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Results of Control Experiment 2: In this control study, target jumps were random – T1 had an 
equal chance of jumping up or down during the initial saccade. We found that the primary 
saccades were straight and showed no detectable bias in their endpoint toward the direction of the 
target jump (Fig. S1).   
 

 
Figure S1.  Random target jumps did not induce adaptation or curvature.  
Individual saccades made during the random target jump experiment by two subjects.  Trials are 
sorted and grouped according to the vertical target step size.  A positive step indicates a target 
jump along the positive y-axis.   
 



Modeling Cross-axis Saccade Adaptation 

1. Distributing error among two likely sources 

To model trial-to-trial adaptation, we began with endpoint error.  At the end of a saccade 

in trial n, if the target was visible, i.e., trial n was not a catch trial, then retinal error was observed: 

.  This error could be due to an error in the expected position of the target, , 

or an error in the expected final position of the eyes, :  
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This posed a credit assignment problem – how does the brain distribute the total observed error 

across the two likely sources? We posited that the bigger the retinal error, the more likely the 

brain attributed the error in its expectation of target position, i.e., the target had moved during the 

saccade.  Using the binary random variable q to specify whether the target had jumped or not, we 

wrote the probability of this jump as a logistic function:  
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While in Eq. (S1) the endpoint error is a vector, in Eq. (S2) it is a scalar that represents the 

vertical component of the error (as the target jumps were along the vertical axis). We then used 

this probability to assign error to target movement: 

 ( ) ( ) ( 1n n P q )= =r y  (S3) 

The remainder of the total error was assigned to .  At the end of each trial, the forward model 

updated its expected position of the target for the next saccade:  
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Note that this adaptive response has a single timescale, specified by forgetting rate  and 

learning rate .   
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2. Implementing cross-axis adaptation by coupling the vertical and the horizontal saccade 

systems 

To respond to the error in eye position, the forward model updated its model of dynamics 

of the eyes, B̂ . In the cross-axis adaptation experiment, the subject observed a vertical 

undershoot whenever a horizontal motor command was issued.  To correct for this error, forward 

model’s predictions about the behaviors of horizontal and vertical saccadic systems may 

gradually became coupled.  To model this, we changed the term B̂  to include a “cross-coupling” 

term, g: 



  (S5) 
( ) 1

( 1) 1 20 0 0 ( ) 0 0 0 0ˆ
0 0 0 0 0 0 0 0

Tn
n gB B τ τ −
+ ⎡ ⎤−= + ⎢

⎢ ⎥⎣ ⎦
⎥

(The constants, 1τ  and 2τ , were the same as in system matrix A and B.) Eq. (S5) describes a 

forward model that predicts a downward vertical movement whenever a horizontal motor 

commands is made.  For the saccades to remain straight, the system matrix B used by the control 

policy would have to change to precisely match B̂ .  Otherwise, as shown in Fig. 2D, saccade 

trajectories will become curved.   

The learning of parameter g was supported by two timescales (Smith et al., 2006):  
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It has been shown that when feedback regarding saccade accuracy is withheld for more than 

600ms, adaptation is abolished (Fujita et al., 2002).  In our experiment, catch trials withheld 

sensory feedback by about 700ms.  Therefore, we assumed zero error for all catch trials, which 

meant in the model, g and  decayed on catch trials.  We simulated each of the short breaks 

between sets with 5 additional catch trials. 
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 In total, our model contained 8 parameters:  σ, and k. We 

simulated 540 primary saccade trajectories: 480 adaptation trials and 60 post-adaptation catch 

trials. Three measurements from each simulated trajectory was taken for data fitting: the first and 

the fourth chord slopes (S1 and S4), and the vertical endpoint.  To find the 8 parameter values, we 

used nonlinear least-squares solver (Matlab, Mathworks Inc.) to fit the 1620 metrics from 

simulation to the corresponding values from the actual data (average data of 11 subjects).    The 

goodness of fit for the model was evaluated with the statistic r2, the fraction of the observed 

variance accounted for by our model compared to that by the null model (mean of the data), and 

the statistic χ2, the sum of squared-ratio between residual and measurement uncertainty, where 

standard deviation across subjects was used as the uncertainty about the mean. 
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In Fig. 2D, we also considered the effects of changes in the control policy.  To adapt the 

control policy, we simply changed B in Eq. (2) and recomputed the feedback gains. 

