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Abstract

When we experience an error in a motor task, we adapt our next movement to

partially compensate. The process of adaptation can be modeled as

u(n+1) = αu(n) + η(n)e(n) where u(n) is the motor command on trial n, α is a decay

factor, e(n) is error, and η(n) represents the subjects’ sensitivity to the experienced

error. Here, we explore the rules that govern the value of η(n) as well as the

brain-regions that are responsible for its evaluation.

In Chapter 2, we begin with a puzzle: in motor learning tasks, humans are

able to modulate how much they learn from a given error. In some conditions, they

learn a large amount, but in other conditions they learn only a small amount. That

is, the brain selects how much it is willing to learn from error. We suggest that

‘error-sensitivity’ is modulated by the history of previous errors.

What brain region is responsible for determining the amount subjects are

willing to learn from an error? Adaptation is critically dependent on the cerebellum,

as demonstrated by patient and lesion studies. In Chapter 3 we use transcranial

direct current stimulation (tDCS) to alter the function of the cerebellum, and

observe its effects on error-sensitivity. We find that increasing the excitability of the

cerebellum via anodal tDCS increases the rate of learning, while decreasing
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cerebellum excitability via cathodal tDCS decreases error-sensitivity. That is, we

suggest the cerebellum is responsible for determining how much subjects are willing

to learn from a motor error.

How does the cerebellum accomplish the task of adaptation? It is has been

proposed that the firing rates of the principal cells of the cerebellum, Purkinje

(P-)cells, should encode movement kinematics. Yet, this has remained a long

standing puzzle, as no clear encoding of movement kinematics has been found. How

the cerebellum learns has been difficult to approach because the problem of

encoding remains unresolved. In Chapter 4 we approach this problem from a new

direction: we propose that the cerebellum is composed of micro-clusters of P-cells,

organized based on their preference for error. When the cells are organized in this

manner, a clear encoding of kinematics emerges.
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1 INTRODUCTION

When we experience an error during a motor task, we adapt our next movement to

partially compensate. Even when perturbations are random, trial-to-trial changes in

the motor output are still present (Donchin et al., 2003; Izawa et al., 2008; Marko

et al., 2012), demonstrating that on every movement the brain learns from error.

One potential mathematical formulation of this trial-to-trial learning is via

“state-space” models (Thoroughman and Shadmehr, 2000; Smith et al., 2006).

To explain this idea, suppose that on trial n a perturbation x(n) is imposed

on motor command u(n), so that the sensory consequences that are observed by the

learner are y(n) = u(n) + x(n). The learner has a prediction about the sensory

consequences ŷ(n), and updates its belief about the perturbation state, x̂(n), from

the prediction error e(n) = y(n) − ŷ(n). This error signal is fundamental to

adaptation, producing learning, as evidenced by changes in the motor command,

u(n) in the next trial (Thoroughman and Shadmehr, 2000). However, error is not the

only factor that affects how much is learned from trial-to-trial. An equally

important factor is error-sensitivity. This sensitivity represents the fraction of the

error that is compensated. Mathematically, the belief about the state of the

environment on trial n, written as x̂(n), can be related to the belief on trial n + 1 as

x̂(n+1) = αx̂(n) + η(n)e(n) , (1.1)

where η(n) represents error-sensitivity. Eq. 1.1 (representing a single state model),

and its extensions to multiple timescales of memory, have been successfully applied

to a variety of motor adaptation tasks (Smith et al., 2006; Fine and Thoroughman,
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2006; 2007; Kording et al., 2007).

1.1 Background

In Eq. 1.1, we can quantify the amount of trial-to-trial learning, or adaptation, from

trial n to n + 1 as the change in the subject’s belief about the perturbation state:

∆x̂(n+1:n) = x̂(n+1) − u(n)

∆x̂(n+1:n) = x̂(n+1) − αx̂(n) − η(n)e(n)
. (1.2)

That is, the learner updates their belief about the environment based on two

separate factors, αx̂(n), which is a decay of the motor memory back to it’s baseline

level, and η(n)e(n), which represents the amount of learning due to an error. In this

section, we review the relevant literature, describing how the brain determines how

much to learn from a given error.

1.1.1 Previous models of error-based learning

Earlier models of learning featured a constant ‘learning rate’ parameter, which

corresponds to constant error-sensitivity. In these models, we can replace η(n) with

η, indicating that the value of the error-sensitivity parameter does not depend on

the trial number, n. For instance, classical conditioning experiments were modeled

using sensory prediction errors (Rescorla and Wagner, 1972). In these studies, a

single learning-rate variable was used to update model weights based on the error in

the current trial. More recently, behavioral results from saccade adaptation studies

and reaching studies have been modeled via ‘single-state’ or ‘two-state’ models in

which one or two error-sensitivity terms are used, but both are kept constant

throughout training (Thoroughman and Shadmehr, 2000; Smith et al., 2006).

Therefore, such models do not vary error-sensitivity. If we were to plot the amount
2



of adaptation, ∆x̂(n+1:n), as a function of the error size experienced in trial n, we

would see that the function is linear, where the slope of the line is the error

sensitivity, η. That is, these models predict that the learning should adapt their

movements based on the same fraction of the error, regardless of the error’s

magnitude. We will see in Chapter 2 that human subjects do not necessarily follow

this pattern (see also Section 1.1.2).

Most recently, the Kalman-filter framework has been used to model

adaptation (van Beers, 2009). In these models, error-sensitivity changes during

learning based on the uncertainty that the learner has with regard to its prediction

ŷ(n) versus observation y(n). For example, if the uncertainty associated with ŷ is

large, error-sensitivity is large, making the learner learn more from the prediction

error. From a theoretical perspective, this approach is attractive, but one problem is

that in the Kalman framework uncertainty rapidly converges to the values described

by the noises in the state update and measurement equations. It is also unclear how

the learner should estimate these noises. In addition, the error-sensitivity term used

in these models, termed the Kalman gain, is the same for all error magnitudes,

which we will show is not the case for human motor adaptation.

1.1.2 Previous experimental evidence that error-sensitivity

is not static

As described in the previous section, most mathematical models of motor learning

assume that error-sensitivity, η, is fixed both in time as well as a function of error.

In this section, we outline previous experimental evidence suggesting that these

assumptions do not fully describe the behavior of human subjects.

Marko et al. (2012) provide compelling evidence that error-sensitivity is not

fixed as a function of error magnitude. That is, subjects do not learn the same

fraction of the error for every error magnitude that they experience. Briefly,
3



subjects held the handle of a robotic manipulandum, and were asked to “shoot” to a

target presented directly in front of them. In some trials, the robot applied forces on

the subject’s hand. These forces were small, medium, or large, resulting in

proprioceptive errors of varying magnitudes. The authors then assessed the amount

of trial-to-trial learning via Eq. 1.2. The found that subjects learned a relatively

high fraction of the error when the error was small compared to when the

proprioceptive error was large. That is η for a small error was significantly larger

than η for a large error. The author’s repeated this experiment, providing subjects

with visual rather than proprioceptive perturbations, and found similar results.

Together, these results suggest that error sensitivity is not constant as a function of

error magnitude, but rather decays for large errors.

Reanalysis of previous psychophysical results also support the assertions

made by Marko et al. (2012). For instance, Wei and Körding (2009) performed a

reaching experiment in which the subject’s reach was visually perturbed in a

direction perpendicular to the reach direction. The author’s used several visual

perturbation magnitudes and could therefore assess how much the subjects deviated

from a perfectly straight movement. Similar to the result of Marko et al. (2012),

subjects did not learn the same from all perturbation magnitudes, rather subjects

learned fractionally more from the small visual perturbations.

Similar results were obtained by Fine and Thoroughman (2006), where the

authors perturbed the reaching movements of healthy human subjects via single

force pulses of various magnitudes. They also found that as a percentage, the

error-sensitivity was not constant, but large for small errors and small for large

errors. That is, error-sensitivity fell as a function of the size of the perturbation

(and, similarly, error).
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1.1.3 Previous experimental evidence for modulation of error-

sensitivity

Previous computational models of motor learning suggest that error-sensitivity is

fixed as a function of error magnitude and also as a function of trial. In the previous

section, we found that multiple studies in humans suggest that error-sensitivity is

not constant, but changes as a function of error magnitude. In this section, we

review experimental evidence suggesting that error-sensitivity can also change as a

function of trial. That is, error-sensitivity may not be fixed over the course of an

experimental session.

Previous work by Smith and Shadmehr (2004) found that people change

their error-sensitivity as a function of history of previous perturbations. In that

task, volunteers (n = 5) reached to a target while holding a robotic arm that

produced force perturbations. The force perturbation on trial n + 1, written as

f (n+1), was described by: f (n+1) = af (n) + ϵ where ϵ ∼ N (0, σ2). When a was close

to 1.0, the perturbations in trial n and n + 1 were highly correlated. Similarly, when

a was near -1.0, the two perturbations were anti-correlated. When there is a high

correlation between the perturbations in two successive trials, learning the

perturbation in the first trial would benefit performance in the next trial. However,

when there is low or negative correlation between two trials, learning from error in

one trial will not help next-trial performance. The authors found that in the case

where the perturbations were correlated (a = 0.9), the subjects learned from a given

error significantly more than when the same error was experienced in an

anti-correlated (a = −0.9) environment.

Together with the previous section, these results suggest that

error-sensitivity is likely not fixed as a function of trial - our model must contain

η(n) rather than η. In addition, it is likely that error-sensitivity is dependent on the

5



magnitude of the experienced error: η(n)(e(n)).

1.2 Specific aims

When we experience an error during a motor task, we alter the motor commands on

the next trial in an attempt to partially compensate for the error. This partial

compensation depends on two important variables: error, and error-sensitivity.

Error is the difference between predicted and observed sensory consequences of

motor commands. Error-sensitivity is the “learning rate” that determines how much

we learn from error. Previous motor control studies have assumed that

error-sensitivity is independent of error. However, recent results suggest that people

change their error-sensitivity as a function of previous perturbations as well as a

function of perturbation magnitude.

Suppose that, in principle, the brain could modulate the amount it learns

from an error. How might this be done? Using behavioral studies, we suggest that

the brain modulates error-sensitivity by keeping a history of recent errors. That is,

in contrast to current models of learning in which the objective is to predict a

sensory outcome, here we suggest that the brain also stores a memory of errors that

were experienced in previous movements.

Using behavioral psychophysics, we first identify the rules that the brain uses

to systematically modulate how much it is willing to learn from error. Next, we

identify the primary brain region responsible for control of this “learning rate”

parameter, by modulating the brain’s activity using non-invasive stimulation.

Finally, we analyze neurophysiology from the cerebellum, the first step in a process

to determine the neural mechanisms underlying cerebellar-dependent learning.
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1.2.1 Determine the rules that govern control of error-sensitivity

When we make a movement error, we modify our motor output in the next trial to

compensate for the error. Previous models of motor adaptation have assumed that

error-sensitivity is independent of error. However, this assumption is inconsistent

with experimental data as well as our results. These results suggest that the brain

may have a method for adjusting error-sensitivity based on both the history of past

errors and the size of the errors. To account for the behavioral data, we propose a

theoretical framework in which the brain monitors the history of prior errors, and

then modulates error-sensitivity using this stored memory (see Chapter 2). This

theory links the history of experienced errors and error-sensitivity. In this

computational model, error is encoded in the nervous system via a set of basis

elements, where each basis element has a preferred error. The model predicts that

error-sensitivity for a particular error magnitude would generalize to near-by error

magnitudes, similar to how motor output generalizes to nearby target directions.

We then provide experiments which identify the rules that govern control of

error-sensitivity during motor learning in humans.

Understanding error-sensitivity is important because it provides insight into

the phenomena of savings. Savings refers to the observation that when a subject

practices a task with perturbation (A), and then the perturbation is removed (i.e.,

extended washout), they exhibit faster re-learning of (A. Remarkably, savings of (A)

is present even when washout is followed by training in (B), a perturbation in the

opposite direction. In addition, training in (A) and then washout can produce

savings in (B), exhibiting a form of ‘meta-learning’. Current models of learning

cannot account for these fundamental observations (Zarahn et al., 2008; Mawase

et al., 2014). Here, we suggest that modulation of error-sensitivity may underlie

both the phenomena of savings and meta-learning, and show that in theory, the
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equations can account for these results. The new idea that emerges is that when we

are better at compensating for a perturbation than before, it is not because we

recall the actions we had produced or the perturbation we had estimated, but

because we recall the errors we experienced during that learning process. By

manipulating the history of experienced errors, thereby manipulating

error-sensitivity, we show that the process of savings can be disrupted or enhanced.

We provide experiments that directly test the hypothesis that a memory of errors

can largely account for the phenomena of savings and meta-learning.

1.2.2 Identify the locus of error-sensitivity in the human

brain

When we interact with a novel object, we form a motor memory, which can be

recalled the next time the object is encountered. In Chapter 2, we suggest that this

motor memory includes a previously undiscovered memory: a memory of errors.

This memory of errors modulates the error-sensitivity on each trial, affecting how

much a subject learns from an experienced error. What brain region is responsible

for modulating error-sensitivity?

Previous research suggests that two brain regions are crucially responsible for

the integrity of such a motor memory: the motor cortex (M1) and the cerebellum.

Which of these regions, if any, store a memory of errors and modulate the amount a

subject is willing to learn?

In Chapter 3, we use transcranial direct current stimulation (tDCS) to alter

the function of the cerebellum and motor cortex when healthy subjects are exposed

to a novel motor task. Using this experimental manipulation, we can dissociate the

roles of the cerebellum and motor cortex during formation of a new motor memory.

