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abstract	 We	review	some	of	the	impairments	in	motor	control,	
motor	 learning	 and	 higher-order	 motor	 control	 in	 patients	 with	
lesions	 of	 the	 cerebellum,	 parietal	 cortex,	 and	 basal	 ganglia.	 We	
attempt	to	explain	some	of	these	impairments	in	terms	of	compu-
tational	 ideas	 such	 as	 state	 estimation,	 optimization,	 prediction,	
cost,	and	reward.	We	suggest	that	a	function	of	the	cerebellum	is	
system	identification:	to	built	internal	models	that	predict	sensory	
outcome	 of	 motor	 commands	 and	 correct	 motor	 commands	
through	internal	feedback.	A	function	of	the	parietal	cortex	is	state	
estimation:	 to	 integrate	 the	 predicted	 proprioceptive	 and	 visual	
outcomes	 with	 sensory	 feedback	 to	 form	 a	 belief	 about	 how	 the	
commands	 affected	 the	 states	 of	 the	 body	 and	 the	 environment.		
A	function	of	basal	ganglia	 is	related	to	optimal	control:	 learning	
costs	and	rewards	associated	with	sensory	states	and	estimating	the	
“cost-to-go”	during	execution	of	a	motor	task.

Over	 the	 last	 25	 years,	 a	 large	 body	 of	 experimental	 and	
theoretical	 work	 has	 been	 directed	 toward	 understanding	
the	computational	basis	of	motor	control,	particularly	visu-
ally	guided	reaching.	Roboticists	and	engineers	largely	initi-
ated	this	work,	with	the	aim	of	deriving	from	first	principles	
some	 of	 the	 strikingly	 stereotypical	 features	 of	 movements	
observed	in	people	and	other	primates.	That	is,	they	aimed	
to	understand	why	we	move	the	way	that	we	do.	The	theo-
ries	began	to	explain	why	in	reaching	to	pick	up	a	cup	or	in	
moving	the	eyes	to	look	at	an	object,	there	was	such	consis-
tency	in	the	detailed	trajectory	of	the	hand	and	the	eyes.	In	
many	ways,	the	approach	was	reminiscent	of	physics	and	its	
earliest	attempts	to	explain	regularity	in	motion	of	celestial	
objects	except	that	the	regularity	was	in	our	movements,	and	
the	 search	 was	 for	 theories	 that	 explained	 our	 behavior.	
Here,	we	will	summarize	these	theories	and	then	link	them	
to	experimental	findings	in	healthy	subjects	and	in	patients	
with	neurological	disease.

The computational problem of motor control

In	1954,	Fitts	published	a	short	paper	in	which	he	reported	
that	 there	 were	 regularities	 in	 people’s	 movements	 (Fitts,	
1954).	He	asked	volunteers	 to	move	a	pen	from	one	“goal	
region”	to	another	as	fast	and	accurately	as	they	could.	He	
found	that	the	movement	durations	grew	logarithmically	as	
a	 function	 of	 the	 distance	 between	 the	 goals	 (figure	 40.1).	
This	relationship	was	modulated	by	two	factors.	One	factor	
was	the	size	of	the	goal	region.	As	the	goal	region	became	
smaller,	movements	slowed	down.	A	second	factor	was	the	
mass	of	the	pen.	People	slowed	their	movements	when	they	
moved	a	heavier	pen.	To	explain	these	results,	consider	that	
the	target	box	was	surrounded	by	two	penalty	regions,	so	it	
seems	rational	to	aim	for	the	center	of	the	target	box.	What	
if	the	penalty	region	was	only	on	one	side?	Now	one	should	
aim	for	a	point	farther	away	from	the	penalty	region	and	not	
at	the	center	of	the	target	box	(Trommershauser,	Gepshtein,	
Maloney,	 Landy,	 &	 Banks,	 2005).	 This	 is	 because	 move-
ments	 have	 variability,	 and	 one	 will	 maximize	 reward	 (in	
terms	of	sum	of	hits	and	misses)	if	one	take	into	account	this	
variability.	This	variability	explains	the	speed	of	movements	
in	Fitt’s	experiment	and	the	sensitivity	to	pen	weight:	Rapid	
movements	are	more	variable	than	slow	movements,	so	one	
should	slow	down	if	there	is	a	need	to	be	accurate.	Moving	
heavier	objects	tends	to	increase	movement	variability,	again	
requiring	a	reduced	speed	to	maintain	accuracy.	Therefore	
in	 planning	 our	 movements,	 our	 brain	 takes	 into	 account	
movement	 variability	 because	 variability	 affects	 accuracy,	
which	in	turn	affects	our	ability	to	acquire	reward.

Harris	and	Wolpert	(1998)	began	formalizing	these	ideas	
by	linking	variability	and	movement	planning.	They	noted	
that	larger	motor	commands	required	larger	neural	activity,	
which	 in	 turn	produced	 larger	variability	owing	 to	a	noise	
process	 that	 grew	 with	 the	 mean	 of	 the	 signal.	 Therefore,	
motor	 commands	 carried	 an	 accuracy	 cost	 because	 the	
larger	the	command,	the	larger	the	standard	deviation	of	the	
noise	that	rides	on	top	of	the	force	produced	by	the	muscles	
(Jones,	 Hamilton,	 &	 Wolpert,	 2002).	 Noise	 makes	 move-
ments	inaccurate.

In	 a	 sense,	 the	 theory	 restated	 the	 purpose	 of	 move-	
ments	using	language	of	mathematics:	Be	as	fast	as	possible,	
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while	trying	to	be	as	accurate	as	the	requirements	imposed	
by	 the	 task.	 However,	 by	 doing	 so,	 it	 forced	 the	 theorists		
to	 think	 how	 one	 would	 actually	 achieve	 this	 optimality.	
Certainly,	 the	 solution	 to	 the	problem	could	not	be	“hard	
wired.”

First,	 costs	 and	 rewards	 of	 tasks	 are	 not	 constant.	 Take	
the	 simple	 saccade	 task	 in	which	an	animal	 is	 given	more	
reward	for	certain	visual	targets	and	less	for	others.	Hikosaka	
and	 colleagues	 (Takikawa,	 Kawagoe,	 Itoh,	 Nakahara,	 &	
Hikosaka,	2002)	examined	eye	trajectories	when	a	monkey	
was	asked	to	make	saccades	to	various	target	locations.	They	
noted	that	peak	speeds	tended	to	be	higher	and	less	variable	
when	saccades	were	to	rewarded	target	locations.	Therefore,	
when	 the	expected	 rewards	of	 the	 task	change,	movement	
planning	responds	to	these	changes.

Second,	 the	 brain	 alters	 movement	 planning	 as	 the	
dynamics	of	the	body	or	a	tool	change	(e.g.,	the	light	versus	
heavy	 pens	 in	 figure	 40.1).	 That	 is,	 the	 nervous	 system	
cannot	rely	on	a	motor	plant	that	is	time-invariant.	Rather,	
it	 seems	 more	 reasonable	 that	 the	 nervous	 system	 should	
monitor	these	changes	and	form	an	internal model	of	the	plant	
and/or	the	tool	(Shadmehr	&	Mussa-Ivaldi,	1994).	Indeed,	
maintaining	performance	in	something	as	simple	as	a	saccade	
or	 a	 reach	 probably	 requires	 constant	 adjustment	 of	 this	
internal	 model	 (Smith,	 Ghazizadeh,	 &	 Shadmehr,	 2006;	
Kording,	Tenenbaum,	&	Shadmehr,	2007).

Todorov	and	 Jordan	 (2002)	 recognized	 that	a	key	com-
ponent	 of	 the	 problem	 was	 presence	 of	 feedback.	 One		
type	of	feedback	is	from	sensory	receptors	that	monitor	the	
state	of	the	body	and	the	world.	Another	type	of	feedback	is	
from	 internal	 models	 that	 monitor	 the	 motor	 output	 and	
predict	 their	 sensory	 consequences,	 effectively	 providing	 a	
form	of	internal	feedback.	Internal	predictions	can	be	made	
long	 before	 sensory	 feedback,	 making	 some	 very	 rapid		
movements	 such	 as	 saccades	 depend	 entirely	 on	 internal	
feedback	 (Chen-Harris,	 Joiner,	 Ethier,	 Zee,	 &	 Shadmehr,	
2008).	 However,	 for	 longer	 movements,	 the	 two	 kinds	 of	
information	 would	 need	 to	 be	 combined	 to	 form	 a	 belief	
about	 the	 state	 of	 the	 body.	 Todorov	 and	 Jordan	 (2002)	
suggested	that	a	more	appropriate	mathematical	approach	
was	 to	first	describe	 the	constraints	of	 the	 task	 in	 terms	of		
a	 function	 that	 included	 explicit	 terms	 for	 gains	 and		
losses	and	then	maximize	that	function	in	the	framework	of	
feedback control.	 This	 new	 formulation	 was	 a	 breakthrough	
because	 it	 formally	 linked	 motor	 costs,	 expected	 rewards,	
noise,	 sensory	 feedback,	and	 internal	models	 into	a	 single,	
coherent	 mathematical	 framework	 (see	 chapter	 42	 for	 a	
thorough	introduction).

