observed both
tendencies.

In experiment 2, we tested the theory further by considering
an environment that, on average, had no perturbations but that
had a variance that could be zero, small, or large. Theory pre-
dicted that as field variance increased, the trajectory should shift
from a bell-shaped speed profile to one that showed a larger peak
earlier in the movement, allowing more time to control the limb
near the target. We observed this tendency.

Finally, in experiment 3, we considered a task in which one of the
goals was to go through a via-point that was positioned along a
straight line to the final target. As field variance increased, theory
predicted that one should slow down as the hand approaches the
via-point. That is, movements should exhibit a single peak in their
speed profiles when field variance was zero, but multiple peaks as the
field variance increased. Indeed, when faced with a zero variance
field, movements had a single peak. With increased variance, sub-
jects segmented their movements into two submovements.

The idea that movement planning should depend on the dy-
namics of the task seems intuitive. For example, Fitts (1954) ob-
served that changing the weight of a pen affected how people
planned their reaching movements: to maintain accuracy, people
moved the heavier pen more slowly than the lighter pen. In reach
adaptation experiments, however, movement time is often con-
strained by the experimenter, and so we had thought that a fully
adapted trajectory would return to baseline conditions (Shad-
mehr and Mussa-Ivaldi, 1994). Our results here reject the notion
of an invariant desired trajectory. Instead, the results are consis-
tent with a drive to optimize movements in terms of their motor
costs and accuracy (Todorov and Jordan, 2002).

In the theory, uncertainty about the magnitude of a velocity-
dependent field corresponds to a velocity-dependent noise.
Given this noise, one should minimize speed at the task-relevant
areas: at the via-point and at the end point. In the simple reach
task, when subjects were uncertain about the field, they reached
with skewed speed profiles that had a higher peak and a longer
tail, resulting in slower speeds near the target. In the via-point
task, the increased uncertainty resulted in movements that had a
segmented appearance, slowing at the via-point.

Previous models of movement planning successfully ex-
plained smoothness of reaching and eye movements using costs
such as end point variance (Harris and Wolpert, 1998, 2006) or
change in muscle forces or torques (Uno et al., 1989). These two
models are closely related. For example, minimum torque change
is equal to minimum motor command when the time constant of
muscle activation is embedded in the model. The minimum vari-
ance is equal to the minimum weighted sum of motor commands
when signal-dependent noise is assumed. This notion was sup-
ported by the simulations of Thoroughman et al. (2007), in which
large overcompensation was predicted by both minimum torque
change and minimum variance models in the force-field task.
Because these models all minimize the sum of motor commands,
the typical OFC problem that has motor costs is closely related to
these two models. However, OFC is a more appropriate frame-
work for simulations in motor control because it not only allows
one to consider feedback (e.g., noise in sensory measurements),
but also because it allows one to consider uncertainty associated
with internal models that predict the sensory feedback.

Despite this, our model is a diagram. It represented the hand
as a point mass, the costs and rewards as quadratic functions, and
uncertainty as state-dependent noise when, in fact, the field was
noisy from trial to trial, not within a trial. These are symptoms of
our desire to solve mathematical problems analytically. Does the
data match the predictions because of some fundamental truth in
the model, or because of some unexplained quirk in the unmod-
eled dynamics? We approached this question in two ways. First,
we tried to minimize the influence of unmodeled dynamics by
considering environments that, on any given trial, had zero ex-
pected value. Second, we tested the same model in separate ex-
periments in which environments had different means and the
goals of the tasks were near (experiment 1), far (experiment 2), or
both (experiment 3) in time or space. The consistency of the
observations is some reassurance that reoptimization is a better
model of motor control than perturbation cancellation toward a
desired trajectory.

There are significant limitations in our current abilities to
apply the theory to biological movements. For example, the the-
ory faces significant hurdles when we consider that there are mul-
tiple feedback loops in the biological motor control system,
namely the state-dependent response of muscles, spinal reflex
pathways, as well as the long-loop pathways. In a more realistic
setting, it is unclear what is meant by a motor command and a
motor cost. Therefore, the best that we can currently claim is that
our experimental results are difficult to explain with the notion of
an invariant desired trajectory, but qualitatively in agreement
with the theory.

We have implied that with training, people learn a forward
model of the task and then use that model to form a better move-
ment plan (Hwang and Shadmehr, 2005). However, it is possible
to form optimum policies from the reward prediction errors on
each trial without forming an explicit forward model. In our
view, such an approach would be inconsistent with the large body
of data from experiments in generalization (Conditt et al., 1997).

The cerebellum appears to be the key structure for computing
a forward model: cerebellar agenesis produces a striking deficit in
the ability to predict and compensate for consequences of one’s
own motor commands (Nowak et al., 2007), cerebellar damage
impairs the ability to adapt reaching (Maschke et al., 2004; Smith
and Shadmehr, 2005) and throwing movements (Martin et al.,
1996), and reversible disruption of cerebellar output pathways to
the cortex produces within-subject impairments in reach adap-
tation (Chen et al., 2006). Assuming that the cerebellum is crucial
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for forming a more accurate forward model, how does the brain
use this model to reoptimize movements?

Because the search for a better movement plan (or control
policy) is a problem that depends on costs and rewards of the
task, and dopamine appears to be a crucial neurotransmitter that
responds to reward prediction errors (Schultz et al., 1997) and
reward uncertainty (Fiorillo et al., 2003), it is possible that the
process of finding an optimal control policy depends on the basal
ganglia. Recently, Mazzoni et al. (2007) demonstrated that the
slowness of movements in Parkinson’s disease may be under-
stood in terms of an imbalance in the cost function of an optimal
controller. They suggested that in these patients, the motor costs
relative to expected rewards had become unusually large. Basal
ganglia patients typically show some ability to adapt to force
fields (Krebs et al., 2001; Smith and Shadmehr, 2005). However,
a strong prediction of the current theory is that they will be im-
paired in reoptimizing their movements.

In summary, our results support the hypothesis that that con-
trol of action proceeds via two related pathways: on the one hand,
adaptation produces a more accurate estimate of the sensory con-
sequences of the motor commands (i.e., learn an accurate for-
ward model), and on the other hand, our brain searches for a
better movement plan so to minimize an implicit motor cost and
maximize rewards (i.e., find an optimum controller).
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