We show that increasing the excitability of the cerebellum via anodal tDCS

increases the rate of learning, while decreasing cerebellar excitability via cathodal
8



tDCS impairs the ability to respond to sensory feedback and decreases the rate of

learning. These results provide evidence that the cerebellum is a crucial neural

substrate responsible for modulation of error-sensitivity.

In addition, we suggest a critical role for the human cerebellum in the ability

to correct for errors during movement and the ability to learn from that error. Our

results suggest that during a reaching movement the errors experienced maybe a

result of feedback corrections. These corrections may be used in the subsequent

learning process. That is, by altering the feedback responses of the subject, the

error incorporated into the subsequent motor command via the error-sensitivity

term can be modified.

Finally, we find that during the initial part of training, subjects’ learning

decays quickly, but with further training the decay slows, suggesting that with

training the motor memory gained stability. Stimulation of the cerebellum or the

motor cortex did not alter these decay patterns. Therefore, long-term storage of

motor memory may be the responsibility of a separate region of the brain.

1.2.3 Purkinje cells in the cerebellum encode movement kine-

matics necessary for motor learning

In Chapter 3 we suggest that the cerebellum is the crucial substrate necessary for

storage of a memory of errors. That is, one of the primary roles of the cerebellum

during motor learning may be to store the history of prior errors, and thereby

modulate error-sensitivity, incorporating a portion of the error into the subsequent

motor command.

However, the neural mechanisms in the cerebellum that underlie adaptation

remain poorly understood. While the principal cells of the cerebellum, Purkinje

cells (P-cells), show some modifications following motor learning (Kojima et al.,

2010), changes in the responses of these cells has not been effectively linked to
9



behavioral adaptation. Given that the integrity of the cerebellum is required for

motor adaptation, why have the neural basis of adaptation remained elusive?

Execution of accurate movements depends critically on the cerebellum,

indicating that the primary cells of the cerebellum, Purkinje cells, should relate to

the kinematic parameters of movement. However, this encoding has remained

unclear: Purkinje cells show little consistent modulation with respect to kinematic

parameters. Without a clear understanding of this encoding, the problem of

learning from error, which entails a change in this encoding, has been even more

difficult to solve.

In Chapter 4, we show that the activity of the cerebellum during

cerebellar-dependent movements cannot be understood by recording the responses

of individual cells. Rather, we suggest that populations of approximately 50

Purkinje cells combine their responses via common projections to a neuron in the

deep cerebellar nuclei. We hypothesize that the presynaptic neurons that project to

an individual cell in the deep cerebellar nuclei are not selected randomly, but rather

share a common preference for error.

That is, imagine that errors divide the cerebellum into anatomical

micro-clusters, where each micro-cluster is composed of a relatively small number of

Purkinje cells that each prefer a specific error. Further imagine that this population

of Purkinje cells project to a common neuron in the deep cerebellar nucleus.

In Chapter 4, we provide evidence that when the responses of Purkinje cells

are organized via this hypothesized anatomy, a beautiful encoding of kinematics

emerges. The combined population response shows gain-field encoding of speed and

direction, similar to the encoding of movements previously reported in posterior

parietal cortex (PPC).

We suggest that the neural basis of adaptation can only be understood by

using this crucial anatomical organization. Only after establishing the kinematic
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encoding of movements in Purkinje cell responses, can we begin to address the

encoding of adaptation, which represents a fundamental change in this encoding.

1.3 Significance

Error-sensitivity, or the rate of learning from error, is directly relevant to motor

rehabilitation. In this document, we outline the rules that govern modulation of

error-sensitivity in humans. Increasing error-sensitivity should produce faster

adaptation, affecting the duration of rehabilitation. In addition, we provide

evidence in Chapter 2 that error-sensitivity is linked to the phenomenon of savings

(i.e., faster re-learning). Understanding this link may provide clue to effectively

apply rehabilitation techniques to promote faster re-learning outside the clinic.

In Chapter 3, we begin to identify the neural structures involved in

modulation of error-sensitivity. Our results suggest that control of error-sensitivity

and its affects on behavior are likely cerebellar dependent. Clinically, patients with

cerebellar disease are faced with poor prognoses through conventional rehabilitation.

Investigation into the mechanisms by which this error-sensitivity is modulated,

either through novel behavioral rehabilitation techniques or brain stimulation, may

help translate these findings into novel clinical applications in the future.

Finally, in Chapter 4, we lay the foundation for understanding

error-sensitivity via the cellular signals present in the primate cerebellum. These

results provide a new framework for understanding the role of the cerebellum in

motor adaptation.
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2 A MEMORY OF ERRORS IN SENSORIMOTOR

LEARNING

When we learn to control a novel object, our brain stores a motor memory which we

can recall when we are exposed to that object again. The current view of motor

memories is that when we are re-exposed to a novel object, the brain recalls the

motor commands, u, that it previous learned. In this view, motor memory is a

memory of motor commands, acquired through trial-and-error and/or reinforcement.

In this chapter, we suggest that the brain systematically controls how much

it is willing to learn from the current motor error. That is, the brain uses a

principled mechanism which determines how much it is willing to learn following an

error. Manipulation of this ‘error-sensitivity’ parameter depends on the history of

past errors. This suggests that the brain stores a previously unknown form of

memory, a memory of errors.

We then provide a mathematical formulation of this foundational idea. In

this computational model, error is encoded in the nervous system with a set of basis

elements, where each basis element has a preferred error. The model predicts that

error-sensitivity for a particular error magnitude would generalize to near-by error

magnitudes, similar to how motor output generalizes to nearby target directions.

We use this mathematical model to provide insights into a host of previously

puzzling experimental data, including savings and meta-learning. Taken together,

our results demonstrate that when we are better at a motor task upon re-exposure,

it is partly because the brain recognizes the errors it previously experienced.
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2.1 Introduction

How does the brain alter behavior after experiencing an error? Classic theories

assumed that the brain learns some fraction of the error regardless of its history or

magnitude (Jordan and Rumelhart, 1992; Kawato et al., 1987). However, recent

experiments (Robinson et al., 2003; Soetedjo et al., 2009; Marko et al., 2012)

demonstrate that the brain learns relatively more from small errors than large

errors, and can modulate its error-sensitivity (Smith and Shadmehr, 2004; Trent

and Ahmed, 2013; Gonzalez Castro et al., 2014).

Understanding error-sensitivity is important because it may provide insight

into the phenomena of ‘savings’ and ‘meta-learning’. Savings refers to the

observation that when a subject adapts to perturbation (A), and then the

perturbation is removed (i.e., washout), they exhibit faster readaptation to

(A) (Kojima et al., 2004). Remarkably, savings of (A) is present even when washout

is followed by adaptation to (-A), a perturbation in the opposite direction (Malone

et al., 2011; Sarwary et al., 2013). Current error-dependent models of learning

cannot account for these observations (Zarahn et al., 2008; Mawase et al., 2014), nor

explain meta-learning, where prior exposure to a random perturbation produces

savings (Turnham et al., 2012; Braun et al., 2009).

2.2 Materials and Methods

We tested n = 113 naïve human subjects in four experiments. In the first

experiment, we used a between-subject design to assess subjects’ error-sensitivity

after experiencing one of three different environments. In Experiment 2, we

attempted to determine whether changes in error-sensitivity were local to the

experienced errors. This experiment features a with-in subject design, which allowed
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us to probe error-sensitivity across a range of error magnitudes. Using the results of

these first two experiments, we developed a computational model of how the brain

modulates error-sensitivity based on the history of previously experienced errors. In

Experiment 3, we explicitly tested the predictions of our computational model.

Finally, in Experiment 4, we tested whether the behavioral phenomena of savings

and meta-learning can be explained by our computational model.

2.2.1 Experiment 1

In Exp. 1 we used a between-subject design to test the idea that the nervous system

could modulate error-sensitivity. To do so, we used a constant perturbation in probe

trials to produce an error in the movement and quantified how much the nervous

system learned from this error. Volunteers (n = 27, 23.6 ± 4.3 years old, mean ±

SD, 16 female) were asked to hold the handle of a robotic arm and make rapid

out-and-back reaching movements to a target presented 10cm directly in front of

them. In some trials, their reach was perturbed by a velocity dependent curl field,

where force was related to hand velocity as:

f =

 0 b

−b 0


ẋ

ẏ

 . (2.1)

In Eq. 2.1, ẋ and ẏ are the horizontal and vertical components of the subject’s hand

velocity. The force pushed the subject’s hand perpendicular to the direction of

movement on the outward reach, but was turned off on the reach back.

Perturbations were either clockwise (b = 13 N.s/m) or counter-clockwise (b = −13

N.s/m). The subject’s hand was occluded by an opaque horizontal screen located

above the plane of the arm. An overhead projector displayed information about

hand position and targets on this screen. Continuous feedback of the location of the

hand was presented via a cursor (0.3cm in diameter). At the onset of each trial,
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subjects were presented with a start circle (1.0cm in diameter). Once the hand was

placed inside this circle, following a randomly chosen inter-trial interval [0.25 -

0.75]sec a target circle (1.0cm in diameter) was displayed and an auditory tone was

played. The display of the target and the sound of the tone served as the ‘go’

instruction. If the hand passed through the target circle in 300 ± 30ms, the subject

was rewarded with an animation of an explosion, an auditory tone, and a point

added to their score. If the hand passed through the circle after 330ms, the target

circle turned blue (indicating a movement that was too slow). Otherwise, if the

subject’s hand arrived at the target circle in less than 270ms, the circle turned red.

The subjects were not required to have the turn-around point of their reach in the

target circle; rather, they merely had to pass through the target to obtain reward.

In some instances, the reach missed the target entirely. In this case, no reward or

timing feedback was provided to the subject. Subjects were instructed to obtain as

many points as possible.

Consider an environment in which the perturbations tend to switch slowly,

i.e., persist from trial to trial, as compared to one in which the perturbations are

rapidly switch. We can define this environment in terms of a Markov chain in which

the perturbations can take on one of two states (Fig. 2.1A, top). For example, the

perturbation can be + 1 or -1, where +1 refers to a force field that pushes the hand

clockwise, and -1 refers to a field that pushes the hand counter-clockwise. The

perturbation state can change from one trial to the next, and this change is

governed by a transition probability, z. In the slowly switching environment, the

probability of staying in a given perturbation state is high (z = 0.9), whereas in the

rapidly switching environment, this probability is low (z = 0.1). As a result, in the

slowly switching environment the perturbations tend to repeat from one trial to the

next, whereas in the rapidly switching environment the perturbations tend to

change. We hypothesized that the brain would learn more from the error induced by
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the perturbation in the slowly switching environment because that perturbation was

likely to persist (learning from error in one trial would improve performance on the

subsequent trial). However, in the rapidly switching environment the brain would

suppress learning from error because the perturbation that produced that error was

likely to change (any learning would be detrimental to performance on the

subsequent trial).

To produce such environments, we considered a perturbation schedule that

was stochastic, as illustrated by the Markov chain in Fig. 2.1A. The perturbation

state, labeled by variable b (indicating the field produced by the robot) was a

binomial, taking on one of two values [+13, -13]Ns./m. For example, suppose that

on trial n − 1 the perturbation state is b(n−1). Then the perturbation on trial n is

determined by the following probabilities:

Pr(b(n) = b(n−1)) = z

Pr(b(n) = −b(n−1)) = 1 − z

. (2.2)

Eq. 2.2 implies that if z ≈ 1, then the perturbation is likely to repeat, i.e., the

environment is slowly switching and persistent. However, if z ≈ 0, then the

perturbation is likely to change; the environment is rapidly switching. We randomly

divided our subjects into three groups and generated a single perturbation schedule

for each group using Eq. 2.2. One group (n = 9) experienced a slowly switching

environment (z = 0.9), another group (n = 9) experienced a medium switching

environment (z = 0.5), and a final group (n = 9) experienced a rapidly switching

environment (z = 0.1). All groups began their training in a baseline block (156

trials). In the baseline block there were no perturbations, except for occasional

probe trials in which we measured error-sensitivity, described below and illustrated

in the inset of Fig. 2.1A. Following the baseline block, subjects experienced 5 blocks

of perturbation trials (225 trials each). In each perturbation block there were 5
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mini-blocks (learning blocks). Each mini-block included 30 perturbation trials, 10

washout trials, and 5 probe trials. In each mini-block the number of trials with

clockwise or counter-clockwise perturbation was equal to 15. In this way, the mean

of the perturbations in each block, as well as the mean of the perturbations in each

mini-block, was zero for all subjects regardless of the environment. Furthermore,

variances of the perturbations were identical across groups. The critical difference

was the order of the perturbations. The experiment lasted about an hour. Subjects

were allowed a 1-3 minute break between each block of trials.