We	 summarize	 this	 framework	 in	 figure	 40.2A.	 At	 the	
heart	of	the	approach	is	the	idea	that	we	make	movements	
to	achieve	a	rewarding	state.	The	rewards	we	expect	to	get	
and	the	costs	we	expect	to	pay	determine	the	trajectory	we	
choose	to	execute	and	how	we	will	respond	to	sensory	feed-
back.	 To	 make	 the	 “best”	 movement,	 our	 brain	 needs	 to	
solve	three	kinds	of	problems:	We	need	to	be	able	to	accu-
rately	predict	the	sensory	consequences	of	our	motor	com-
mands	(this	is	called	system identification),	we	need	to	combine	
these	 predictions	 with	 actual	 sensory	 feedback	 to	 form	 a	
belief	about	the	state	of	our	body	and	the	world	(called	state 
estimation),	and	 then	given	 this	belief	about	 the	 state	of	our	
body	and	the	world,	we	have	to	adjust	the	gains	of	the	sen-
sorimotor	feedback	loops	so	that	our	movements	maximize	
some	measure	of	performance	(called	optimal control).

Here,	 we	 will	 suggest	 a	 specific	 computational	 neuro-
anatomy	of	the	motor	system	(figure	40.2B).	In	this	frame-
work,	 the	basal	ganglia	help	 to	 form	 the	expected	costs	of	
the	 motor	 commands	 and	 the	 expected	 rewards	 of	 the	
sensory	 states.	The	cerebellum	plays	 the	 role	of	predicting	
the	sensory	consequences	of	motor	commands,	 that	 is,	 the	
expected	 changes	 in	 proprioceptive	 and	 visual	 feedback.	
The	parietal	cortex	combines	the	expected	sensory	feedback	
with	the	actual	sensory	feedback,	computing	a	belief	about	
the	current	proprioceptive	and	visual	states.	Given	the	motor	
costs	and	expected	rewards	of	the	sensory	states,	the	premo-
tor	and	the	primary	motor	cortex	assign	“feedback	gains”	to	
the	visual	and	proprioceptive	states,	respectively,	resulting	in	
sensorimotor	maps	that	transform	the	internal	belief	about	
states	into	motor	commands.

Figure	 40.1	 Accuracy	 constraints	 affect	 control	 of	 reaching.		
Volunteers	were	instructed	to	tap	the	two	goal	regions	with	a	pen	
as	 many	 times	 as	 possible	 during	 a	 15-s	 period.	 Movement	 time	
increased	as	the	accuracy	requirements	increased	(width	of	target	
region	decreased)	and	as	the	weight	of	the	hand-held	pen	increased.	
(Figure	constructed	from	data	in	Fitts,	1954.)
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Figure	40.2	 A	schematic	model	for	generating	goal-directed	movements.	See	the	text	for	explanation	of	variables	and	box	labels.

The computational problem in reaching

Let	 us	 use	 the	 well-studied	 reach	 adaptation	 paradigm	 to	
formulate	the	problem	in	the	framework	outlined	in	figure	
40.2.	 What	 are	 the	 costs	 and	 rewards	 of	 a	 reaching	 task?	
Suppose	 that	we	are	 instructed	 to	hold	a	 tool	and	move	 it	
so	that	a	cursor	displayed	on	a	monitor	arrives	at	a	target.	
If	we	accomplish	this	in	a	specific	time	period,	we	are	pro-
vided	 a	 monetary	 reward,	 or	 juice,	 or	 perhaps	 a	 “target	
explosion.”	We	can	sense	the	position	of	the	cursor	yv	and	
the	 target	r	 via	vision	and	position	of	our	arm	yp	 via	pro-
prioception.	Through	experience	in	the	task,	we	learn	that	

the	objective	 is	 to	minimize	the	quantity	 (yv
(t)	−	r)T	 (yv

(t)	−	r)	
at	time	t	=	N	after	the	reach	starts	(e.g.,	this	is	the	time	that	
the	 movement	 is	 rewarded	 if	 the	 cursor	 is	 in	 the	 target).	
Superscript	T	is	the	transpose	operator.	To	denote	the	fact	
that	this	cost	is	zero	except	for	time	N,	we	write	it	as

y r y rv
t T t

v
t

t

N

Q( ) ( ) ( )

=
−( ) −( )∑

1

where	 the	matrix	Q is	 a	measure	of	 our	 cost	 at	 each	 time	
step	(which	may	be	zero	except	at	time	N).	That	is,	matrix	
Q	specifies	how	important	it	may	be	for	us	to	put	the	cursor	
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in	the	target.	If	we	value	the	reward,	then	we	set	this	variable	
to	be	large.

There	is	also	a	cost	associated	with	motor	commands	u.	
This	cost	may	reflect	a	desire	to	be	as	frugal	as	possible	with	
our	 energy	 expenditure,	 or	 it	may	 reflect	 the	 fact	 that	 the	
larger	the	motor	commands,	the	larger	the	noise	in	the	forces	
that	 are	 produced	 by	 the	 muscles,	 resulting	 in	 variability.	
This	 variability	 increases	 the	 difficulty	 in	 controlling	 the	
movement.	 As	 a	 result,	 we	 want	 to	 produce	 the	 smallest	
amount	 of	 motor	 commands	 possible.	 Now	 the	 total	 cost	
becomes

	
J Q Lv

t T t
v
t

t

N
t T t= −( ) −( ) +( ) ( ) ( )

=

( ) ( )∑ y r y r u u
1

	 (1)

where	matrix	L	is	a	measure	of	the	costs	associated	with	the	
motor	 commands.	 The	 relative	 weight	 of	 Q	 and	 L	 is	 an	
internal	 measure	 of	 expected	 value	 of	 achieving	 the	 goal	
versus	expected	motor	costs.

To	 be	 successful	 in	 this	 task	 (consistently	 arrive	 at	 the	
target	in	time),	we	need	to	find	the	motor	commands	that,	
on	the	one	hand,	are	as	small	as	possible	and,	on	the	other	
hand,	are	large	enough	to	get	the	cursor	to	the	target	in	time.	
To	do	so,	we	need	some	way	to	relate	motor	commands	to	
their	outcomes.	This	is	called	an	internal	model.	For	example,	
through	observation,	we	 learn	 that	moving	 the	 tool	moves	
the	cursor	on	the	screen.	In	particular,	motor	commands	u(t)	
are	expected	to	produce	proprioceptive	and	visual	feedback	
ŷ (t)	=	[ŷv

(t),	ŷp
(t)].	These	are	the	expected	sensory	consequences	

of	 our	 action.	 Here,	 we	 write	 this	 “internal	 model”	 as	 a	
linear	function	of	motor	commands:

	

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

x x u
y x

t t t t t

t t
A B
H

+( ) ( ) ( )

( ) ( )
= +
=

1

	 (2)

where	 x̂ (tt)	 represents	 the	predicted	 state	 (of	our	body	and	
the	world)	at	time	t	given	the	sensory	feedback	up	until	that	
time,	H	is	a	transformation	of	those	states	to	expected	sensory	
feedback	 ŷ (t)	 (i.e.,	 proprioception	 and	 vision),	 and	 x̂ (t+1t)	 is	
predicted	 state	 at	 time	 t	 +	 1	 given	 the	 state	 and	 motor	
command	 at	 time	 t.	 Equation	 2	 describes	 an	 internal		
model	of	the	dynamical	system	that	we	are	trying	to	control.	
The	actual	dynamics	of	 that	 system	may	be	more	compli-
cated.	For	example,	the	motor	commands	may	carry	signal-
dependent	noise	åu

(t),	 that	 is,	a	noise	 in	which	 the	standard	
deviation	 grows	 with	 the	 size	 of	 the	 motor	 command.	 In	
general,	there	may	be	similar	signal-dependent	noises	on	our	
sensory	system,	åy

(t).	 In	sum,	a	reasonable	representation	of	
the	stochastic	system	that	we	are	trying	to	control	might	be	
written	as

	

x x u
y x

t t t
u
t

t t
y
t

A B
H

+( ) ( ) ( ) ( )

( ) ( ) ( )
= + +( )
= +( )

1 å
å 	 (3)

As	 motor	 commands	 are	 generated,	 we	 receives	 a		
continuous	stream	of	sensory	feedback	y.	We	combine	the	

predicted	sensory	 feedback	with	 the	observed	quantities	 to	
form	a	belief	about	states:

	
ˆ ˆ ˆx x yt t t t t t tK+ +( ) +( ) +( ) +( ) +( )= + −( )1 1 1 1 1 1y 	 (4)

In	this	equation,	the	term	 x̂ (t+1t+1)	 is	 the	belief	state	at	time		
t	+	 1,	 given	 that	we	have	 acquired	 sensory	 information	at	
that	time.	K	is	a	mixing	gain	(or	a	Kalman	gain)	that	deter-
mines	how	much	we	should	change	our	belief	on	the	basis	
of	 the	difference	between	what	we	predicted	and	what	we	
observed.	 Therefore,	 equation	 2	 describes	 how	 we	 make	
predictions	about	sensory	feedback,	and	equation	4	describes	
how	we	combine	the	actual	sensory	observations	with	pre-
dictions	to	update	beliefs	about	states.