 

3. Model parameters 

The A and B matrices used in Eq. (2) were: 
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Results of Optimal Feedback Control Model 

We took the first steps to represent some of the changes that we had seen in the saccade 

trajectories using the mathematical framework of optimal control.  Our work highlighted a 

fundamental problem: are the endpoint errors due to changes in the oculomotor plant, or due to 

changes in the sensory coding of the target?  We will suggest that curvature arises only when 

errors are attributed to the oculomotor plant. 

We will not explicitly model fatigue, partly because at this point it is not clear what 

causes it: is it due to fatigue in some of the neurons that generate the motor commands, or a 

general arousal state of the brain?  Instead, we will focus on the adaptation that the system 

showed in response to the endpoint errors.  That is, changes that occurred in chord slopes.  In all 

the simulations reported below we kept 0.03α =  and assumed a constant saccade duration of 

65ms. 

The rules of error-assignment are revealed by two sigmoid functions in Fig. S2A.  At the 

start of training, when the endpoint errors were relatively large, the model attributed nearly all of 

the error to target jump (Fig. S2B), resulting in fairly large changes in S1 and only modest 

curvature.  As training proceeded and the errors became smaller, a larger fraction of the error was 

assigned to drive adaptation of the forward model of the oculomotor plant (Fig. S2B), thereby 

producing increasing curvature (Fig. S2C).  We fit two learning and forgetting rates to the 

forward model of the eye and one rate to the target remapping. The resulting model was able to 

capture the intricate temporal dynamics in our data (Fig. S2E&F, goodness of fit for all data 

points: r2 = 0.829, reduced χ2 = 1.892).  We found the learning rates for the fast and slow system 

of the forward model to be 0.104 and 0.000896, respectively, and the forgetting rates 1 (complete 

forgetting) and 0.0260, respectively. The learning and forgetting rates for the internal goal were 

0.00147 and 0.00189, respectively. Fig. S2G displays the progression of chord slopes of the 

simulated saccade trajectories in the same format as in Fig. 3, demonstrating the effectiveness of 



the error-assignment model. Simulation of a model in which error drove the forward model of the 

eye plant and target jump equally did not produce nearly the same quality of fit: r2 = 0.574, 

reduced χ2 = 4.64. 

 

Figure S2.  Adaptation of the optimal feedback control model.  
A. Cause of error: when saccade endpoint produces a retinal error, the model assigns a probability 
to the cause of the error.  The larger the endpoint error, the larger the probability that it was 
caused by an intra-saccadic jump in the target position.  B. The magnitude of error attributed to 
target jump (blue) or changes to the oculomotor plant (red) throughout the adaptation experiment. 
Only near the end of the adaptation trials, when errors become small, we see errors credited to 
changes in the plant. C. Saccade trajectories produced by the model on the last trial of each 
training set and the last trial of the post-training catch trial set.  The blue lines represent actual eye 
position .  Red lines are estimated eye positions .  The red circle is estimated target 
position (that is, the remapped position ).  D. Vertical component of the motor commands 
produced for the trials displayed in part C.  E. Initial and final chord slopes (S1 and S4) of 
simulated saccades (black) overlaid on experimental results (red and green) across 11 subjects. F. 
Vertical endpoint of simulated saccades (black) overlaid on experimental results (blue).  G. 
Average chord slopes of the simulated saccades at various stages of the experiment. The gray bars 
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correspond to chord slopes S1, S2, S3 and S4, with the darkest bar corresponding to S4. 
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