Our objective was to estimate error-sensitivity during each block and ask

whether this quantity changed as the subjects experienced the various

environments. We approached the problem by considering a standard model of

learning (Mackintosh, 1975; Thoroughman and Shadmehr, 2000; Rescorla and

Wagner, 1972; Pearce and Hall, 1980) in which on trial n, a perturbation x is

imposed on action u so that the sensory consequences observed by the learner are

y(n) = u(n) + x(n) . On trial n, the learner predicts the sensory consequences

ŷ(n) = u(n) + x̂(n), and updates its belief about the state of the perturbation from

the prediction error e(n) = y(n) − ŷ(n). Such learning typically depends on a decay

factor α, and error-sensitivity η(n):

x̂(n+1) = αx̂(n) + η(n)e(n) . (2.3)

If we assume that u0 is the motor command generated in the null environment in

which there are no perturbations, then the motor commands on a given trial is a

proxy for the learner’s estimate of the state of the perturbation:

u(n) = u0 − x̂(n) . (2.4)

To measure error-sensitivity, we used probes that consisted of pairs and triplets of
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error-clamp trials (Marko et al., 2012). An error-clamp (Scheidt et al., 2001) is a

trial in which the robot produces a channel with stiff walls along a line connecting

the start position to the target, thereby reducing deviations from a straight line,

eliminating error from that trial while allowing one to measure the forces that the

subject produces against the channel walls. The error-clamp had the following

properties: spring coefficient = 6000 N/m, damping coefficient = 250 N.s/m. On

error-clamp trial n, our proxy for motor output was u(n). To find u(n), we first

regressed the measured force f(t) that the subject had produced against channel

walls onto the ideal force f ∗(t) = bẏ(t) and found the parameters k0 and k1 that

minimized the quantity J = (f(t) − k1f∗(t) − k0)2 , and then set u(n) = k1. To

measure error-sensitivity η(n), we first used Eq. 2.3 to estimate α for each subject

from all pairs of error-clamp trials that did not have a perturbation (Fig. 2.1A, green

probe trials). As the subject did not experience an error in the first error-clamp, the

forgetting factor was found by dividing the motor commands in the two trials:

α = u(n+1)/u(n). Next, we used this estimate of α to estimate the error-sensitivity,

η(n), from each triplet of error-clamp trials (Fig. 2.1A, lavender probe trials) in

which there was a perturbation in the middle trial. The perturbation in this probe

was always a counter-clockwise field (b = −13 N.s/m). As a result, we have:

η(n) = u(n+1) − α2u(n−1)

e(n) . (2.5)

In the above equation, e(n) is the error on trial n, which we estimated by measuring

the displacement of the hand from a straight line to the target at maximum velocity

(this took place at 147 ± 6.2ms, mean ± SEM, into the movement). We estimated

learning from error (u(n+1) − α2u(n−1)) and error-sensitivity by binning the data for

5 probe trials in each environment block.
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2.2.2 Experiment 2

In Exp. 2 we designed a within-subject protocol to test the idea that a change in

the history of perturbations would result in a change in error-sensitivity.

Furthermore, in this protocol we had the capacity to measure error-sensitivity on

each trial. This allowed us to test whether changes in error-sensitivity were global,

affecting learning from all error sizes, or local, specific to a range of error sizes.

We enrolled a new group of right-handed volunteers (n = 20, 24.1 ± 4.5 years

old, mean ± SD, including 10 females) who were naïve to the purpose of the

experiment. As in Exp. 1, subjects were asked to make rapid out-and-back reaching

movements to a target at 10cm. However, unlike Exp. 1, there were no forces to

perturb the movement (all movements were in error-clamp). Instead, we perturbed

the visual feedback associated with position of the hand. At 100ms after reach

onset, we removed the visual feedback, and then re-displayed hand position at the

turn-around point of the reach by placing a stationary yellow dot at that location

(Fig. 2.2A). In some trials the location of this dot was perturbed by either a 1.1x

(magnifying) or a 0.9x (minifying) gain. We restored visual feedback of the hand

after this turn-around point, but manipulated the location of the cursor using a gain

so that it appeared that the subject had reached to the location indicated by the

yellow dot. A trial was considered successful if the yellow dot fell within the target

circle. Subjects were rewarded by a visual animation of an explosion, and the

addition of a point to their score. They were instructed to maximize the total

number of rewarded trials.

The difference between the visual feedback and the target position was our

proxy for error. The brain responded to this error by changing the motor commands

on the next trial, increasing or decreasing the extent of the reach. Because visual

feedback was not available during the outward portion of the reach, the design of
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the experiment allowed us to measure error-sensitivity at every trial (the change in

the magnitude of the reach divided by the experienced error). Suppose that on trial

n, a perturbation was imposed, resulting in an error e(n) (defined as the difference

between target position and the cursor position displayed to the subject to indicate

their hand’s turn-around point). We estimated the forgetting factor in pairs of

consecutive error-clamp trials via a technique identical to Exp. 1 (Fig. 2.2A,

lavender trials).

Subjects were divided into two groups (n = 10 in each group). Both groups

experienced a baseline block (100 trials, no perturbations). Following the baseline

block, Group 1 (Fig. 2.2B) experienced three perturbation blocks, each 387 trials,

composed of a slowly switching environment (z = 0.9), a medium switching

environment (z = 0.5), and a rapidly switching environment (z = 0.1). Group 2

experienced the reverse sequence of environments. All subjects in each group

experienced the same perturbation schedule. Each block was composed of 9

mini-blocks (30 perturbation trials, 10 no perturbations, and a probe triplet of

trials). The mean of the perturbations within each mini-block, as well as the mean

of the perturbations within each block, was zero. We found that a change in

perturbation statistics resulted in a change in error-sensitivity (Fig. 2.2C), and that

the largest changes occurred where subjects experienced the majority of the errors

(Fig. 2.2E and Fig. 2.2F). This suggests that error-sensitivity was a function of the

experienced error.

2.2.3 Model of error-sensitivity

When participants experience a prediction error, they update their motor command

on the next trial to compensate for a fraction of that error. This can be

mathematically described by a state space model (Eqs. 2.3 and 2.4), where e(n) is

the error and α is a retention factor. Eq. 2.3 describes a model in which the learner
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uses prediction error to form an estimate of the state of the environment, resulting

in a memory of that state. Because our results from Exp. 2 suggested that

error-sensitivity was a function of error, we constructed a new set of equations to

account for a memory of errors. In this model, the learner has a set of basis elements

with which it encodes the error experienced on a given trial. In our simulations, we

assumed that N basis functions with centers located at ĕithat were uniformly

distributed throughout a symmetric error space ĕiϵ[−P, P ], i = 1 . . . N . In addition,

we assumed that at the beginning of the simulations all weights were equal (i.e.

there was a constant error-sensitivity across all error magnitudes), w(0). Therefore,

our model that learned to represent the state of the environment had one parameter,

α. Our model that controlled error-sensitivity had two parameters: σ, and β. In

total, our model had 3 parameters. In Fig. 2.3B we implemented this model with 10

basis elements, equally spaced between -5 and 5, σ = 1, α = 1, and β = 0.05.

In the model, error-sensitivity is a function of error size, and so any change

in sensitivity is local to the errors experienced in the recent trials. Suppose that on

trial n − 1, the motor command produces error e(n−1) = −1. If on the next trial the

error e(n) is of the same sign as e(n−1), then sign(e(n−1)e(n)) = 1 and error-sensitivity

is increased around the neighborhood of e(n−1) (Fig. 2.3A, top). As a result, learning

from error is increased about e = −1, as illustrated by the red line in 2.3B. This

means that if this error is ever experienced again, the system will learn more from it

than before. On the other hand, if e(n) is of the opposite sign as e(n−1), (Fig. 2.3A,

bottom), sign(e(n−1)e(n)) and sensitivity is decreased about e = −1, resulting in

reduced learning from error around this neighborhood (as illustrated by the blue

line in Fig. 2.3B). In Fig. 2.3C we simulated the model in the slow (z = 0.9),

medium (z = 0.5), and rapidly switching (z = 0.1) environments (identical

parameters as in Fig. 2.3B except β = 0.001). In all cases, the model learns from

error on each trial, as illustrated by the gray line in Fig. 2.3C. However, the errors
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in the slowly switching environment tend to repeat, that is E

sign(e(n−1)e(n))


> 0,

where E[] is the expected value operator. As a result, in the slowly switching

environment error-sensitivity increases, producing an increase in learning from error

(Fig. 2.3D, red-line). The errors in the medium switching environment have the

following structure: E

sign(e(n−1)e(n))


≈ 0. This produces little or no change in

sensitivity, resulting in little or no change in learning from error, as illustrated by

the green line in Fig. 2.3D. Finally, errors in the rapidly switching environment have

the following structure: E

sign(e(n−1)e(n))


< 0, that is, error in one trial is usually

of the opposite sign of the error in the previous trial. As a result, error-sensitivity

decreases (Fig. 2.3D, blue line). The learning from error curves are qualitatively

similar to those measured experimentally in Exp. 2 (Fig. 2.3D).

2.2.4 Experiment 3

In Exp. 3 we set out to test a critical prediction of the model: that by manipulating

the history of errors that were experienced by the subject, we could simultaneously

increase error-sensitivity for one range of errors, while decreasing it for another

range. We recruited a new group of right-handed volunteers (n = 16, 25.8 ± 2.6

years old, mean ± SD, including 6 female) who were naïve to the purpose of the

experiment. They held a handle attached to a stationary force transducer. The

handle was located 20-30cm in front of the subject, such that they could push

against it comfortably while seated. The subject’s hand was hidden from view by an

opaque horizontal screen. Feedback regarding force generation was provided by an

image projected on the screen. The objective of this isometric task was to produce a

goal force of 16N.

At the onset of a trial, a start circle and a goal circle (both 0.75N in

diameter) appeared. The goal circle was located approximately 15cm from the start

circle. The screen was scaled such that a 15cm cursor displacement corresponded to
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16N force. A cursor (0.3N diameter) appeared at trial onset. The displacement of

the cursor corresponded to the total amount of force that the subject produced,

multiplied by a scaling factor: s


(fx + fy)2, where s corresponds to a scaling factor

that maps units of force into screen displacement (i.e., 15cm/16N).

As the subject began pushing toward the target, we removed visual feedback

when the cursor position reached 1/5 of the way to the target (>3.20N), and then

placed a yellow dot on the screen (0.5N diameter) in the location corresponding to

the maximum force that they produced. In some trials we perturbed the location of

this dot by adding an offset, x. Visual feedback of the cursor was then restored as

the force produced by the subject returned to zero. We scaled the position of the

cursor continuously during the return so that it appeared that the subject had

produced the force signified by the perturbed dot. Once the cursor had returned to

the starting circle, the maximum force dot remained on the screen for 0.5s before

the cursor, maximum force dot, and target circle disappeared. The subject then

waited for an inter-trial-interval to elapse (randomly chosen between [0.25, 0.75]sec)

before the next trial began.

A trial was successful if the yellow dot, corresponding to the subject’s

maximum force (plus the perturbation) landed inside the goal target. Feedback of a

successful movement was indicated by an animation of an explosion and a point

added to the score. If the subject failed to produce a force greater than 3.20N

within 1.5 seconds of the go cue, the trial was aborted. Subjects were instructed to

maximize the number of points.

The perturbation schedule is shown in Fig. 2.3E. The perturbations were

designed so that, in theory, subjects would increase their sensitivity to +4N and -4N

errors (despite the fact that they never experienced a -4N perturbation), while

simultaneously decreasing their sensitivity to +8N and -8N errors. The experiment

began with a baseline block (50 trials, no perturbations). Following the baseline
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block, we probed sensitivity to +8N and -4N perturbations (labeled as Probe 1 in

Fig. 2.3E). We then exposed subjects to 20 repetitions of an alternating [+8N, -8N]

environment, followed by 15 repetitions of a stable [0N, +4N] environment. Finally,

we again probed sensitivity to +8N and -4N perturbations (labeled as Probe 2 in

Fig. 2.3E). The experiment was divided into 6 blocks (105-120 trials each). The

experiment took approximately 45 minutes to complete.

2.2.5 Experiment 4

According to our model, savings and meta-learning are largely due to a memory of

errors. If so, specific manipulations of the history of errors should affect the

presence or absence of savings and meta-learning. In Exp. 4, we tested some of

these critical predictions. This experiment included n = 50 subjects, 10 in each of

the five groups (24.3 ± 5.4 years old, mean ± SD, including 20 females). The

subjects were naïve to the purpose of the experiment. They held the handle of the

robotic manipulandum. The subject’s hand was hidden from view by an opaque

horizontal screen. They were presented with a red circle (1cm diameter), which

served as the start and end point for the trial. Subjects were asked to make a rapid

shooting movement from the starting circle to a green target circle (0.5cm diameter)

located 6cm directly in front of them. They were required to pass through the

target within 150 ± 50ms. Movements that fell outside this range were signaled by

the target circle changing color and a low frequency auditory tone. If the subject

passed through the target circle within the time range, they were rewarded with an

animation of an explosion and a point added to their score.

As subjects began moving towards the target (when the total velocity exceed

0.02m/s), we removed visual feedback for the remainder of the outward motion.

When the reach exceeded 6cm eccentricity, a yellow dot (0.5cm diameter) was

placed on the screen at that location. Visual feedback was withheld for the duration
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of the trial. To aid the subject in returning to the start position, when the hand was

within 3cm of the starting circle, the position of the cursor was provided by a white

dot (1mm diameter) which blinked at 1Hz (20% duty cycle). In some trials, we

manipulated the location of the yellow dot by rotating it relative to the target using

the perturbation schedules shown in Fig. 2.5A and Fig. 2.6A.

All groups experienced a baseline block of 90 null (no perturbation) trials.

Each group experienced a training condition (90 or 120 trials) followed by 120 trials

of washout (null, N), and a final phase in which we tested adaptation to an abruptly

imposed 30◦ counterclockwise (CCW) perturbation over 90 trials (A). The ANA

group was trained on a 30◦ CCW rotation over the course of 90 trials (A) before

washout and testing. The BNA group experienced a 30◦ clockwise rotation (B),

followed by washout testing. The BwaitNA group experienced the same

perturbation schedule as BNA. However, subjects were asked to wait 1-2 minutes

after training of (B). This delay was expected to reduce the adapted motor

output (Smith et al., 2006; Criscimagna-Hemminger and Shadmehr, 2008), resulting

in reduced after-effects, i.e. smaller errors, when subjects experienced the washout

condition. The GNA group experienced a 30◦ CCW rotation that was gradually

imposed over 120 trials. The BGNA group experienced a 30◦ abruptly imposed CW

rotation that was then gradually removed.