Our	task	is	to	perform	the	movement	in	a	way	that	maxi-
mizes	our	chances	for	reward.	If	equation	2	is	an	accurate	
model	 of	 how	 motor	 commands	 produce	 changes	 in	 the	
states,	then	we	can	use	it	as	a	set	of	constraints	with	which	
to	minimize	equation	1.	Because	there	is	noise	in	our	system,	
the	cost	J	in	equation	1	is	a	stochastic	variable.	At	each	time	
point	during	a	movement,	the	best	that	we	can	do	is	mini-
mize	the	expected	value	of	this	cost,	given	the	state	that	we	
believe	 to	 be	 in	 and	 the	 motor	 commands	 that	 we	 have	
produced:	 E{J (t)x̂ (t−1),	 u(t−1)}.	 The	 term	 E{J(t)}	 reflects	 the	
expected	value	of	the	cost-to-go,	that	is,	the	total	cost	remain-
ing	 in	 the	 current	 trial.	 The	 result	 is	 a	 feedback	 control	
“gain”:

	

u x
x x

t t t t

p
t

p
t t

v
t

v
t t

G
G G

( ) ( ) −( )

( ) −( ) ( ) −( )
= −
= − −

ˆ
ˆ ˆ

1

1 1 	 (5)

The	 new	 variable	 G	 is	 a	 matrix	 that	 changes	 with	 time	
during	a	movement.	It	tells	us	how	at	time	t,	we	can	trans-
form	beliefs	in	sensory	states	(in	terms	of	proprioception	and	
vision)	 into	motor	commands	so	 that	we	maximize	perfor-
mance	in	the	remaining	task	time.

Some examples

As	an	example,	consider	a	simple	task	first	described	by	Uno,	
Kawato,	and	Suzuki	(1989)	and	shown	in	figure	40.3A.	The	
objective	is	to	reach	from	point	T1	to	T2.	In	one	condition,	
the	subject	is	holding	a	lightweight	tool	that	moves	freely	in	
air.	 In	a	 second	condition,	 the	 tool	 is	attached	 to	a	 spring	
that	pulls	the	hand	to	the	right.	Without	the	spring,	people	
reach	in	a	straight	line.	This	is	the	path	that	minimizes	the	
cost.	However,	once	the	spring	is	attached,	the	straight	path	
incurs	 substantially	 more	 motor	 costs	 than	 a	 curved	 path.	
The	curved	path	is	the	one	that	subjects	choose	(Uno	et	al.,	
1989).

In	 our	 second	 example,	 the	 task	 is	 to	 move	 one’s	 hand	
from	one	point	to	another	in	a	given	amount	of	time	(450	ms),	
but	 now	 instead	 of	 a	 spring,	 there	 is	 a	 velocity-dependent	
field	that	pushes	 the	hand	perpendicular	 to	 its	direction	of	
motion.	Before	 the	field	 is	 imposed,	 the	motion	 that	mini-
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To	see	the	rationale	for	this	behavior,	figure	40.3C	plots	the	
forces	produced	by	the	optimal	controller	and	compares	 it	
to	forces	that	must	be	produced	if	a	mass	is	moving	along	a	
“minimum-jerk”	 trajectory.	 By	 moving	 the	 hand	 along	 a	
curved	path,	the	optimal	controller	produces	less	total	force:	
It	overcompensates	early	into	the	movement	when	the	field	
is	weak	but	undercompensates	at	peak	speed	when	the	field	
is	 strongest.	 Therefore,	 the	 curved	 path	 actually	 produces	
less	total	force	than	a	straight	trajectory	does.	People	produce	
similarly	curved	trajectories	when	they	move	in	such	fields	
(Thoroughman	&	Shadmehr,	2000).

The cerebellum: predicting sensory consequences of motor 
commands

According	to	the	theory,	we	generate	motor	commands	the	
basis	of	on	beliefs	about	the	state	of	our	body	and	the	envi-
ronment	 (equation	 5).	 This	 state	 estimate	 depends	 on	 two	
quantities:	a	prediction	and	an	observation.	The	prediction	
comes	from	an	internal	model	that	uses	a	copy	of	the	motor	
commands	to	estimate	the	state	change	that	 is	expected	to	
occur.	The	observation	comes	from	the	sensory	system	that	
provides	 a	 measure	 of	 those	 state	 changes.	 That	 is,	 our	
beliefs	are	not	based	on	our	observations	alone.	Rather,	our	
beliefs	are	a	combination	of	what	we	predicted	and	what	we	
observed	(Kording	&	Wolpert,	2004a;	Vaziri,	Diedrichsen,	
&	Shadmehr,	2006).

Some	 movements	 are	 so	 fast	 that	 there	 is	 no	 time	 for		
the	 sensory	system	to	play	a	role.	A	prominent	example	 is	
control	of	saccades	(rapid	eye	movements	that	move	the	eyes	
to	 a	 new	 location	 typically	 within	 50–80	ms).	 Such	 move-
ments	are	too	brief	for	visual	feedback	to	influence	saccade	
trajectory.	In	 fact,	 the	brain	actively	suppresses	visual	pro-
cessing	during	saccades	to	reduce	the	perception	of	motion	
(Thiele,	Henning,	Kubischik,	&	Hoffmann,	2002).	Further-
more,	proprioceptive	signals	from	the	eyes	do	not	play	any	

Figure	40.3	 Task	dynamics	affect	reach	trajectories.	(A)	The	task	
is	to	reach	from	point	T1	to	T2.	In	one	condition,	the	reach	takes	
place	in	free	space	(straight	line).	In	another	condition,	a	spring	is	
attached	to	the	hand.	In	this	case,	the	subject	chooses	to	move	the	
hand	along	an	arc.	(B)	A	velocity-dependent	force	field	pushes	the	
hand	perpendicular	to	its	direction	of	motion.	For	example,	for	an	
upward	movement,	the	forces	push	the	hand	to	the	left.	The	motion	
that	minimizes	cost	of	equation	1	is	not	a	straight	line	but	one	that	
has	a	curvature	to	the	right.	The	data	show	hand	paths	for	a	typical	
subject	at	start	of	training	on	day	1	and	then	at	the	end	of	training	
each	day.	Except	for	the	first	and	third	trials,	all	other	trajectories	
are	average	of	50	trials.	(C )	A	rationale	for	why	a	curved	movement	
is	of	lower	cost.	The	curves	show	simulation	results	on	forces	that	
the	 controller	 produces	 and	 speed	 of	 movement	 in	 the	 optimal	
control	scenario	of	equation	1	and	in	a	scenario	where	the	objective	
is	to	minimize	jerk.	 (A	 is	redrawn	from	Uno	et	al.,	1989.	Data	in	
parts	B	and	C	are		from	Izawa	et	al.,	2008.)

mizes	 the	 cost	 (and	 maximizes	 probability	 of	 reward)	 is	
simply	 a	 straight	 line	 with	 a	 bell-shaped	 velocity	 profile.	
However,	 when	 the	 field	 is	 imposed,	 the	 solution	 is	 no		
longer	a	straight	line	(Izawa,	Rane,	Donchin,	&	Shadmehr,	
2008).	 For	 example,	 if	 the	 field	 pushes	 the	 hand	 to	 the		
left,	the	policy	that	produces	the	least	cost	in	terms	of	equa-
tion	1	 is	one	that	moves	the	hand	slightly	to	the	right	of	a	
straight	 line,	 resulting	 in	a	 curved	movement	 that	appears	
to	overcompensate	for	the	forces	(figure	40.3B).	As	subjects	
train,	 their	 hand	 paths	 converge	 to	 this	 curved	 trajectory.	
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significant	role	in	controlling	saccade	trajectories	 (Keller	&	
Robinson,	1971;	Guthrie,	Porter	&	Sparks,	1983).	Thus	the	
brain	 must	 guide	 saccade	 trajectories	 in	 the	 absence	 of	
sensory	 feedback.	 How	 is	 this	 accomplished?	 A	 plausible	
solution	is	for	the	brain	to	use	an	internal	estimate	of	the	state	
of	the	eye,	derived	from	a	copy	of	ongoing	motor	commands	
(Robinson,	1975).	This	internal	feedback	probably	accounts	
for	 the	 fact	 that	variability	at	 saccade	 initiation	 is	partially	
corrected	as	the	saccade	progresses	(Quaia,	Pare,	Wurtz,	&	
Optican,	2000).	That	 is,	 saccades	are	 steered	midflight	via	
an	internal	feedback	system	(Chen-Harris	et	al.,	2008).