To test for savings, we fit an exponential to the performance in the test

condition for each subject

k exp (−t/τ) + c . (2.6)

In Eq. 2.6 the exponential time constant τ has units of trials. Therefore, savings

compared to the initial learning of A by the ANA group is represented as a decrease

in the value of τ .

Indeed we found that the subjects in the ANA and BNA groups learned

significantly faster than control in the test of perturbation (A), whereas the GNA,
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BwaitNA, and BGNA groups learned at a rate that was no different than control.

2.2.6 Data collection and statistical analysis

Movement kinematics (position, velocity) and force information were recorded at

200 Hz. We were able to measure hand position at a resolution better than 0.1mm,

and force at a resolution of 1/80N. Statistical analyses were performed in SPSS 21

(IBM, NY). We used one-way ANOVAs (when there were more than 2 groups) or

independent two-sided t-tests (when there were 2 groups) to compare the

between-group differences at a single point in the experiment. We used paired

t-tests to compare the results of two consecutive probes.

The standard statistical test used in adaptation studies is repeated-measure

ANOVA (RM-ANOVA). In RM-ANOVA, the assumption is that the between

subject variance of the measured variable is constant across measurements.

However, in motor adaptation studies, the across-subject variance of the measured

variable often changes as the experiment progresses, violating a primary assumption

of a repeated measures ANOVA. To address this problem, we used the general linear

model feature of SPSS (GLM-ANOVA) to test for main effects of trial, group, and

group by trial interaction. Our analysis assumed a heterogeneous autoregressive

correlation structure of the variance matrix, allowing for between-subject variance

to change across repeated measurements (Herzfeld et al., 2014a).

In cases where there was a significant main effect of group or a group by trial

interaction, we performed a series of post-hoc t-tests to determine which groups

were significantly different. Post-hoc tests were corrected for multiple comparisons

using the Dunn-Sidak approach. All figures and statistics are reported as ±SEM,

unless otherwise noted.
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2.3 Results

Let us begin with a standard model of motor learning (Mackintosh, 1975;

Thoroughman and Shadmehr, 2000; Rescorla and Wagner, 1972; Pearce and Hall,

1980) in which on trial n, a perturbation x(n) is imposed on action u(n) so that the

sensory consequences are y(n). Based on its belief about the environment , the

learner predicts the sensory consequences ŷ(n), and then updates its belief from the

prediction error e(n) = y(n) − ŷ(n). Such learning typically depends on a decay factor

α, and error-sensitivity η(n), as in Eq. 2.3.

2.3.1 History of errors alters error-sensitivity

Consider an environment in which the perturbations persist from trial to trial, and

another environment in which the perturbations switch (Fig. 2.1A). In a slowly

switching environment, the brain should learn from error because the perturbations

are likely to persist (learning from error in one trial will improve performance on the

subsequent trial). However, in a rapidly switching environment the brain should

suppress learning from error because any learning will be detrimental to

performance on subsequent trials.

Three groups of subjects (n = 9 per group) made reaching movements while

experiencing force perturbations from either a slow, medium, or rapidly switching

environment (Fig. 2.1A). The mean of the perturbations was zero for all blocks

(consisting of 30 trials). We measured error in a given trial and then computed the

amount that was learned from that error (probe trials, purple bars, Fig. 2.1A). To

quantify learning from error on trial n, we measured the change in force from the

trial before to the trial after the perturbation, u(n+1) − u(n−1) (Fig. 2.1C). In block 1,

learning from error was similar in the three groups (p > 0.99), and in all probe trials

the perturbation produced similar errors (Fig. 2.1B, RM-ANOVA, effect of group
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Figure 2.1: History of error alters error-sensitivity. A. Reaching paradigm with
force field perturbations. The yellow circles note a perturbations state, and indicates
probability of remaining in that state. The slow, medium and rapidly switching en-
vironments are shown. One group of subjects was trained in each environment. We
measured error-sensitivity via probe trials in which subjects experienced a constant
perturbation, sandwiched between two error-clamp trials. B. Movement trajectories
in the perturbation trial of the probe trials. Trajectories were averaged over 5 suc-
cessive presentations of the probe. The errors in probe trials did not differ between
groups. C. Learning from error in the probe trials, measured as the change in force
from the trial prior to the trial after the perturbation. D. Learning from error in
the probe trials, plotted as a percentage of the ideal force (left). Error-sensitivity
was measured as the trial-to-trial change in the percentage of ideal force divided by
error (right). E. Change in error-sensitivity between the baseline block and the last
5 error-clamp triplets. Data are mean ± SEM.

p > 0.8, interaction, p > 0.7). However, subjects that experienced the slowly

switching environment increased their learning from error (Fig. 2.1C), whereas those

who experienced the rapidly switching environment suppressed this learning.

We measured the force produced on a given trial and computed a coefficient

representing percent ideal (Fig. 2.1D). RM-ANOVA indicated a significant block by

group interaction (p < 0.05), suggesting that the history of perturbations altered

the amount of learning from error. Post-hoc tests showed that in the slowly

switching environment subjects learned more from error than in the rapidly

switching environment (p < 0.03). This change in error-sensitivity developed

gradually with training (Fig. 2.1D). The slowly switching environment induced an

increase in error-sensitivity (Fig. 2.1E, changes in sensitivity from the first half to

second half of the experiment, ANOVA, p < 0.05).

2.3.2 Error-sensitivity is local to the experienced error

Is control of error-sensitivity local to the experienced errors? In Exp. 2, subjects

performed rapid out-and-back movements for which no visual feedback was available

during the outward part of the reach, with the aim of hitting a target at the
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visuomotor gain perturbations. B. Perturbation schedule. Dashed lines indicate
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error-sizes measured over each environment block. D. Learning from error measured
at various error sizes. E. Error-sensitivity as a function of error magnitude. F.
Probability of error.

turn-around point of their movement. An occasional perturbation altered the

feedback regarding hand position at the turn-around point (Fig. 2.2A). We measured

the relationship between error and learning from error (change in reach extent).

Group 1 (n = 10) experienced a perturbation schedule that transitioned from

slow, medium, to rapid switching (Fig. 2.2B) whereas Group 2 (n = 10) experienced

the reverse. In Group 1, error-sensitivity decreased whereas in Group 2

error-sensitivity increased (Fig. 2.2C). We measured the mean error-sensitivity in

each environment, resulting in 3 measurements for each subject across the

experiment. RM-ANOVA showed a significant main effect of group (p < 0.005) and

block (p < 0.001) and group by block interaction (p < 0.001). As the statistics of

the perturbation changed, so did the error-sensitivity.

We measured learning from error as a function of error in each environment

(Fig. 2.2D). A given error produced greater learning when that error was
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experienced in a slow switching environment (Fig. 2.2D, red line) (RM-ANOVA

main effects of error size p < 10−4, and environment p < 0.001, posthoc between

slow versus medium or fast, p < 0.001). We quantified error-sensitivity at each error

size (Fig. 2.2E) and found that error-sensitivity had not changed globally, but

predominantly for smaller error sizes. RM-ANOVA of the absolute sensitivities

between 0.25 and 2cm showed a significant main effect of environment (p < 10−4),

as well as a significant environment by error size interaction (p < 0.05). We found a

significant difference in error-sensitivity across environments for an error-size of

0.25cm (p < 0.05), but no significant difference for an error-size of 2cm (p > 0.1).

Interestingly, the small error sizes for which the subjects had shown the largest

change in error-sensitivity were also the most frequent errors (Fig. 2.2F). This

hinted that control of error-sensitivity was a function of error.

2.3.3 Computational model of error-sensitivity

Current models of sensorimotor learning assume that error-sensitivity, η(n), is

independent of error, e(n). This is true for state-space models of

learning (Thoroughman and Shadmehr, 2000; Scheidt et al., 2001; Donchin et al.,

2003; Smith et al., 2006; Cheng and Sabes, 2006), as well as Kalman filter models of

learning (Wei and Körding, 2009; Kording et al., 2007; van Beers, 2009; 2012).

However, suppose that sensory prediction errors are encoded in the nervous system

with a set of basis elements where each basis element, gi has a preferred error ĕi.

Further suppose that error-sensitivity is determined by a population coding:

η

e(n)


=

N
i=1

wigi


e(n)



gi


e(n)


= exp −(e(n) − ĕi)2

2σ2

. (2.7)

On trial n − 1 the motor command u(n−1) produces an error e(n−1), as
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illustrated in the top part of Fig. 2.3A. The nervous system learns from this error

and produces motor command u(n) on the subsequent trial, resulting in e(n). In a

slowly switching environment (top part of Fig. 2.3A), e(n) has the same sign as

e(n−1). In this case, error-sensitivity should increase around e(n−1) (Fig. 2.3B, red

line). On the other hand, in a rapidly switching environment (Fig. 2.3A, bottom),

e(n) has a different sign than e(n−1). In this case, error-sensitivity should decrease:

w(n+1) = w(n) + βsign

e(n−1)e(n)

 g(e(n−1))
gT (e(n−1))g(e(n−1)) (2.8)

In Eq. 2.8, w = [w1, w2, . . . , wN ]T , g = [g1, g2, . . . , gN ]T , and superscript T is the

transpose operator. This rule is similar to the RPROP algorithm, a heuristic for

adjusting the learning rate of machines (Riedmiller and Braun, 1993), but has the

unique feature of assuming that error-sensitivity is via population coding of the

error space. These equations represent a learner that stores two kinds of memory: a

memory of the state of environment (x̂, Eq. 2.3), and a memory of errors (w,

Eq. 2.8). We simulated the model (Fig. 2.3C, gray line) and found that in the slow

switching environment error-sensitivity increased in the neighborhood of the

experienced errors, whereas in the rapidly changing environment error-sensitivity

decreased (Fig. 2.3D).

2.3.4 Experimental tests of error-sensitivity model predic-

tions

Our model made a critical prediction: if the brain controlled error-sensitivity via

memory of errors, then it should be possible to simultaneously increase sensitivity

for one error, while decreasing it for another. In Exp. 3 we considered an isometric

task in which subjects (n = 16) produced a force to match a target (16N) in the face

of a perturbation. The perturbations were designed so that, according to our model,
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Figure 2.3: Theoretical model and Experiment 3. A. On trial n − 1, the motor com-
mand u(n−1) is generated, resulting in error e(n−1) = −1. If the error in trial n is of the
same sign as e(n−1), then error-sensitivity should increase (top). However, if the error
experienced in trial n has a different sign than e(n−1) then error-sensitivity should
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errors from A. Error sensitivity around e(n−1) increases if sign(e(n−1)e(n)) = 1 and
decreases otherwise. C. Model performance for slow, medium, and rapidly switch-
ing environments (gray line represents x̂(n)). However, learning from error, D, is
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environment. E. Experiment 3 perturbation protocol. F. Single-trial learning from a
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subjects would increase their sensitivity to -4N errors, while simultaneously

decreasing their sensitivity to +8N errors.

In the baseline block we probed sensitivity to +8N and -4N perturbations

(Probe 1, Fig. 2.3E). The resulting learning from error is plotted in Fig. 2.3F (Probe

1). At baseline, subjects responded to the +8N and -4N perturbations by learning a

fraction of each error (Fig. 2.3F). We next produced 20 repetitions of a rapidly

switching environment in which the perturbations were Âś8N (Fig. 2.3E, inset).

After a period of washout, we then produced 15 repetitions of a slowly switching

environment in which the perturbations were 0N or +4N. The critical aspect of our

design was that the subjects were never exposed to a -4N perturbation. They

nevertheless experienced -4N errors (because removal of a learned +4N perturbation

results in -4N error).

The 8N environment induced a decrease in sensitivity to a +8N error, and

subsequent exposure to the +4N environment resulted in an increase in sensitivity

to a -4N error (Fig. 2.3G, RM-ANOVA showed a significant main effect of

perturbation (p < 0.03) as well as a perturbation by block interaction (p < 0.01).

The critical question, however, was whether both of these changes in sensitivity were

simultaneously present. Following the slowly switching block of perturbations, we

again probed sensitivity to +8N and -4N errors (Probe 2, Fig. 2.3E). Compared to

the baseline block (Probe 1), learning from a +8N error had decreased (p < 0.005),

while simultaneously, learning from a -4N error had increased (p < 0.05) (Fig. 2.3F).

How well could the model explain behavior in this experiment? In Fig. 2.4A

we have plotted learning from error as a function of error size for all subjects across

the entire data set. The change in error-sensitivity predicted by the model was

highly correlated with the change observed in our subjects (R2 = 0.65; p < 10−8,

Fig. 2.4), suggesting that history of error induced changes in error-sensitivity in the

region of the experienced errors. Remarkably, we found that the learning from error
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Figure 2.4: Comparison of model and experimental results for Exp. 3. A. Experi-
mental results. Learning from error as a function of error size, measured across the
experiment. Errors were binned across error sizes with a bin width of 1N. Black
line represents the best-fit line, corresponding to a constant error-sensitivity across
error magnitudes, our estimate of an unbiased learner. Error bars are mean ± SEM.
B. Difference between the measured learning from error and the unbiased learning
curve. Predicted curves show the change in error sensitivity as predicted by the
model, binned across error-magnitudes. Error bars represent mean ± SEM across
subjects.

was not monotonic. Rather, subjects learned significantly more from a ±4N error

than ±8N error (paired t-test, t(15) = 7.76, p < 0.001). Fig. 2.4B plots the

difference between learning from error and the regression line (our proxy for an

unbiased learner). This reflects the change in learning that has been caused by the

changes in error-sensitivity. We ran our model on the same sequence of errors that

each subject experienced in Exp. 3 and have plotted the predicted change in

Fig. 2.4B (scaled by a multiplicative coefficient to convert to units of Newtons). The

correlation between the predicted and observed values was R2 = 0.65, p < 10−8.

Therefore, as the model had predicted, we were able to use the history of errors to

simultaneously increase learning at one error size, and decrease learning at another.
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2.3.5 Error-sensitivity model explains savings and meta-learning

This new model of learning provided new insights on a wide range of puzzling

experiments, including the phenomena of savings and meta-learning (Fig. 2.7 and

Fig. 2.8). It predicted that when one is better at a task than before, it is not

because the brain recalled the motor commands, but because it recognized the

errors - the errors for which error-sensitivity had been altered. In addition, the

model predicted that savings and meta-learning could be blocked by controlling the

errors that are experienced during learning.

In Exp. 4 volunteers participated in a visuomotor rotation experiment

(Fig. 2.5A and Fig. 2.6, n = 10 per group). We began with a control experiment to

establish the basic idea that savings is present despite washout. In the ANA group

(Fig. 2.5A), perturbation (A) was imposed (+30◦ perturbation), and then following

an extended period of washout (N), perturbation (A) was again presented (+30◦).

We expected to observe a faster rate of learning in the second exposure to (A), since

this is a protocol that has historically produced savings (Zarahn et al., 2008).

According to our model, savings occurs because during the initial exposure to (A)

the stable sequence of perturbations increase error-sensitivity, and these errors are

re-visited in the subsequent test of (A).

Indeed, we found that subjects in the ANA paradigm experienced a

significant amount of savings Fig. 2.5B. If savings occurred because the errors that

were experienced during initial learning of (A) were re-visited in the subsequent test

of (A), then we should be able to prevent savings by presenting (A) so that the

errors that are experienced during initial exposure are unlike the large errors that

are experienced during re-exposure to (A). We tested this prediction with the GNA

group (Fig. 2.6A). In the GNA group, the perturbation was incremented gradually

to (A), as opposed to a sudden presentation. As a result, subjects learned to make
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movements typical of learning to (A), but did not experience the same errors.

Furthermore, we should be able to produce savings in a very different way:

expose subjects to perturbation (B) and then present sudden washout (Fig. 2.5A,

BNA). During washout they are exposed to a sequence of stable errors, which

increase error-sensitivity for those errors. Importantly, the washout-induced

after-effects are errors that are also experienced during subsequent test of (A). In

such a case, the model predicts that the savings occurs because the learner is

exposed to errors during sudden washout of (B), i.e., the after-effects. The

interesting idea is that the after-effects themselves present a sequence of stable

errors, which increase error-sensitivity. Because these after-effect induced errors are

re-experienced during subsequent learning of (A), subjects should show

meta-learning, despite the fact that they have not previously experienced (A) before.

If the meta-learning in BNA is due to errors that are experienced during

washout of (B), we should be able to eliminate it by reducing the washout-induced

errors. In BwaitNA, a wait period was inserted between -30◦ training and washout.

This wait period should reduce the after-effects in the subsequent washout

trials (Smith et al., 2006; Criscimagna-Hemminger and Shadmehr, 2008). Therefore,

installation of a brief wait period would remove exposure to errors, the same errors

that are the part of learning of (A). In this case, the model predicted that we should

see no savings (Fig. 2.5E).

We followed this idea with a second group in which we eliminated the

after-effects by introducing errors gradually in BGNA group (Fig. 2.5). In BGNA,

after exposure to (B) we gradually removed the perturbation so that there would be

little or no errors that are similar to those that the subjects would experience during

exposure to (A).

In summary, the model predicted savings in ANA but not GNA,

meta-leaning in BNA but not BwaitNA and BGNA. Our experimental results
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Figure 2.6: Additional groups in Experiment 4: saving and meta-learning occur
only when previously experienced errors are re-visited. A. Perturbation protocols for
groups GNA and BGNA. B. Performance during exposure to +30◦ perturbation. Ex-
ponential fits are shown for the group data. Performances of the GNA and BGNA are
not different than control, demonstrating that these perturbation protocols blocked
savings. C. Exponential time constants are not different than control. A lower time
constant indicates faster learning. D. Time course of adaptation in the GNA group.
Note that the magnitude of the error at the end of gradual learning is significantly
smaller than 30◦. Data are mean ± SEM across subjects.

confirmed these predictions (Fig. 2.5C,D and Fig. 2.6).

2.4 Discussion

We have demonstrated that humans store a memory of their previously experienced

errors. The history of the experienced errors informs the error-sensitivity used on

the current trial. This error-sensitivity is a function of the error magnitude and,

therefore, local to the experienced errors. Using these results, we developed a

computational model demonstrating a principled technique that can be used to
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modulate error sensitivity (Eq. 2.8). In Exp. 3 and 4, we systematically tested the

predictions of this model. Here, we demonstrate this this simple computational

model can explain a large number of previously collected experimental data.

Therefore, let us use this model to shed light on a set of puzzling observations

in the field of motor learning, in paradigms such as reaching, walking, and saccades.

For each simulation, we chose model parameters such that the errors experienced by

the model were similar to the errors reported in the respective papers. However,

similar qualitative results would be obtained for other parameter values.

2.4.1 Why does learning from error saturate with large per-

turbations?

Fine and Thoroughman (2006) examined reaching movements that were perturbed

by a force-pulse. The perturbations were drawn from a discrete uniform

distribution: [±6, ±12, ±18]N and presented in 80% of the trials. They examined

learning (change in motor commands from the trial prior to the trial after the

perturbation) and noted that this measure did not grow linearly with perturbation

size, but saturated (black bars, Fig. 2.7A). We ran our model on a perturbation

schedule with the same distribution (50 iterations, 360 trials each, 80%

perturbations, discrete perturbations drawn uniformly from [±6, ±12, ±18]N). In

our model, error was encoded by 50 Gaussian bases distributed throughout an error

space between ±30N, with a standard deviation of 7N. The initial weights of this

network were set so that the error-sensitivity was roughly at 20%, a value typical for

force field task (Donchin et al., 2003). We allowed the weights to change with

β = 0.005. After simulating the motor output for each trial, we estimated the

learning following a particular perturbation by measuring the mean trial-to-trial

change in motor output for each of the discrete perturbations. The results are

shown with the red line in Fig. 2.7A. The correspondence between model and
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experimental data is R2 = 0.99 ± 0.005 (mean ± SD of 50 simulations).

Wei and Körding (2009) measured learning from error in a visual

displacement task (Fig. 2.7B, black bars). Subjects were asked to reach in the

horizontal direction, and the location of the visual feedback was displaced in the

vertical direction. Participants experienced 900 trials in which the perturbation on

each trial was drawn from a discrete uniform distribution: [0, ±1, ±2, ±4, ±8]cm,

and learning was measured by changes in motor commands in the vertical direction.

We simulated the results for 50 randomly generated perturbation schedules with the

same characteristics. We distributed 50 Gaussian bases throughout an error space

between ±10cm, with a standard deviation of 1cm. The initial sensitivity was set at

5%. We allowed the weights to change with β = 0.005 (i.e., unchanged from the

above simulations). The model results are shown by the red line in Fig. 2.7B. The

correspondence between model and experimental data is R2 = 0.70 ± 0.17 (mean ±

SD of 50 simulations).

Why did the learning saturate for large perturbations? The model explained

that this was because the perturbations that were used in these experiments were

drawn from a bounded uniform distribution. With such a distribution,

error-sensitivity declines (and as a consequence, learning from error saturates) for

the large errors produced by the perturbations near the bounds. This is because

after experiencing an error from a perturbation near one of the bounds, it is much

more likely that the next perturbation will produce a change in the sign of the error

than not. To illustrate this, in the Fig. 2.8A (top subplot) we have plotted the

quantity E

sign(e(n−1)e(n))


as a function of the perturbation size on trial n. We

find that the expected value is positive for small perturbations and negative for

large perturbations. As a consequence of this uniform bounded distribution of

perturbations, error-sensitivity decreases for large perturbations, as illustrated by

the learning from error curve in Fig. 2.8A (right subplot). It is also important to
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Figure 2.7: Model accounts for a large body of experimental results. A. Mean
adaptation to a series of discrete force-pulse perturbations. Data reported by Fine
and Thoroughman (2006) (black bars, mean ± SEM) compared to model (red, mean
± SEM). Model SEM is obscured by the line. B. Mean adaptation during a visual
displacement task reported by Wei and Körding (2009) (black bars) compared to
model (red). C. Adaptation to discrete force-field perturbations during a reaching
task. Volunteers experienced one of three environments in which perturbations were
drawn from a distribution that was either unbiased, weakly biased (green x’s) or
strongly biased (blue x’s) (top) (Fine and Thoroughman, 2007). Model results shown
in lower panel. D-E. Experimental results from a visuomotor rotation task (Semrau
et al., 2011). Participants experienced environments with statistics similar to sub-
figure C over three separate days (top). Model results for the three environments in
the order strong, weak, unbiased are shown in D (bottom); environments in the order
unbiased, weak, strong are shown in E. F. Example of meta-learning (also termed
structural learning). Results from a visuomotor rotation experiment (Turnham et al.,
2012). After exposure to a random or gradual environment (left), performance was
assessed during learning of a [+30, -30, +30]◦ perturbation sequence (right). G.
Examples of savings. Model results (red) in a perturbation schedule consisting of
training (+1), washout (0), re-learning (+1) (grey, top). Model results for a schedule
which includes learning of (-1) shows faster learning than control in (-1), as well as
faster relearning in (+1) (bottom). H. Split-belt gait adaptation results (Malone
et al., 2011) in which subjects were exposed to a similar sequence of perturbations as
in G. Model results for similar perturbation schedule (bottom). I. Saccade adaptation
experiment (Kojima et al., 2004) (top) and model (bottom). Individual saccades are
shown as black dots; black line shows 150 trial moving average. The red arrow denotes
the end of facilitated learning. J. Example of data attributed to reinforced repetition.
Model results for a paradigm similar to (Huang et al., 2011). Savings is present in
the Adp+Rep+ group. In all plots, shaded error regions are model mean ± SEM,
across randomly generated perturbation sequences.
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note that because the mean of the perturbation distribution is zero, the positive

expected values around the mean perturbation produce little or no changes in

learning from error function (Fig. 2.8A, right subplot). That is, even though

sensitivity increases for small errors (e ≈ 0), learning from error is small for these

errors. The dominant effect is the reduced error-sensitivity for errors other than

those produced by the mean of the perturbation.

2.4.2 Why does error-sensitivity depend on the mean of the

perturbation distribution?

Fine and Thoroughman (2007) performed a force-field adaptation study in which

the perturbations were similar to their previous study (Fine and Thoroughman,

2006). However, subjects practiced in one of three environments: unbiased, in which

the magnitude of the force-field was drawn from a zero mean discrete uniform

distribution [+36, +24, +12, -12, -24, -36]Ns/m, weakly biased [+18, +9, -9, -18,

-27, -36]Ns/m, or strongly biased [-6, -12, -18, -24, -36]Ns/m (Fig. 2.7C). If

error-sensitivity is independent of error history, the three groups of data points

should have the same slope. However, the authors found that the slope of the

learning curve versus perturbation magnitude was greater (more steep) for the

strongly biased distribution, and smaller for the unbiased distribution. We ran our

model on the same distributions (50 simulation runs per distribution) and have

plotted the results in Fig. 2.7C. We used the same choice of model parameters for

this simulation as we did for Fine and Thoroughman (2006), except that the error

space was enlarged to accommodate the larger perturbations (N = 50, P = 50N,

σ = 7N, β = 0.005). The model results are shown in Fig. 2.7C. The correspondence

between the model and experimental data is R2 = 0.97 ± 0.008 (mean ± SD). Note

that the model SEM bars are very small in Fig. 2.7C and are obscured by the circle

data markers.
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Figure 2.8: The model was simulated on each perturbation distribution in the vari-
ous experiments and then the quantity E


sign(e(n−1)e(n)


was plotted as a function of

perturbation magnitude in that distribution. A. Simulation results for the perturba-
tion distribution in Fine and Thoroughman (2006). In the right subplot the baseline
learning curve is shown by the black line and the final learning curve is shown by
the red line. B. Simulation results for the perturbation distributions in Fine and
Thoroughman (2007). C. Simulation results for the random perturbation sequence in
Turnham et al. (2012) labeled as “paired” random. Additional results for a schedule
in which perturbations are random on each trial rather than each pair is labeled as
“single” random. Mean errors from the gradual training in Turnham et al. (2012),
showing sustained errors of approximately 30◦, similar to those tested at the end of
the experiment. D. Simulation results for the “single” random perturbation. The
“single” random schedule does not show savings whereas the “paired” random sched-
ule from Turnham et al. (2012) shows savings (Fig. 2.8F). F. Learning from error as
a function of error magnitudes for all groups from the simulation of Turnham et al.
(2012). Learning from error increases for the gradual and paired-random perturba-
tions, but not single-random perturbations. In all plots, shaded error regions are
mean ± SEM, across randomly generated perturbation sequences.

In Fig. 2.8B we have plotted the quantity E

sign(e(n−1)e(n))


as a function of

perturbation size for this experiment. Each function has a peak near the mean of

the corresponding distribution, but there is a clear asymmetry in the function

associated with the strongly biased distribution, whereas the function is symmetric

for the unbiased distribution. When the distribution of the perturbation is

unbiased, the function E

sign(e(n−1)e(n))


is symmetric and generally negative for

non-zero errors, suppressing learning from errors that arise from both positive and

negative perturbations. In contrast, when the distribution is strongly biased, the

expected value is asymmetric, only suppressing learning from errors that arise from

large negative perturbations. In both cases, sensitivity is reduced to perturbation

near the bounds of the uniform distribution, as in (Wei and Körding, 2009; Fine and

Thoroughman, 2006). However, because of the distribution of errors in the strongly

biased group, the expected change in sensitivity is asymmetric. As a consequence,

learning from perturbation (Fig. 2.7C) is shallow for the unbiased distribution since

sensitivity is reduced for most perturbation magnitudes, but steep for the strongly
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biased distribution.