What	are	the	neural	substrates	of	this	internal	feedback?	
The	 available	 evidence	 points	 to	 the	 cerebellum	 (Optican		
&	 Quaia,	 2002;	 Optican,	 2005).	 That	 is,	 the	 cerebellum	
appears	 to	act	as	a	 forward	model	of	 the	plant	 to	produce	
midflight	corrections.	A	simple	experiment	can	test	whether	
the	 cerebellum	 plays	 a	 role	 in	 predicting	 consequences	 of	
self-generated	 motor	 commands.	 Nowak,	 Timmann,	 and	
Hermsdorfer	(2007)	asked	subjects	to	hold	a	force	transducer	
that	measures	grip	force,	and	then	they	attached	a	basket	to	
the	 transducer.	 The	 experimenter	 dropped	 a	 ball	 into	 the	
basket.	When	the	ball	dropped,	it	exerted	a	downward	force	
on	the	hand.	The	subject	responded	by	squeezing	the	trans-
ducer	so	that	it	would	not	slip	out	of	his	or	her	hand.	Because	
there	are	delays	 in	 sensing	 the	 impact	of	 the	ball,	 the	grip	
response	came	about	100	ms	after	the	ball’s	impact.	Nowak	
and	 colleagues	 (2007)	 described	 patient	 HK,	 who	 did	 not	
have	a	cerebellum,	owing	to	a	very	rare	developmental	con-
dition.	 When	 the	 experimenter	 dropped	 the	 ball	 into	 the	
basket,	 both	 the	 healthy	 individuals	 and	 HK	 showed	 the	
delayed	response.	Therefore,	the	sensory	feedback	pathways	
appeared	 to	 be	 intact.	 In	 a	 subsequent	 trial,	 the	 subject	
(rather	than	the	experimenter)	dropped	the	ball.	In	a	healthy	
individual,	the	brain	can	predict	that	the	release	of	the	ball	
will	soon	result	in	an	impact	that	will	increase	the	downward	
load.	 In	 anticipation	 of	 this	 event,	 the	 healthy	 individual	
squeezed	the	basket’s	handle	harder	around	the	time	when	
the	 ball	 was	 released.	 HK,	 however,	 could	 not	 make	 this	
anticipatory	adjustment.	Rather,	she	responded	to	the	per-
turbation	in	the	same	way	that	she	responded	when	the	ball	
was	dropped	by	 the	experimenter.	Therefore,	 the	 cerebel-
lum	 appears	 to	 be	 required	 for	 the	 ability	 to	 predict	 the	
sensory	consequences	of	motor	commands	(Wolpert,	Miall,	
&	Kawato,	1998).

The cerebellum and construction of internal models

It	is	not	easy	to	make	accurate	predictions	about	the	sensory	
consequences	of	motor	commands;	our	muscles	respond	dif-
ferently	depending	on	their	fatigue	state,	and	our	limbs	move	
differently	depending	on	whether	we	are	holding	a	light	or	
heavy	object.	To	maintain	accuracy	of	the	predictions,	our	
brain	needs	 to	 learn	 from	 the	 sensory	 feedback	and	adapt	

its	 internal	model.	This	 adaptation	can	be	 simple,	 such	as	
changing	parameter	values	of	a	known	structure	(changing	
A,	B,	 or	H	 in	 equation	2),	 or	 complex,	 such	as	 identifying	
the	structure	de	novo	(replacing	the	linear	form	of	equation	
2	with	some	nonlinear	function).	The	cerebellum	appears	to	
be	one	of	the	crucial	sites	of	this	process.

Cerebellar	damage	often	prevents	individuals	from	learn-
ing	how	to	use	novel	tools.	For	example,	when	subjects	are	
asked	 to	 move	 the	 handle	 of	 a	 robotic	 tool	 to	 manipulate	
cursor	positions,	they	may	not	be	able	to	learn	to	compen-
sate	 for	 forces	 generated	 by	 the	 robot	 (Maschke,	 Gomez,	
Ebner,	&	Konczak,	2004;	Smith	&	Shadmehr,	2005)	or	to	
compensate	for	the	novel	visual	feedback	through	a	mirror	
(Sanes,	Dimitrov,	&	Hallett,	1990).	If	the	cerebellum	is	the	
crucial	 site	 for	 learning	 internal	 models,	 then	 it	 probably	
makes	its	contribution	to	control	of	reaching	via	its	outputs	
to	the	thalamus,	which	in	turn	projects	to	the	cerebral	cortex.	
In	humans,	it	is	possible	to	reversibly	disrupt	this	pathway.	
Essential	tremor	patients	are	occasionally	treated	with	deep-
brain	 stimulators	 that	 artificially	 disrupt	 the	 ventrolateral	
thalamus,	improving	their	tremor.	However,	these	patients	
learn	the	reach	task	better	when	the	stimulator	is	turned	off	
(Chen,	Hua,	Smith,	Lenz,	&	Shadmehr,	2006).	In	contrast,	
patients	 with	 damage	 to	 the	 basal	 ganglia	 showed	 little		
or	no	deficit	in	adaptation	with	either	the	robot	task	(Smith	
&	Shadmehr,	2005)	or	the	mirror	task	(Agostino,	Sanes,	&	
Hallett,	 1996;	 Gabrieli,	 Stebbins,	 Singh,	 Willingham,	 &	
Goetz,	1997).	Therefore	it	seems	quite	likely	that	the	cere-
bellum	is	a	key	structure	that	allows	us	to	learn	tool	use.

Experiments	 show	 that	 the	 cerebellar	 damage	 causes	
abnormalities	 in	 adaptation	 to	 both	 kinematic	 (Tseng,		
Diedrichsen,	 Krakauer,	 Shadmehr,	 &	 Bastian,	 2007)	 and	
force	(Smith	&	Shadmehr,	2005)	perturbations.	One	unifying	
concept	is	that	the	cerebellum	may	be	the	site	of	the	internal	
model	that	predicts	the	sensory	consequences	of	motor	com-
mands	(equation	2).	The	output	of	the	internal	model	could	
be	used	to	generate	a	prediction	error	that	drives	adaptation	
and	also	be	used	to	update	a	previous	estimate	of	limb	state.	
Support	 for	 this	 idea	 comes	 from	 a	 recent	 experiment	 in	
which	transcranial	magnetic	stimulation	was	used	to	disrupt	
the	 lateral	cerebellum	in	human	subjects	while	 they	slowly	
moved	their	arm	in	preparation	for	a	making	a	rapid	reach-
ing	movements	(Miall,	Christensen,	Owen,	&	Stanley,	2007).	
Reaching	errors	in	initial	direction	and	final	finger	position	
suggested	that	the	reaching	movements	had	been	made	from	
an	estimated	hand	position	that	was	approximately	140	ms	
out	of	date,	consistent	with	a	role	for	the	cerebellum	in	itera-
tively	updating	limb	state.

Learning the rewarding nature of sensory states

You	 might	 expect	 that	 a	 severely	 amnesic	 individual	 who	
was	 performing	 a	 novel	 task	 would	 have	 to	 be	 regularly	
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reminded	 of	 the	 task’s	 instructions.	 For	 example,	 if	 it	 is	 a	
reaching	 task,	 we	 might	 have	 to	 repeat	 “try	 to	 move	 the	
cursor	 to	 the	 target	 fast	 enough	 so	 it	 explodes.”	However,	
when	we	examined	the	severely	amnesic	patient	HM	on	the	
standard	 reach	adaptation	 task	with	 the	 robot	 (Shadmehr,	
Brandt,	&	Corkin,	1998),	after	he	had	exploded	a	few	targets,	
he	no	 longer	needed	verbal	reminders.	The	visual	appear-
ance	of	the	target	was	enough	for	him	to	initiate	a	reaching	
movement.	Strikingly,	when	he	 returned	a	 few	hours	 later	
(or	the	next	day),	he	voluntarily	reached	for	the	robot	handle	
and	 began	 preparing	 for	 onset	 of	 targets	 by	 moving	 the	
cursor	to	the	center	location	(naïve	individuals	avoid	touch-
ing	 the	machine).	 It	was	clear	 that	despite	having	no	con-
scious	recollection	of	having	done	the	task	before,	some	part	
of	 HM’s	 brain	 recognized	 that	 the	 contraption	 was	 a	 tool	
that	 had	 a	 particular	 purpose:	 to	 manipulate	 cursors	 on	 a	
screen.	This	behavior	suggested	that	during	the	first	session,	
he	implicitly	learned	the	reward	basis	of	the	task	(equation	
1).	 (For	 HM,	 the	 target	 explosion	 triggered	 a	 childhood	
memory	 of	 going	 bird	 hunting.	 As	 he	 was	 performing	 the	
task	and	was	able	to	get	a	target	explosion,	he	would	spend	
the	next	 few	minutes	describing	 the	memory	 in	detail:	 the	
type	of	gun	that	he	used,	the	porch	in	the	rear	of	his	child-
hood	home,	 the	 terrain	of	 the	woods	 in	his	backyard,	and	
the	kinds	of	birds	that	he	hunted.)	What	brain	regions	were	
involved	 in	 learning	 the	 rewarding	 nature	 of	 bringing	 the	
cursor	to	the	target?

Experiments	on	action	selection	in	rodents	provide	impor-
tant	insights	into	this	question.	For	example,	suppose	that	a	
rat	is	released	into	a	pool	of	water	from	some	random	start-
ing	point.	A	platform	is	positioned	in	a	specific	location	just	
below	 the	water	 line	 and	 cannot	be	 seen.	The	platform	 is	
always	at	 the	 same	 location	 in	 the	pool.	Rats	dislike	being	
wet	 and	 will	 try	 to	 find	 a	 way	 to	 elevate	 themselves.	 The	
normal	 rat	 can	 learn	 to	 locate	 the	 platform	 position	 by	
paying	attention	 to	 the	visual	cues	 that	 surround	the	pool.	
This	requires	learning	a	spatial	map	of	where	the	platform	
is	located	with	respect	to	the	surrounding	visual	cues.	With	
repeated	swims,	the	animal	learns	a	spatial	map.	This	spatial	
map	is	analogous	to	a	reward	function	that	associates	places	
in	the	pool	with	the	likelihood	of	the	platform	(and	therefore	
the	likelihood	of	not	having	to	be	wet).

Once	the	map	has	been	learned,	the	animal	can	find	the	
platform	regardless	of	where	the	rat	is	released	into	the	water	
because	the	map	is	with	respect	to	the	cues	on	the	walls.	If	
the	platform	is	removed,	the	normal	animal	will	spend	most	
of	the	time	searching	in	the	region	where	the	platform	should	
be.	Sometimes,	certain	cues	are	rewarding	no	matter	where	
they	are	located.	Consider	a	pool	where	there	are	two	hidden	
platforms:	one	that	is	large	enough	for	the	rat	to	mount	and	
one	that	is	too	small.	Both	have	a	distinct	visual	cue	associ-
ated	with	them:	a	little	flag	attached	to	each	platform,	each	
of	a	different	color,	sticking	out	of	the	water.	Suppose	that	

the	 flag	 attached	 to	 the	 large	 platform	 is	 red	 and	 the	 flag	
attached	to	the	small	platform	is	green.	The	platforms	may	
be	positioned	in	any	part	of	the	pool	and	will	change	from	
trial	to	trial.	Therefore,	in	this	experiment,	the	animal	needs	
to	learn	that	the	red	flag	indicates	the	location	of	the	suitable	
platform	and	is	a	rewarding	object.	In	another	version	of	the	
experiment,	 the	 large	platform	will	 always	be	 located	 in	 a	
particular	spatial	location,	but	the	flag	on	top	of	it	will	be	a	
random	color.	In	this	version	of	the	experiment,	the	animal	
needs	to	learn	that	it	is	not	the	color	of	the	flag	that	is	impor-
tant,	but	the	spatial	location.

We	 see	 that	 there	 is	 a	 natural	 competition	 between	 the	
learning	systems	that	might	be	involved	in	these	two	condi-
tions:	Is	the	platform	in	the	same	“place”	as	before	(where	
place	refers	to	a	location	in	the	spatial	map),	or	is	the	plat-
form	 always	 where	 the	 red	 flag	 is	 located?	 Packard	 and	
McGaugh	 (1992)	 performed	 both	 experiments	 by	 having	
their	animals	swim	eight	times	per	day	for	a	number	of	days.	
They	 recorded	 the	 number	 of	 times	 the	 animals	 mounted	
the	 small	 platform	and	 labeled	 these	 as	 errors.	 In	 the	first	
experiment,	 in	 which	 reward	 was	 associated	 with	 the	 red	
flag,	healthy	animals	gradually	 learned	 to	 swim	 to	 the	 red	
flag.	Interestingly,	animals	with	damage	to	the	medial	tem-
poral	lobe	learned	the	task	just	as	well	as	the	healthy	controls	
did.	However,	animals	with	damage	to	the	caudate	nucleus	
were	much	slower	in	learning	the	association.	After	days	of	
training,	 they	continued	 to	attempt	 to	mount	 the	platform	
under	the	green	flag.	Therefore	it	appears	that	the	ability	to	
associate	reward	to	stimuli	regardless	of	 its	 spatial	 location	
depends	on	the	basal	ganglia.

In	the	second	experiment,	in	which	reward	was	associated	
with	a	spatial	location,	healthy	animals	gradually	learned	to	
swim	to	that	location	and	ignore	the	color	of	the	flag.	Animals	
with	damage	to	the	caudate	nucleus	performed	similarly	to	
the	healthy	controls.	However,	animals	with	damage	to	the	
medial	 temporal	 lobe	 were	 much	 slower	 in	 learning	 the	
association.	 Therefore	 the	 ability	 to	 associate	 reward	 to	 a	
spatial	location	depends	on	the	medial	temporal	lobe.

Returning	to	our	observations	in	HM,	we	would	speculate	
that	it	was	his	basal	ganglia	that	learned	that	if	he	were	to	
place	the	cursor	in	the	box	on	the	screen	and	do	so	rapidly,	
a	rewarding	state	would	be	experienced	(explosions,	which	
triggered	 a	 pleasant	 childhood	 memory).	 During	 the	 later	
sessions,	 the	visual	appearance	of	 the	machine	and	the	act	
of	holding	its	handle	likely	triggered	a	recall	of	this	reward	
structure.

Effects of striatal damage on the assessment of  
movement costs and rewards

One	of	the	striking	features	of	damage	to	the	human	stria-
tum	 is	 micrographia,	 an	 impairment	 of	 writing	 in	 which	
letters	become	very	small	and	writing	speed	becomes	slow.	

Gazzaniga_40_Ch40.indd   593 3/12/2009   5:42:08 PM



Y

594	 	 motor	systems

This	condition	is	most	common	in	degenerative	diseases	of	
the	basal	ganglia	such	as	Parkinson’s	disease	(Van	Gemmert,	
Teulings,	 &	 Stelmach,	 2001).	 However,	 it	 can	 also	 occur	
with	 focal	 lesions.	Consider	patient	FF,	 an	 individual	who	
suffered	 an	 ischemic	 stroke	 in	 the	 left	 basal	 ganglia,	 in		
the	 head	 of	 the	 caudate	 nucleus	 and	 the	 anterior	 part	 of		
the	 putamen	 (Barbarulo,	 Grossi,	 Merola,	 Conson,	 &	
Trojano,	2007).	When	FF	was	asked	to	copy	a	four-	or	eight-
letter	 string	 of	 characters,	 writing	 with	 the	 right	 hand		
was	 much	 smaller	 than	 with	 the	 left	 hand.	 Micrographia	
reflects	an	abnormal	choice	of	speed	and	amplitude	and	is	
one	 manifestation	 of	 generalized	 slowing	 of	 movement	
(bradykinesia).