2.4.3 Why does error-sensitivity depend on the sequential

order of the perturbation distributions?

In the above experiments, each group of subjects experienced one distribution of

perturbations. Let us now consider what happens when different group of subjects

experience a given set of distributions in distinct sequence.

Semrau et al. (2011) performed a visuomotor rotation experiment. Similar to

Fine and Thoroughman (2007), perturbations were presented in 80% of the trials.

However, subjects were exposed to a sequence of three different perturbation

distributions: unbiased [±30, ±20, ±10, 0]◦, weakly biased [+30, +22.5, +15, +7.5,

0, -7.5 -15]◦, or strongly biased [30, 25, 20, 15, 10, 5, 0]◦. The order of the

environments was counterbalanced across the two groups of participants. The

authors found that there was an order effect: learning in a given environment

depended on the specific order in which the environments were experienced.

Subjects that experienced the strongly bias distribution first showed a steep

learning function (Fig. 2.7D, top subplot, blue line), whereas participants that

experienced the strongly biased perturbation last (Fig. 2.7E, top subplot, blue line)

showed a shallow learning function. We constructed a perturbation schedule which

copied this design and simulated our model with the same order of perturbation

distributions. As before, the error space was encoded by 50 Gaussian bases

throughout a 40◦ error space with an initial sensitivity of 20% (σ = 10◦, β = 0.005,

α = 0.8). The model’s results are shown in Fig. 2.7D and Fig. 2.7E. The

correspondence between model and experimental data is R2 = 0.86 (Fig. 2.7D,

p < 10−8) and R2 = 0.93 (Fig. 2.7E, p < 10−10).

The group that experienced the strongly biased distribution last had already

experienced the weakly biased and unbiased distributions. Each of these prior
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experiences reduced error sensitivity for the perturbations near the bounds. Because

all three distributions shared one of the bounds, the reduction in the

error-sensitivity was particularly strong near this bound for the group that had

experienced the unbiased and weakly biased distributions before the strongly biased

distribution. As a consequence, the group with the prior experience showed a

shallower learning curve than the group without the prior experience.

2.4.4 Model explains data attributed to structural learning

Let us now consider a remarkable observation termed structural learning. A key

experiment is that of Turnham et al. (2012), in which subjects perform a

visuomotor rotation task. The participants in the random condition trained in an

environment in which the perturbation on the odd trials was drawn randomly and

without replacement from a discrete sequence uniformly spanning the range [-60◦ to

+60◦]. Importantly, the even trials had a perturbation that was always the same as

in the previous odd trial. That is, perturbations repeated twice in a row. [In the

experiment, subjects were tested in 8 directions, termed a ‘cycle’. Here, we

considered a simpler version of this experiment in which there is only one direction

and a trial represents a cycle.] An example of such a random distribution of

perturbations is shown in Fig. 2.7F (left sub-figure, black line). Following this

training, the subjects were tested in a series of constant visuomotor perturbations of

[+30, -30, +30]◦. The authors found that as compared to a control group, subjects

that had this prior training in the random perturbations showed faster learning in

the subsequent constant perturbations (Fig. 2.7F, top-right). That is, the

experience of the random perturbations appeared to facilitate learning of a constant

perturbation, a phenomenon that the authors interpreted as structural learning. A

second group completed a gradually imposed perturbation which spanned the range

[-60◦ to +60◦]. Importantly, subjects in this experiment did not fully compensate for
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the errors when the gradually imposed perturbations became large (c.f. Fig. 3

of (Turnham et al., 2012)), resulting in persistent and repeating errors (see

Fig. 2.8C, right subplot).

We constructed similar perturbation schedules as the authors of this

experiment. We used simulation parameters that were identical to those used in the

visuomotor rotation experiment described above for Semrau and colleagues except

that we increased the size of the error range to accommodate the larger

perturbations. As before, we used 50 Gaussian bases to span the error range [-150,

150]◦, with an initial sensitivity of 20%. We assumed that each of these bases had a

standard deviation of 10◦. Finally, we set α = 0.8 in Eq. 2.3 and β = 0.005. Our

model reproduced the basic observation that following training in the random

sequence, learning was faster than control in the series of constant perturbation of

[+30, -30, +30]◦ (Fig. 2.7F, bottom-right). In addition, the model reproduced the

result that learning was faster than control following the gradual perturbation.

Finally, the model reproduced the observation that the gradual group performed

slightly better than the random group in both the test of +30 and test of -30

conditions.

According to our model, the key fact in these experiments was the repetition

of errors in the initial training, and then re-experiencing of these errors in the

subsequent testing. In the random group, the repetition came about because every

even trial had the same perturbation as the previous odd trial, resulting in sequence

of errors that were likely to have the same sign, up-regulating error-sensitivity for

the error experienced in the odd trial. In the gradual group, the repetition came

about because the subjects could not adapt as fast as the gradually imposed

perturbation, resulting in errors that accumulated and repeated near the end of the

gradual perturbation (see Fig. 2.8C, right subplot for data from the original

experiment, and Fig. 2.7F, bottom subplot for simulation data).
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The model explained that in the random group, the faster than control

learning that was observed was not due to a memory of perturbations (as the mean

of the perturbation sequence was zero), but due to the accumulation of memory of

errors. The +30◦ constant perturbation produced a +30◦ error, for which

error-sensitivity had increased due to exposure to the previous ’random’

perturbation. This is shown by the quantity E

sign(e(n−1)e(n))


, plotted for various

error sizes in Fig. 2.8C (left subplot, labeled ‘paired random’). Note that the

E

sign(e(n−1)e(n))


> 0 for all errors, resulting increased error-sensitivity for all

errors. The model explained that this increase in error-sensitivity would not have

occurred if the perturbations on the even trials were unrelated to the perturbations

on the previous odd trial (Fig. 2.8C, left subplot, labeled ‘single random’) where for

all errors. As a result, we found that error-sensitivity remained at near baseline, and

the model did not show savings, as illustrated in Fig. 2.8D.

The model explained that in the gradual group, the faster learning that was

observed (with respect to control) for +30◦ perturbation was because at the end of

gradual training subjects experienced repeated exposure to +30◦ errors (Fig. 2.8C,

right sub-plot). The repeated +30◦ errors resulted in increased error-sensitivity for

this error, which accounted for the fact that when they were tested with a +30◦

perturbation, the resulting +30◦ errors produced faster learning than in control.

In Fig. 2.8F we have summarized the results of the various simulations.

Learning from error increased in the paired-random perturbations, as well as in the

gradual condition. As a result, the model suggested that data attributed to

structural learning could be explained by memory of errors. The random and

gradual conditions had resulted in a memory of errors for which error-sensitivity

had increased, and during testing the subjects experienced errors similar to those

they had experienced before. It was the repetition of errors, followed by subsequent

revisiting of these errors that resulted in faster learning than control.
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2.4.5 Model explains savings following washout

A number of studies have considered the phenomenon of savings by conducting

experiments in which subjects are trained with a constant perturbation, and then

the perturbation is removed for a long duration, producing washout. Intriguingly,

following this period of washout the re-learning of the perturbation is faster than

control. Current state-space models in which the only memory is one of

perturbations cannot account for such data (Zarahn et al., 2008; Mawase et al.,

2014). Instead, some models have proposed that savings arises from a hypothetical

ability of the brain to recognize a context and protect the memory from

washout (Lee and Schweighofer, 2009). In addition, other models have proposed

that savings arises because during training certain motor commands are reinforced

by repetition and reward (Huang et al., 2011). However, neither of these two

hypotheses can explain the meta-learning results that we highlighted in Fig. 2.7F.

Let us show that the same memory of errors that accounted for meta-learning also

readily accounts for these savings experiments. Consider a typical scenario termed

A, Null, A (ANA). In this simulation we exposed the model to 20 trials of a +1

(a.u.) perturbation, 20 trials of washout (0 perturbation) followed by 20 trials of

relearning of the +1 perturbation (Fig. 2.7G, top). We assumed an error region of

±3 consisting of 20 bases whose initial sensitivity was 20% (σ = 0.25, β = 0.01,

α = 1). We found that despite washout, and the fact that memory of perturbation

had returned to zero, the model exhibited savings, i.e., faster rate of learning in the

second exposure to the +1 perturbation. The reason for this savings, the model

explained, was the fact that the previous errors had been experienced in a stable

environment, enhancing error-sensitivity for the errors that were again experienced

in the second exposure to +1. In a second simulation, we exposed the model to A,

Null, B, Null, A (ANBNA), as shown in Fig. 2.7G, lower subplot. The idea in this
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simulation was to illustrate that the washout of (A) produces after-effects, which are

errors that are subsequently revisited in (B). The model made a crucial prediction:

that learning of (-1) would be faster than control, despite the fact that the model

had never before been trained in a (-1) perturbation. This example of meta-learning

is explained by our model via the fact that the after-effects following learning of

(+1) produce enhanced error-sensitivity to the errors that are again experienced in

the ensuing (-1) perturbation. We presented a test of this prediction in Experiment

4.

2.4.6 Model explains savings in a gait-adaptation experiment

Malone et al. (2011) considered an experiment with a sequence of perturbations

similar to the one that we simulated in Fig. 2.7G. In their split-belt gait adaptation

task, subjects in the ANA group were asked to adapt to a perturbation in which the

belt under the non-dominate leg was moving twice as fast as the dominant leg for 15

minutes. Subjects in this group then returned the next day and were exposed to a

tied belt-condition (washout), followed by an additional re-learning period in the

split belt condition. Subjects in the ANANA group were exposed to an additional

cycle of 15 minutes of tied belt followed by 15 minutes of split-belt before leaving at

the end of day 1. In the ANBNA group, subjects we exposed to 15 minutes of tied

belt followed by 15 minutes of adaptation to a split-belt condition in which the

non-dominant leg was moving half was fast as the dominate leg (opposite of the ‘A’

perturbation) before leaving after day 1. The results of this study are presented in

Fig. 2.7H (top). We simulated a similar perturbation schedule in which each of the

15 minute perturbation/null sessions was approximated by 100 trials of a

perturbation with magnitude ±1 (adaptation) or 0 (washout). We distributed 25

bases throughout an error space of ±5. Initial sensitivity was set at 1% (σ = 0.5,

α = 0.9, β = 0.0005) (Fig. 2.7H, bottom). Consistent with the experimental data,
52



our model exhibited the savings in ANA, and greater savings in ANANA. According

to the model, savings in ANA occurred because errors that were initially

experienced in (A) were re-experienced in the second exposure to (A). The savings

in ANANA occurred because the subject gained two prior exposures to (A) before

the final test, resulting in greater increase in error-sensitivity than one prior

exposure. Finally, the savings in ANBNA occurred because in addition to the errors

in initial (A), subjects experienced similar errors upon the washout trials following

(B). That is, in ANBNA subject also had two prior exposures to the errors of the

(A) perturbation, despite the fact that they only experienced (A) once.

2.4.7 Model explains the limited range of savings

Kojima et al. (2004)performed a saccade adaptation experiment in monkeys to

quantify savings. In this experiment, a standard intra-saccade step

paradigm (McLaughlin, 1967) was used to produce errors that resulted in

adaptation. After collecting 400-800 saccades during a ‘gain-up’ adaptation period

(shown in Fig. 2.7I, top), the direction of the intra-saccade step was reversed until

the animal was making saccades with an approximate gain of 1.0. The duration of

this period of counter-adaptation was approximately the same as in the adaptation

period. Finally, the monkey was exposed to a period of re-adaptation on the

gain-up perturbation, but this block contained a larger number of trials than did

the initial learning block (Fig. 2.7I, top). The behavior showed clear evidence of

savings, but the important observation was that the faster re-learning was present

only in the first 100 or so trials, after which the learning curve returned to a rate

similar to initial adaptation (red arrow, Fig. 2.7I, top). Why was the faster learning

present for only a limited number of trials?

To simulate this experiment, we constructed a perturbation schedule

consisting of 300 trials of baseline movements, followed by adaptation to a 3.5◦
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intra-saccade step over 750 trials. The learning of this perturbation was then

washed out using the counter perturbation over 650 trials, before being re-exposed

1100 trials of the gain-up perturbation (Fig. 2.7I, bottom). We distributed 50 bases

in an error-region spanning ±6◦ with initial sensitivity of 0% (σ = 0.25◦,

β = 0.00001, α = 1.0). Just as in the experimental data, our model also showed the

fast initial re-learning, and then a return to slow learning following the first 100 or

so trials. The model explained this limited range of savings by noting that the

inflection point occurred near the limit of the previously exposed errors. That is,

saving was present only up until the errors that were previously experienced - the

errors for which error-sensitivity had been up-regulated.

2.4.8 Model explains savings that was attributed to rein-

forced repetition

A current hypothesis posits that in some conditions, savings may be the result of

reinforcement of motor actions during the adaptation period. In their experiment,

Huang et al. (2011) constructed 4 different perturbation schedules for a visuomotor

rotation task. In the first group, Adp-Rep-, subjects made movements with veridical

feedback to targets drawn from a uniform distribution between 70◦ and 110◦. This

group then learned a constant 25◦ perturbation to a target located at 95◦. In

another group, Adp+Rep-, subjects moved to random targets between 70◦ and 110◦

(identical to the Adp-Rep- group), except that the perturbations were randomly

selected for each target from the uniform bounded distribution [0, 40]◦. Therefore,

this group adapted to the mean of the perturbation (20◦), but did not repeat

actions to a particular target. In the Adp+Rep+ group, subjects were presented

targets from a uniform distribution, but perturbations were chosen so that the

correct solution to all rotations would be to move in the 70◦ direction. The final

group, Adp-Rep+, made repeated movements to the 70◦ target in the absence of a
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perturbation. Each group experienced 80 trials of null movements, followed by 160

training trials, 80 trials of washout, and then a final test phase to the 25◦

perturbation for an additional 80 trials.