In	 the	 optimal	 control	 framework,	 there	 are	 no	 desired	
trajectories	for	our	movements.	Rather,	the	path	is	a	result	
of	 a	 control	 policy	 (equation	 5),	 which	 itself	 is	 a	 result	 of	
minimization	 of	 a	 cost	 (equation	 1).	 The	 cost	 depends	 on	
two	 quantities:	 spatial	 accuracy	 (error	 cost)	 and	 required	
effort	(energy	cost).	Accuracy	requirements	influence	speed	
selection,	 due	 to	 the	 signal-dependent	 noise	 property	 of	
motor	 commands.	 The	 desired	 accuracy	 of	 a	 movement		
sets	an	upper	limit	on	the	maximum	speed	of	a	movement.	
The	accuracy	term	of	the	cost	function	offers	an	explanation	
for	 the	 wealth	 of	 experimental	 data	 demonstrating	 speed-
accuracy	 tradeoff	 in	 reaching	 movements.	 Normal	 move-
ments,	 however,	 do	 not	 appear	 to	 be	 made	 at	 the	 limits	
imposed	by	the	speed-accuracy	tradeoff:	We	can	reach	for	
an	object	faster	than	usual	without	appreciable	loss	of	accu-
racy.	Although	very	 little	experimental	data	exist	on	spon-
taneous	speed	selection,	the	effort	term	of	the	cost	function	
offers	a	potential	explanation	for	this	phenomenon;	that	is,	
perhaps	micrographia	is	an	indication	of	an	abnormally	high	
motor	cost.

One	 of	 us	 recently	 tested	 this	 idea	 that	 in	 Parkinson’s	
disease,	 there	 may	 be	 an	 abnormally	 high	 cost	 associated	
with	 motor	 commands	 (Mazzoni,	 Hristova,	 &	 Krakauer,	
2007).	We	required	healthy	control	subjects	to	make	accu-
rate	reaching	movements	of	specified	speeds.	As	the	required	
speed	increased,	subjects	took	longer	 (required	more	trials)	
to	accumulate	a	set	number	of	movements	at	 the	required	
speed.	This	reluctance	to	move	faster	could	be	explained	by	
the	increase	in	required	energy	as	well	as	by	the	degradation	
of	spatial	accuracy	and	thus	did	not	disambiguate	the	con-
tribution	of	these	two	costs.	We	then	compared	the	perfor-
mance	of	patients	with	Parkinson’s	disease	to	that	of	control	
subjects	 in	 this	 task.	 Parkinson’s	 disease	 patients	 demon-
strated	 normal	 spatial	 accuracy	 in	 each	 condition	 but	
required	more	trials	than	controls	to	accumulate	the	required	
number	of	movements	 in	 each	 speed	 range.	The	patients’	
increased	reluctance	to	execute	movements	requiring	greater	
effort,	in	spite	of	preserved	spatial	accuracy,	provided	exper-
imental	demonstration	of	the	contribution	of	energy	cost	to	

speed	selection,	independent	of	spatial	accuracy.	The	impli-
cation	is	that	bradykinesia	results	when	striatal	dysfunction	
changes	the	value	of	effort	minimization	(increased	sensitiv-
ity	to	effort	cost;	L	in	equation	1)	relative	to	that	of	accuracy	
optimization	 (error	cost;	Q	 in	equation	1).	Thus	 it	appears	
that	the	basal	ganglia	either	provides	the	motor	motivation	
signal,	 which	 is	 then	 used	 to	 compute	 the	 cost-to-go	 else-
where,	or	is	where	the	cost-to-go	is	computed.

Parietal cortex damage and state estimation

Sometimes	goal	states	change	as	the	task	is	being	performed.	
For	example,	when	one	reaches	 to	pick	up	a	pen,	 the	pen	
may	 start	 rolling	away.	Healthy	 individuals	have	no	prob-
lems	 adjusting	 their	 movements	 to	 compensate	 for	 this	
change.	However,	parietal	patients	show	particular	difficul-
ties	with	this	task.	For	example,	if	parietal	damage	impairs	
representation	of	 visual	 states	 contralateral	 to	 the	fixation,	
then	motion	of	the	goal	state	to	this	region	during	a	move-
ment	impairs	the	ability	to	adjust	the	reach	mid-flight.	Grea	
and	colleagues	(2002)	observed	this	phenomenon	in	a	patient	
with	bilateral	posterior	parietal	cortex	damage.	The	patient	
had	 no	 problems	 reaching	 to	 targets	 in	 central	 fixation.	
However,	when	the	target	shifted	to	the	right	at	reach	onset,	
the	subject	continued	to	reach	to	the	original	location	of	the	
target	as	if	the	target	had	not	moved.

Disruption	 of	 the	 parietal	 cortex	 in	 healthy	 individuals	
can	 produce	 a	 similar	 phenomenon.	 Desmurget	 and	 col-
leagues	 (1999)	 provided	 a	 single	 pulse	 via	 a	 transcranial	
magnetic	 stimulator	 as	 the	 reach	 to	 the	 target	 began.	 On	
trials	 in	which	 the	 target	 jumped,	most	of	 the	participants	
had	hand	movements	that	disregarded	the	shift	in	the	target	
location.

Let	 us	 examine	 these	 results	 in	 the	 framework	 of	 figure	
40.2.	The	relevant	state	variables	in	this	task	include	position	
of	 the	 limb	 (in	 proprioceptive	 and	 visual	 coordinates)	 and	
the	position	of	 the	 target	 (in	 visual	 coordinates).	As	motor	
commands	are	generated,	the	forward	model	should	update	
its	predicted	state	of	the	limb.	Generally,	we	expect	targets	
to	remain	stationary,	and	therefore	the	output	of	the	forward	
model	 should	 continue	 to	 predict	 the	 target	 position.	
Together,	these	predictions	represent	the	prior	belief	about	
the	state	of	the	body	and	the	world.	The	sensory	feedback	
from	proprioception	and	vision	 is	 integrated	with	 this	pre-
diction	to	make	a	posterior	belief.	When	the	 target	 jumps,	
the	 novel	 sensory	 information	 needs	 to	 be	 integrated	 with	
the	output	of	the	forward	model.	If	it	 is	not,	the	reach	will	
continue	to	the	prior	expectation	of	its	location.	The	results	
noted	 above	 suggest	 that	 either	 this	 integration	 step	 is	
affected	by	damage	or	stimulation	of	the	parietal	cortex	or	
that	 the	 sensory	 information	 outside	 the	 central	 fixation	
region	cannot	reach	the	integration	step.
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Limitations in applying the theory to biological  
motor control

This	 review	 of	 motor	 control	 has	 been	 written	 within	 the	
framework	of	optimal	feedback	control.	At	the	heart	of	the	
theory	is	the	conjecture	that	animals	make	voluntary	move-
ments	in	order	to	acquire	the	most	reward	while	expending	
the	least	effort.	However,	the	theory	cannot	make	a	behav-
ioral	prediction	unless	we	can	specify	three	kinds	of	informa-
tion:	 (1)	 what	 the	 costs	 and	 rewards	 are;	 (2)	 what	 the	
constraints	are,	 that	 is,	dynamics	of	 the	 task;	 and	 (3)	what	
the	mechanisms	of	 state	estimation	are.	 In	 this	 review,	we	
have	chosen	a	specific	set	of	equations	to	represent	each	kind	
of	information.	However,	it	is	not	difficult	to	find	examples	
of	behavior	that	are	inconsistent	with	our	formulation.

The	cost	that	we	wrote	in	equation	1	is	perhaps	the	sim-
plest	 possible	 cost	 function	 for	 goal-directed	 movements.	
How	seriously	 can	we	 take	 this	 specific	 representation?	As	
demonstrated	 by	 attempts	 to	 reverse-engineer	 the	 cost	
(Kording	 &	 Wolpert,	 2004b),	 the	 quadratic	 cost	 function	
should	not	be	taken	too	seriously.

Consider	a	set	of	experiments	that	highlighted	the	impor-
tance	 of	 costs	 associated	 with	 postural	 stability,	 a	 quantity	
that	 we	 did	 not	 include	 in	 equation	 1.	 Scheidt	 and	 Ghez	
(2007)	 explored	 a	 task	 in	 which	 continuous	 random	 noise	
perturbed	 the	 hand	 at	 rest.	 This	 constraint	 encouraged	
increasing	the	cocontraction	levels	of	muscles.	However,	the	
noise	was	present	only	during	the	postural	phase	of	the	task	
and	disappeared	when	subjects	made	a	reaching	movement.	
They	found	that	if	a	kinematic	perturbation	required	adap-
tation	of	 the	movement,	 the	 learning	did	not	generalize	 to	
the	postural	phase	at	 the	end	of	the	movement.	They	sug-
gested	 that	 the	 control	 processes	 that	 moved	 the	 limb	
appeared	 distinct	 from	 control	 processes	 that	 set	 muscle	
activity	levels	during	posture.	If	so,	do	these	processes	have	
separate	costs?	A	recent	study	suggests	that	the	answer	is	yes,	
the	weighting	of	postural	cost	 is	flexible	and	can	be	deter-
mined	by	task	context	(Liu	&	Todorov,	2007).

Finally,	consider	an	experiment	by	Jax	and	Rosenbaum	
(2007)	in	which	they	asked	subjects	to	make	arm	movements	
to	an	array	of	12	targets	positioned	in	a	16-cm	radius	circle	
on	a	vertical	screen.	Targets	were	presented	randomly,	and	
in	 some	 trials,	 an	obstacle	was	presented	halfway	between	
the	start	and	the	target.	The	same	target	was	never	shown	
twice	 in	 a	 row.	 Interestingly,	 whenever	 a	 no-obstacle	 trial	
followed	an	obstacle	trial,	subjects	made	curved	rather	than	
straight	trajectories.	However,	the	movements	straightened	
out	 when	 a	 no-obstacle	 trial	 followed	 another	 no-obstacle	
trial.	Why	make	a	 suboptimal	curved	 trajectory	when	you	
see	that	there	is	no	obstacle?

These	results	highlight	a	number	of	important	problems	
with	 our	 framework.	 First,	 without	 knowing	 precisely	 the	

costs	and	rewards	of	a	movement,	it	will	not	be	possible	to	
make	quantitatively	reliable	predictions	of	behavior.	Without	
a	priori	predictions,	how	can	the	theory	be	falsified?

Second,	what	are	the	timescales	of	optimization?	Is	opti-
mization	 computed	 in	 the	 reaction	 time	 of	 each	 trial	 de	
novo? The	timescale	appears	to	be	longer	than	a	single	trial,	
as	 exemplified	 by	 the	 example	 from	 Jax	 and	 Rosenbaum	
(2007).	Certainly,	new	costs	can	be	conjured	up.	For	example,	
in	 this	 case,	 we	 can	 assume	 that	 finding	 feedback	 control	
gains	 that	 minimize	 a	 cost	 requires	 neural	 processing	 that	
itself	 has	 a	 cost,	 so	 it	might	be	more	 efficient	 to	 allow	 the	
solution	in	one	trial	to	linger	on	to	influence	the	solution	in	
the	next	trial.	Or	perhaps	there	is	a	cost	in	switching	control	
policies.

Third,	what	is	the	timescale	of	system	identification?	Our	
body	changes	over	multiple	timescales.	Muscles	fatigue	and	
recover	quickly,	objects	are	lifted	and	replaced	rapidly,	yet	
aging	can	produce	gradual	loss	of	motor	neurons	and	trans-
formation	of	muscle	fibers.	In	other	words,	the	parameters	
of	 the	 constraint	 equation	 and	 perhaps	 its	 structure	 are	
changing	over	multiple	timescales.	Unfortunately,	we	cannot	
make	optimized	movements	unless	we	have	an	accurate	set	
of	constraint	equations,	that	is,	an	accurate	internal	model.	
When	we	see	a	 suboptimum	movement,	can	we	dissociate	
the	effects	of	an	inaccurate	internal	model	from	effects	of	an	
inaccurate	cost	function?

Finally,	what	is	the	alternative	hypothesis	to	this	theory?	
At	this	time,	the	alternative	is	another	cost	or	constraint,	not	
a	fundamentally	distinct	theory.	However,	formalization	of	
a	theory	is	the	key	step	that	accelerates	its	evolution	toward	
acceptance	or	rejection.

Conclusions

The	relationship	between	theories	and	the	neural	machinery	
that	 implements	 them	 is	 still	 in	 the	 courtship	 stage,	 but	
despite	 the	 separation,	 it	 has	 begun	 to	 bear	 modest	 fruit;	
theories	have	informed	the	neural	basis	of	motor	control	in	
patients,	while	 lesion	studies	have	 informed	the	algorithms	
and	 representations	 that	 implement	 the	 computational		
theories.	The	result	 is	 the	 functional	anatomy	of	voluntary	
movements	 outlined	 in	 figure	 40.2B.	 In	 this	 framework,	 a	
role	for	the	cerebellum	is	system	identification,	that	is,	pre-
dicting	 the	 changes	 in	 state	 that	 arise	 as	 a	 result	 of	motor	
commands.	A	role	for	the	parietal	cortex	is	state	estimation,	
in	which	predictions	about	sensory	feedback	are	integrated	
with	visual	and	proprioceptive	observations	 to	 form	beliefs	
about	states	of	our	selves	and	objects/people	around	us.	The	
basal	 ganglia	 may	 play	 a	 role	 in	 computing	 a	 cost-to-go	
function,	estimating	value	of	states	and	costs	of	motor	com-
mands.	Finally,	once	a	goal	 state	has	been	selected,	motor	
cortical	 areas	 minimize	 this	 cost	 function	 and	 transform		
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state	estimates	into	motor	output	by	formulating	a	feedback	
control	policy.

acknowledgments	 The	 work	 was	 supported	 by	 National	 Insti-
tutes	of	Health	(NIH)	grants	K02-048099	and	R01-052804	to	JWK	
and	R01-037422	to	RS.

REFERENCES

Agostino,	 R.,	 Sanes,	 J.	 N.,	 &	 Hallett,	 M.	 (1996).	 Motor	 skill	
learning	in	Parkinson’s	disease.	J. Neurol. Sci.,	139,	218–226.

Barbarulo,	 A.	 M.,	 Grossi,	 D.,	 Merola,	 S.,	 Conson,	 M.,	 &	
Trojano,	L.	 (2007).	On	the	genesis	of	unilateral	micrographia	
of	the	progressive	type.	Neuropsychologia,	45,	1685–1696.

Chen,	H.,	Hua,	S.	E.,	Smith,	M.	A.,	Lenz,	F.	A.,	&	Shadmehr,	R.	
(2006).	Effects	of	human	cerebellar	thalamus	disruption	on	adap-
tive	control	of	reaching.	Cerebral Cortex,	16,	1462–1473.

Chen-Harris,	 H.,	 Joiner,	 W.	 M.,	 Ethier,	 V.,	 Zee,	 D.	 S.,	 &		
Shadmehr,	R.	(2008).	Adaptive	control	of	saccades	via	internal	
feedback.	J. Neurosci.,	28,	2804–2813.

Desmurget,	 M.,	 Epstein,	 C.	 M.,	 Turner,	 R.	 S.,	 Prablanc,	 C.,	
Alexander,	G.	E.,	&	Grafton,	S.	T.	(1999).	Role	of	the	poste-
rior	parietal	cortex	in	updating	reaching	movements	to	a	visual	
target.	Nature Neurosci.,	2,	563–567.

Fitts,	P.	M.	(1954).	The	information	capacity	of	the	human	motor	
system	in	controlling	the	amplitude	of	movement.	J. Exp. Psychol.,	
47,	381–391.

Gabrieli,	J.	D.	E.,	Stebbins,	G.	T.,	Singh,	J.,	Willingham,	D.	B.,	
&	 Goetz,	 C.	 G.	 (1997).	 Intact	 mirror-tracing	 and	 impaired	
rotary-pursuit	skill	learning	in	patients	with	Huntington’s	disease:	
Evidence	 for	 dissociable	 memory	 systems	 in	 skill	 learning.		
Neuropsychology,	11,	272–281.

Grea,	H.,	Pisella,	L.,	Rossetti,	Y.,	Desmurget,	M.,	Tilikete,	C.,	
Grafton,	S.,	Prablanc,	C.,	&	Vighetto,	A.	(2002).	A	lesion	of	
the	posterior	parietal	cortex	disrupts	on-line	adjustments	during	
aiming	movements.	Neuropsychologia,	40,	2471–2480.

Guthrie,	B.	L.,	Porter,	J.	D.,	&	Sparks,	D.	L.	(1983).	Corollary	
discharge	 provides	 accurate	 eye	 position	 information	 to	 the		
oculomotor	system.	Science,	221,	1193–1195.

Harris,	C.	M.,	&	Wolpert,	D.	M.	(1998).	Signal-dependent	noise	
determines	motor	planning.	Nature,	394,	780–784.

Izawa,	J.,	Rane,	T.,	Donchin,	O.,	&	Shadmehr,	R.	(2008).	Motor	
adaptation	as	a	process	of	reoptimization.	J. Neurosci.,	28,	2883–	
2891.