We simulated the same experiment for 50 random perturbation schedules for

all groups except Adp-Rep-, which the authors found was not significantly different

than the repetition control group, Adp-Rep+. We incorporated a model of

movement generalization into our model which simulated the effects of

generalization of motor commands to nearby targets (identical to (Tanaka et al.,

2009)). We distributed 50 basis elements throughout an error-region of ±50◦ with

an initial sensitivity of 10% (σ = 10◦, β = 0.05, α = 1.0) . The authors found that

only the Adp+Rep+ group showed savings after a washout block. Our model

reproduced this result (Fig. 2.7J), and explained that the reason was that the

Adp+Rep+ group experienced errors that up-regulated error-sensitivity which were

then re-visited during the test of savings. We made two assumptions in this

simulation. First, that motor commands generalize to nearby targets according to

the model described by Tanaka et al. (2009). Second, that the weights of the

error-sensitivity bases are not target specific. That is, change in error-sensitivity is a

function of error, and therefore generalizes fully to other targets. While we have not

explicitly tested either of these predictions, we note that repetition of a rewarded

action alone cannot account for the meta-learning results we have noted above.

2.4.9 Why do gradual perturbations sometimes produce sav-

ings, and sometimes not?

It is puzzling that in certain examples of a gradual perturbation there can be

evidence of savings (Fig. 2.7F), whereas in other examples of a gradual perturbation

savings is precluded (Fig. 2.6A, GNA group). Why? The model explains that the

critical factor is the history of errors during learning. In the experiment shown in
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Fig. 2.7F in which savings is present, the gradual perturbation produced large

errors, as shown in Figure Fig. 2.8C (right subplot). These residual errors at the

end of the gradual perturbation were the same errors that were experienced by the

subjects when they were tested in a +30◦ perturbation. In contrast, in the GNA

group (Fig. 2.6A), the errors at the end of the gradual perturbation were much

smaller than the errors that are experienced at the onset of the +30◦ perturbation.

As a consequence of these differing history of errors, one form of gradual training

results in savings (Fig. 2.7F), while another does not (Fig. 2.6C).

2.5 Conclusion

We found that during learning, the brain controlled error-sensitivity in a principled

way: learning more from error when perturbations were likely to persist, and less

when perturbations were likely to change. Error-sensitivity modulation was specific

to the experienced errors, suggesting that training produced a memory of errors.

This idea accounted for a host of puzzling observations, including saturation of

error-sensitivity (Wei and Körding, 2009; Marko et al., 2012; Fine and

Thoroughman, 2006), the phenomenon of meta-learning (Turnham et al., 2012),

examples of savings (Kojima et al., 2004; Malone et al., 2011; Sarwary et al., 2013),

and reinforced repetition(15).

The model predicted that meta-learning vanishes when a small delay or

gradual washout alters the history of errors (Fig. ??A), demonstrating that savings

depends crucially on the memory of errors that is accumulated during training. This

memory of errors likely exists in parallel with the two traditional forms of motor

memory, memory of perturbations (Smith et al., 2006) and memory of

actions (Huang et al., 2011).

In our model, we chose to describe the learner as a process with a single

56



time-scale. However, data suggest that learning from error depends on a fast and a

slow process with different error-sensitivities (Smith et al., 2006; Kording et al.,

2007; Herzfeld et al., 2014a). We speculate that the memory of errors exerts its

influence through the error-sensitivity of the fast process, and its manipulation

through history of errors may be a useful strategy to speed recovery during

rehabilitation (Patton et al., 2013).
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3 CONTRIBUTIONS OF THE CEREBELLUM TO

ACQUISITION OF MOTOR MEMORIES

In Chapter 2, we suggested that, as we learn a novel motor task, the brain stores a

previously unknown form or motor memory: a memory of errors. This memory can

then be used to modulate error-sensitivity for the experienced errors. What brain

region in responsible for maintaining this memory of errors? Previous motor control

studies have suggested that the primary motor cortex (M1) and the cerebellum are

two brain regions required for motor learning.

In this chapter, we investigate the contribulations of the cerebellum and

motor cortex to acquisition and retention of human motor memories during a force

field reaching task. We show that anodal transcranial direct current stimulation

(tDCS) of the cerebellum, a technique that is thought to increase neuronal

excitability, increased the ability to learn from error and form an internal model of

the field, while cathodal cerebellar stimulation reduced this error-dependent

learning. In addition, cathodal cerebellar stimulation disrupted the ability to

respond to error within a reaching movement, reducing the gain of the

sensory-motor feedback loop. By contrast, anodal M1 stimulation had no significant

effects on these variables.

During sham stimulation, early in training the acquired motor memory

exhibited rapid decay in error-clamp trials. With further training the rate of decay

decreased, suggesting that with training the motor memory was transformed from a

labile to a more stable state. Surprisingly, neither cerebellar nor M1 stimulation

altered these decay patterns. Participants returned 24 hours later and were

re-tested in error-clamp trials without stimulation. The cerebellar group that had
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learned the task with cathodal stimulation exhibited significantly impaired

retention, and retention was not improved by M1 anodal stimulation.

In summary, non-invasive cerebellar stimulation resulted in

polarity-dependent up- or down-regulation of error-dependent motor learning,

indicating a modulation of error-sensitivity. In addition, cathodal cerebellar

stimulation during acquisition impaired the ability to retain the motor memory

overnight. Thus, in the force field task we found a critical role for the cerebellum in

both formation of motor memory and its retention. Taken together, our results

suggest that the cerebellum may be a prime candidate for storage of previously

experienced errors and control of error-sensitivity, as measured via the rate of

learning.

3.1 Introduction

When we interact with a novel object, we learn through trial and error to control

that object, producing a motor memory that can be recalled the next time the

object is encountered. Force field learning has been used as an experimental

paradigm to uncover some of the processes that the brain relies on to accomplish

this feat. In a typical experiment, the participant holds the handle of a robotic arm

and makes a reaching movement, experiencing novel forces that displace the hand,

resulting in error. This error engages short- and long-latency feedback pathways,

producing a within-movement motor response to the error. In the subsequent reach

the brain predicts some of the novel forces from the onset of the movement,

resulting in partial compensation for the robot-induced forces. This trial-to-trial

change in the motor commands has a specific pattern: the within-movement error

feedback response is shifted earlier in time to produce a predictive

response (Thoroughman and Shadmehr, 1999). With training, some of the
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modifications to the motor commands become a motor memory, as exemplified by

the observation that the memory is disengaged when the robot handle is

released (Kluzik et al., 2008), and is recalled day (Criscimagna-Hemminger and

Shadmehr, 2008; Joiner and Smith, 2008) or months (Shadmehr and Brashers-Krug,

1997) later when the robot handle is grasped.

Formation of this motor memory appears independent of human medial

temporal lobe structures (Shadmehr et al., 1998), but dependent on the integrity of

the cerebellum (Smith and Shadmehr, 2005; Criscimagna-Hemminger et al., 2010;

Donchin et al., 2012) and the motor cortex (Li et al., 2001; Richardson et al., 2006;

Arce et al., 2010; de Xivry et al., 2011b;a). In particular, a study in humans

demonstrated that reversible disruption of the thalamic projections of the

cerebellum to the cortex produced within-subject impairments in the ability to learn

the force fieldtask (Chen et al., 2006). Therefore, the current evidence points to the

cerebellum as one of the structures that plays a critical role in the acquisition of this

motor memory. Here, we used transcranial direct current stimulation (tDCS) to

alter function of the cerebellum and quantified the effect of this disruption on the

ability to learn the force field task. tDCS of the cerebellum is thought to affect the

excitability of Purkinje cell (Galea et al., 2009). Anodal cerebellar stimulation,

which is thought to elevate the excitability of Purkinje cells, has been shown to

increase rates of adaptation in visuomotor (Galea et al., 2009; Block and Celnik,

2013) and gait (Jayaram et al., 2012) tasks, whereas cathodal cerebellar stimulation,

which is thought to reduce Purkinje cell excitability, has been shown to decrease

rates of gait adaptation (Jayaram et al., 2012). By contrast, anodal stimulation of

the motor cortex (M1) had no effect on the rate of visuomotor adaptation, the size

of after-effects, or the rate of de-adaptation upon removal of the perturbation (Galea

et al., 2011). However, immediately after adaptation and removal of anodal M1

tDCS, those in the stimulation group showed a reduced rate at which the resulting
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memory decayed in the absence of visual feedback (Galea et al., 2011). These

findings led Galea et al. (2011) to propose that whereas the cerebellum may be

critical for learning from error, the motor cortex plays a role in retention of the

resulting memory. By contrast with the findings of Galea et al. (2011), Hunter et al.

(2009) applied anodal stimulation to the motor cortex in a force field task and

observed a larger reduction in signed kinematic errors during adaptation than in a

sham tDCS condition, suggesting that motor cortical stimulation increased learning

from error. Therefore, whereas current evidence suggests that stimulation of the

human cerebellum can affect learning from error, it is unclear whether stimulation

of the motor cortex affects learning from error and/or retention.

Here, we compared the effects of cerebellar and M1 stimulation on the

process of acquisition and retention of motor memories in a force field paradigm.

Given previous observations in other motor learning paradigms, we expected that

M1 stimulation would not affect the rate of learning from error, whereas anodal

cerebellar stimulation would increase this rate and cathodal cerebellar stimulation

would decrease the rate of learning. In addition, to specifically test the hypothesis

that anodal stimulation of M1 enhances retention of motor memories (Galea et al.,

2011), we tested the effects of M1 anodal stimulation on both short-term retention

(via blocks of error-clamp trials during the training blocks), and long-term retention

(at 24 hours following completion of training).

3.2 Materials and Methods

Fifty healthy self-reported right-handed volunteers (21 females; mean age ± STD of

24 ± 4.7 years, range 18-38 years) with no known neurological or psychiatric

disorders participated in our study. All participants were naïve to the purpose of

the experiment and gave written informed consent. The study was approved by the
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Johns Hopkins School of Medicine Institutional Review Board. Participants were

screened prior to enrollment in the study to ensure that they did not have

conditions that would exclude them from a brain stimulation study (cardiac

pacemakers, history of seizure, or aneurysm clips). Participants were also screened

to ensure that they were not taking any neurological drugs.

3.2.1 Experiment 1: cerebellar stimulation

We recruited n = 37 participants for this experiment. They were divided into three

groups: sham (n = 12), anodal cerebellar (n = 15), and cathodal cerebellar (n = 10)

stimulation. During analysis of the data we noted that one participant in the

cerebellar cathodal group exhibited large errors during field trials and failed to

compensate for the forces over the course of the experiment. Although it is possible

that this is related to the stimulation (as we will see, cathodal stimulation impaired

the ability to learn), to err on the side of caution, the data from this participant

were not included in our report.

tDCS (2mA, 25 minutes) was delivered by a Phoresor II device (model

PM850, IOMED) through two 5x5 cm saline-soaked sponge electrodes (Ferrucci

et al., 2008; Galea et al., 2011; 2009) The current density was approximately 0.08

mA/cm2. For the anodal tDCS group, the anode was centered on the right

cerebellar cortex, 3 cm lateral to the inion (Galea et al., 2009; Ugawa et al., 1995)

with the cathode positioned on the right buccinator muscle (i.e. on the

cheek) (Galea et al., 2009; 2011). For the cathodal group the electrode polarity was

reversed such that the cathode was placed over the right cerebellar cortex. The

procedures for the sham group were identical to the other groups. Anode and

cathode positions were counterbalanced between cerebellum and buccinators. The

current was increased over a period of 30 sec and then decreased back to zero. With

this procedure, participants are unable to reliably distinguish real from sham
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stimulation (Gandiga et al., 2006; Kaski et al., 2012).

Both the experimenter and the participant were blind to the type of

stimulation, as a third person uninvolved in the experiment controlled the tDCS

settings. As illustrated in Fig. 3.1A, stimulation began with block n2 and concluded

with block g2, lasting no more than 25 minutes. Brain stimulation was applied on

Day 1 only. On Day 2, all participants performed block b1. Additionally, block b2

was performed by a subset of participants: n = 12/12 anodal cerebellar, n = 10/12

sham, and n = 8/10 cathodal.

3.2.2 Experiment 2: motor cortex stimulation

To determine whether the effects observed with anodal stimulation of the

cerebellum were unique to this structure, or could also be elicited via anodal

stimulation of the motor cortex, n = 14 additional participants were recruited. They

performed the identical experiment during anodal tDCS of left M1 (2mA, 25 min.,

5x5 cm electrodes, induced current density of 0.08 mA/cm2). The anode was

positioned on the scalp overlying the ’motor hotspot’ of the right first dorsal

interosseus (FDI) muscle, that is, the optimal position at which a consistent motor

evoked potential, as recorded via EMG, could be elicited using minimal intensity

transcranial magnetic stimulation (70mm coil coupled with a Magstim 200). We

used FDI (rather than biceps) muscle to localize M1, primarily because it is more

easily activated via TMS. The size of the tDCS electrode (25cm2) makes it likely

that coverage included both muscle representations. The other electrode was

positioned on the skin overlying the contralateral supraorbital region.