Jax,	 S.	 A.,	 &	 Rosenbaum,	 D.	 A.	 (2007).	 Hand	 path	 priming	 in	
manual	obstacle	avoidance:	Evidence	that	the	dorsal	stream	does	
not	 only	 control	 visually	 guided	 actions	 in	 real	 time.	 J. Exp. 
Psychol. Hum. Percept. Perform.,	33,	425–441.

Jones,	K.	E.,	Hamilton,	A.	F.,	&	Wolpert,	D.	M.	(2002).	Sources	
of	 signal-dependent	 noise	 during	 isometric	 force	 production.		
J. Neurophysiol.,	88,	1533–1544.

Keller,	 E.	 L.,	 &	 Robinson,	 D.	 A.	 (1971).	 Absence	 of	 a	 stretch	
reflex	in	extraocular	muscles	of	the	monkey.	J. Neurophysiol.,	34,	
908–919.

Kording,	K.	P.,	&	Tenenbaum,	J.	B.,	Shadmehr,	R.	 (2007).	The	
dynamics	of	memory	as	a	consequence	of	optimal	adaptation	to	
a	changing	body.	Nat. Neurosci.,	10,	779–786.

Kording,	K.	P.,	&	Wolpert	D.	M.	(2004a).	Bayesian	integration	
in	sensorimotor	learning.	Nature,	427,	244–247.

Kording,	 K.	 P.,	 &	 Wolpert	 D.	 M.	 (2004b).	 The	 loss	 function		
of	 sensorimotor	 learning.	 Proc. Natl. Acad. Sci.	 USA,	 101,	
9839–9842.

Liu,	 D.,	 &	 Todorov,	 E.	 (2007).	 Evidence	 for	 the	 flexible	 senso-
rimotor	 strategies	 predicted	 by	 optimal	 feedback	 control.		
J. Neurosci.,	27,	9354–9368.

Maschke,	M.,	Gomez,	C.	M.,	Ebner,	T.		J.,	&	Konczak,		J.	(2004).	
Hereditary	cerebellar	ataxia	progressively	impairs	force	adapta-
tion	 during	 goal-directed	 arm	 movements:	 J. Neurophysiol.,	 91,	
230–238.

Mazzoni,	P.,	Hristova,	A.,	&	Krakauer,	J.	W.	(2007).	Why	don’t	
we	 move	 faster?	 Parkinson’s	 disease,	 movement	 vigor,	 and	
implicit	motivation.	J. Neurosci.,	27,	7105–7116.

Miall,	R.	C.,	Christensen,	L.	O.	D.,	Owen,	C.,	&	Stanley,	 J.	
(2007).	Disruption	of	state	estimation	in	the	human	lateral	cere-
bellum.	PLoS	Biol.,	5,	e316.

Nowak,	D.	A.,	Timmann,	D.,	&	Hermsdorfer,	J.	(2007).	Dexterity	
in	cerebellar	agenesis.	Neuropsychologia,	45,	696–703.

Optican,	 L.	 M.	 (2005).	 Sensorimotor	 transformation	 for	 visually	
guided	saccades.	Ann. NY Acad. Sci.,	1039,	132–148.

Optican,	L.	M.,	&	Quaia,	C.	(2002).	Distributed	model	of	collicu-
lar	and	cerebellar	 function	during	saccades.	Ann. NY Acad. Sci.,	
956,	164–177.

Packard,	M.	G.,	&	McGaugh,	 J.	L.	 (1992).	Double	dissociation	
of	fornix	and	caudate	nucleus	lesions	on	acquisition	of	two	water	
maze	 tasks:	 Further	 evidence	 for	 multiple	 memory	 systems.	
Behav. Neurosci.,	106,	439–446.

Quaia,	 C.,	 Pare,	 M.,	 Wurtz,	 R.	 H.,	 &	 Optican,	 L.	 M.	 (2000).	
Extent	of	 compensation	 for	 variations	 in	monkey	 saccadic	 eye	
movements.	Exp. Brain Res.,	132,	39–51.

Robinson,	 D.	 A.	 (1975).	 Oculomotor	 control	 signals.	 In	 P.		
Bachy-Rita	&	G.	Lennerstrand	 (Eds.),	Basic mechanisms of ocular  
motility and their clinical implications	 (pp	 337–374).	 Oxford,	 UK:	
Pergamon.

Sanes,	J.	N.,	Dimitrov,	B.,	&	Hallett,	M.	(1990).	Motor	learning	
in	patients	with	cerebellar	dysfunction.	Brain,	113,	103–120.

Scheidt,	R.	A.,	&	Ghez,	C.	(2007).	Separate	adaptive	mechanisms	
for	 controlling	 trajectory	 and	 final	 position	 in	 reaching.		
J. Neurophysiol.,	98,	3600–3613.

Shadmehr,	R.,	Brandt,	J.,	&	Corkin,	S.	(1998).	Time	dependent	
motor	memory	processes	 in	H.M.	and	other	amnesic	 subjects.	
J. Neurophysiol.,	80,	1590–1597.

Shadmehr,	R.,	&	Mussa-Ivaldi,	F.	A.	(1994).	Adaptive	representa-
tion	of	dynamics	during	learning	of	a	motor	task.	J. Neurosci.,	14,	
3208–3224.

Smith,	M.	A.,	Ghazizadeh,	A.,	&	Shadmehr,	R.	(2006).	Interacting	
adaptive	processes	with	different	timescales	underlie	short-term	
motor	learning.	PLoS Biol.,	4,	e179.

Smith,	M.	A.,	&	Shadmehr,	R.	(2005).	Intact	ability	to	learn	inter-
nal	 models	 of	 arm	 dynamics	 in	 Huntington’s	 disease	 but	 not	
cerebellar	degeneration.	J. Neurophysiol.,	93,	2809–2821.

Takikawa,	 Y.,	 Kawagoe,	 R.,	 Itoh,	 H.,	 Nakahara,	 H.,	 &		
Hikosaka,	O.	(2002).	Modulation	of	saccadic	eye	movements	by	
predicted	reward	outcome.	Exp. Brain Res.,	142,	284–291.

Thiele,	 A.,	 Henning,	 P.,	 Kubischik,	 M.,	 &	 Hoffmann,	 K.	 P.	
(2002).	Neural	mechanisms	of	saccadic	suppression.	Science,	295,	
2460–2462.

Thoroughman,	K.	A.,	&	Shadmehr,	R.	(2000).	Learning	of	action	
through	adaptive	combination	of	motor	primitives.	Nature,	407,	
742–747.

Todorov,	E.,	&	Jordan,	M.	I.	 (2002).	Optimal	 feedback	control	
as	a	theory	of	motor	coordination.	Nat. Neurosci.,	5,	1226–1235.

Trommershauser,	 J.,	 Gepshtein,	 S.,	 Maloney,	 L.	 T.,	 Landy,		
M.	 S.,	 &	 Banks,	 M.	 S.	 (2005).	 Optimal	 compensation	 for		
changes	 in	 task-relevant	 movement	 variability.	 J. Neurosci.,	 25,	
7169–7178.

Gazzaniga_40_Ch40.indd   596 3/12/2009   5:42:08 PM



Y

shadmehr	and	krakauer:	computational	motor	control	 	 597

Tseng,	Y.	W.,	Diedrichsen,	J.,	Krakauer,	J.	W.,	Shadmehr,	R.,	&	
Bastian,	A.	J.	(2007).	Sensory	prediction	errors	drive	cerebellum-
dependent	adaptation	of	reaching.	J. Neurophysiol.,	98,	54–62.

Uno,	Y.,	Kawato,	M.,	&	Suzuki,	R.	(1989).	Formation	and	control	
of	 optimal	 trajectory	 in	 human	 multijoint	 arm	 movement:	
Minimum	torque-change	model.	Biol.	Cybern.,	61,	89–101.

Van	Gemmert,	A.	W.,	Teulings,	H.	L.,	&	Stelmach,	G.	E.	(2001).	
Parkinsonian	 patients	 reduce	 their	 stroke	 size	 with	 increased	
processing	demands.	Brain Cogn.,	47,	504–512.

Vaziri,	S.,	Diedrichsen,	J.,	&	Shadmehr,	R.	(2006).	Why	does	the	
brain	predict	 sensory	consequences	of	oculomotor	commands?	
Optimal	 integration	 of	 the	 predicted	 and	 the	 actual	 sensory	
feedback.	J. Neurosci.,	26,	4188–4197.

Wolpert,	D.	M.,	Miall,	R.	C.,	&	Kawato,	M.	 (1998).	 Internal	
models	in	the	cerebellum.	Trends Cogn. Sci.,	2,	338–347.

Gazzaniga_40_Ch40.indd   597 3/12/2009   5:42:08 PM