3.2.3 Behavioral procedures

All volunteers participated in a standard force field task (Shadmehr and

Mussa-Ivaldi, 1994). Using the right hand, each participant held the handle of a
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Figure 3.1: Experiment protocol and effects of stimulation on feedback control.
A. Volunteers were instructed to hold the handle of a manipulandum and reach to
one of two targets that appeared at 10cm. After a period of null field training (no
perturbation, blocks n1 and n2), a clockwise curl force field was introduced. During
training, short blocks of field trials were followed by short blocks of error-clamp trials
(blocks a1-a11). Blocks g1 and g2 refer to trials in which generalization of learning
was assayed at nearby targets. Block r1 provided relearning after block g1. The right
cerebellum or the left motor cortex was stimulated during Day 1. Retention was
assessed on Day 2 by means of a block of error-clamp trials (b1) followed by a block
of re-exposure to the field (b2). Dashed lines are set breaks (around 1min). B. Hand
velocity parallel to the direction of target during stimulation of the right cerebellum
or the left motor cortex, first 10 trials of block a1. C. Hand velocity perpendicular
to the direction of target, first 10 trials of block a1. Cathodal stimulation of the
cerebellum slowed the error-feedback response, indicated by the later time at which
the perpendicular velocity trace crosses zero. Trajectories during anodal stimulation
of the motor cortex or cerebellum were indistinguishable from the sham group. Data
are mean ± SEM.
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manipulandum and made center-out movements to a target (1cm diameter,

Fig. 3.1). The reach was perturbed by a velocity dependent clockwise curl force field

that pushed the hand perpendicular to the direction of motion: where is force on

the hand, N.s/m, and is hand velocity. In the starting posture, the hand was

positioned such that the shoulder and elbow were at 45◦ and 90◦ respectively

(Fig. 3.1A). Participants were unable to see their hand, which was occluded by an

opaque horizontal screen. Instead, visual feedback regarding hand position was

provided by a cursor (0.5cm diameter) that was continuously projected onto the

horizontal screen.

On each trial (except generalization trials, see below), one of the two targets

appeared on the screen (pseudo-randomized with equal probability). Targets 1 (T1)

and 2 (T2) were positioned at 10 cm at 135◦ and 315◦ (Fig. 3.1). The trial was

successful if the hand arrived at the target within 400-500ms after movement onset,

with success indicated by an ‘explosion’ of the target (an animation). Feedback

regarding movements that were too fast or too slow was indicated via changes in

target color. After completion of the trial, the robot brought the hand back to the

start position. Participants were instructed to maximize the number of successful

trials. In some trials, an ‘error-clamp’ was applied (Scheidt et al., 2001). In these

trials, the force field was turned off. Normally, removal of the field produces an

after-effect. However, in error-clamp trials the hand path was constrained to a

straight line to the target via stiff walls (spring coefficient 2000 N/m, damping

coefficient 25 N.s/m). The stiff walls allowed us to measure the forces that the

participant produced, serving as a proxy for the motor output that the brain

generated in order to compensate for the force field expected from the robot.

The experiment was conducted over two consecutive days (Fig. 3.1A). On

Day 1, the session began with two blocks of training in the null field without brain

stimulation. Block n1 consisted of 192 trials to targets T1 and T2, including 48

65



interspersed error-clamp trials. Block g1 consisted of 142 trials to targets at ±45◦,

±90◦, 112.5◦, ±135◦, 157.5◦, 180◦, and 225◦. Brain stimulation was started at the

onset of block n2. This was followed by another block of null field training (59

trials, including 15 error-clamp) to targets T1 and T2 (block n2). Participants then

experienced alternating field and error-clamp blocks (labeled a1-a11). As illustrated

in Fig. 3.1A, each of these blocks consisted of 21 field trials with 3 randomly

inserted error-clamp, followed by 30 trials of error-clamp. Block a11 consisted of 24

field trials (including 5 error-clamp).

During blocks a1-a11, participants alternated between short blocks of field

and error-clamp trials. This enabled measurement of two distinct properties of

learning: 1) in field trials we assayed error-dependent learning by quantifying how

the motor output changed from one trial to the next as a function of error, and 2) in

error-clamp trials we assayed the stability of the developing memory by quantifying

how the motor output decayed within blocks in the absence of error (Smith et al.,

2006; Criscimagna-Hemminger et al., 2010).

Training on Day 1 concluded with 72 generalization trials (block g2,

including 36 error-clamp) in which we quantified motor output to locations near the

trained targets. The generalization targets were at ±22.5, ±45, and ±90 degrees

with respect to the training target T1. The reaches to the generalization targets

were always in error-clamp. The generalization block consisted of cycles in which

there was one movement to T1, followed by error-clamp movements to successive

generalization targets chosen randomly so that every cycle included one of each of

the target positions. Following the generalization trials, we concluded Day 1

training with 24 trials in a re-learning block to targets T1 and T2 (block r1,

including 5 error-clamp). At the end of Day 1 participants ranked their level of

attention (1: least attentive, 7: most attentive), fatigue (1: least fatigued, 7: most

fatigued), and perceived head discomfort (1: no discomfort, 7: extreme
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discomfort/pain) using a visual scale. Retention of the motor memory was assessed

on Day 2 by means of an error-clamp block (b1, 90 trials), followed by re-exposure

to the field (b2, 63 trials, including 9 error-clamp). Stimulation was not applied on

Day 2. All procedures were identical to between the two experiments, with the

exception that on Day 2, all M1 participants were tested in block b1, but not b2.

3.2.4 Data collection and statistical analysis

A force transducer measured the forces applied by the participant at the robot

handle and optical encoders measured position of the robot. The sensors and

transducers were sampled at a rate of 200 Hz. Movement onset was defined as the

time when the reach exceeded 10% of the maximum velocity in the direction of the

target. Data from aborted trials, trials in which participants moved in the wrong

direction (exceeding 0.02 m from a line connecting the starting position and the

target), and trials in which hand velocity did not exceed 0.08 m/s were excluded (<

4% of all trials). Using these criteria, the following percentage of trials was removed

prior to analysis: 3.8% (cerebellar anodal), 4.7% (cerebellar cathodal), 3.7% (M1

anodal) and 3.7% (sham). All other trials were included in the analysis. For each

participant, the force profile measured during error-clamp trials in baseline block n2

was subtracted from error-clamp trials during adaptation. To quantify how well the

forces that participants produced matched the perturbation forces, we computed a

force index: the force f(t) produced by the participant in an error-clamp trial was

compared to the ideal force f ∗(t) = Bẋ (field strength times the hand velocity) by

finding the coefficient that minimized the following:

 T

t=0
(af ∗(t) − f(t))2 (3.1)
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In Eq. 3.1, T is time at end of the reach. We will refer to the a that minimizes

Eq. 3.1 as the force index.

Statistical analyses were performed using R (R-project, Vienna, Austria).

Motor adaptation studies often show changes in the across-participant variance of

the learned parameter as the experiment progresses. This implies that the

covariance between two pairs of samples changes over the course of the experiment,

violating the compound symmetry assumption of repeated measures ANOVA.

Therefore, we used the generalized linear model (GLM) feature of R (gls) to test for

fixed effects of block, stimulation type, and block by stimulation interactions Laird

and Ware, 1982. We constructed three models with different covariance structures,

including compound symmetry, similar to the statistical model used for repeated

measures ANOVA, autoregressive, and unstructured correlations. We compared the

fit of these models using Akaike’s information criteria (Akaike, 1998) and noted that

an autoregressive structure provided the best fit in all tested cases. This

autoregressive correlation structure assumed that consecutive measurements had a

correlation given by the product of the measured variance and the discounting

parameter, r, where r ≈ 1. Therefore, the correlation between any two within

participant measurements decreased as the temporal distance between the

measurements increased:

S =



s2 s2r · · · s2rn

s2r s2 · · · s2rn−1

... ... . . . ...

s2rn s2rn−1 · · · s2


. (3.2)

This approach is in contrast to standard repeated measures ANOVA, which assumes

that the correlation between any two measurements is constant. In addition, use of

a GLM accounts for unbalanced designs, in which the number of subjects per group
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is not equal (an unbalanced design may violate the assumption of orthogonal

interaction effects when using a repeated measure ANOVA). All estimation was

performed by the linear mixed-effects procedure built into R. In cases where we used

a GLM, we represented each participant’s response as a single point per block,

typically by using the mean value of the outcome variable for each participant

within a block. Estimates of the unknown parameters were found using maximum

likelihood. We report the adjusted type III error in all cases, which accounts for an

unequal number of observations between groups.

When possible, we included the data from Experiment 2 (M1 stimulation) in

the statistical tests for Experiment 1 (cerebellar stimulation). Using a single GLM

to test for the effect of tDCS across the cerebellum and cortex reduced the total

number of statistical tests, thereby reducing spurious multiple comparison effects.

In cases where we found a significant main effect of stimulation, or

stimulation by block interaction, we performed post hoc tests on the simple effect of

stimulation to determine which groups were significantly different from sham. To

guard against false positives that can arise from multiple comparisons, we used

Dunnett’s t-test for this post hoc comparison. Dunnett’s t-test is a multiple

comparison corrected approach that is used when a single control group (the sham

group) is compared to other groups. All figures show mean ± SEM, unless

otherwise specified.

3.3 Results

In our experiment, short blocks of field trials alternated with short blocks of

error-clamp trials (Fig. 3.1A). The two day experiment enabled us to measure three

separate components of learning: 1) in field trials of Day 1 we assayed

error-dependent learning by quantifying how the motor output improved from one
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trial to the next, 2) in error-clamp trials of Day 1 we assayed the stability of the

developing memory by quantifying how the motor output decayed within blocks in

the absence of error, and 3) in error-clamp trials of Day 2 we assayed how much of

the acquired memory was retained over a 24 hour period. Our principal question

was with regard to effects of stimulation of the cerebellum and the motor cortex on

these three components.

Our study included four stimulation groups: sham, anodal cerebellar,

cathodal cerebellar and anodal M1. Because the same protocol was used for all

groups, a single statistical model (GLM) assessed effects across all stimulation

groups. However, for clarity of presentation we first report the effects of cerebellar

stimulation on a particular set of variables, and then present effects of M1

stimulation on the same set of variables. After completion of the adaptation blocks

on Day 1, subjects ranked their level of attention, fatigue, and perceived head

discomfort using a visual scale. Self-reported ratings of attention, fatigue, and

perceived pain did not differ with stimulation (all p > 0.05).

3.3.1 Effects of tDCS in the null field

To test whether brain stimulation affected basic characteristics of movement such as

reaction time and peak velocity, we compared performance in a null field condition

in which there was no stimulation (block n1, last 50 trials), to a null field condition

with stimulation (block n2). We analyzed peak velocity of the reaching movements

for each group (sham, anodal cerebellar, cathodal cerebellar, and anodal M1) and

found there was no effect of stimulation type (F (3, 46) = 0.29, p > 0.8) nor a tDCS

by block interaction (F (3, 46) = 2.4, p > 0.05). We considered other kinematic

measures such as perpendicular displacement or velocity at various times into the

movement (100ms and 200ms) and found no significant effect of stimulation type,

nor any interaction.
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3.3.2 Effects of tDCS on reaction time

We quantified reaction times during the null field and force field parts of the

experiment. To check whether the stimulation itself produced a change in reaction

times, we compared reaction times before stimulation (block n1) to reaction times

during stimulation (block n2). We performed a GLM with factors of group, block,

and a group by block interaction. We found a main effect of group (F (3, 46) = 2.7,

p < 0.05), but no group by block interaction. Post hoc tests indicated that the sham

group in general reached with slightly shorter reaction times (around 20ms, the

effect reached significance in comparison of sham vesus cerebellar anodal). However

this difference in reaction times was not due to the onset of the stimulation, as it

was present even before stimulation onset. Therefore, for unknown reasons the sham

group reached with slightly shorter reaction times than other groups.

We quantified the reaction time in the early and late phases of training (first

5 and last 5 blocks). In the early phase of training we found that all stimulation

groups had longer reaction times than sham (group effect F (3, 46) = 5.86,

p = 0.0007; post hoc testing revealed a significant difference between all stimulation

groups and sham, p < 0.001 in each case). However, by the late phase of training

this difference had disappeared (no group effect F (3, 46) = 1.8, p = 0.14, no effect of

block, F (5, 230) = 1.8, p = 0.12, and no group by block interactions,

F (15, 230) = 1.2, p = 0.30). Finally, we checked to see if there was a difference in

reaction times between the various groups that received stimulation. We found no

effect of stimulation type (F (2, 35) = 0.82, p > 0.4), and no stimulation type by

block interaction (F (18, 315) = 0.93, p > 0.5). That is, stimulation modality did not

alter reaction time. In summary, there were no significant differences in reaction

times between the various tDCS groups. However, the reaction times throughout

the experiment were shorter (by about 20ms) for the sham group than other groups.
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This was not because of brain stimulation, as the differences existed even in the first

null block in which there was no stimulation. The differences in reaction time

between the tDCS and sham groups disappeared by late phase of training (last 5

blocks, a5-a10), during which all groups exhibited comparable reaction times.

Effect of cerebellar stimulation on feedback control It has been hypothesized

that the motor response to error during a movement can act as a teaching signal,

driving corrective changes in the motor commands generated in the subsequent

movement (Kawato, 1996). To test whether cerebellar stimulation affected the

motor response to error during the reach, we assessed the effect of tDCS on hand

velocity perpendicular to the direction of target. We focused our analysis on the

first 10 trials of block a1, that is, during the earliest period of exposure to the field,

before significant learning had occurred.

Hand velocities parallel and perpendicular to the target were computed

separately for every trial and every participant, and then averaged across the first

10 trials (shown in Fig. 3.1B and Fig. 3.1C). Parallel velocity appeared

indistinguishable between the groups (Fig. 3.1B). Analysis of the peak parallel

velocity confirmed that there was no effect of stimulation in the parallel direction

(one-way ANOVA, main effect of tDCS, F (3, 46) = 1.9, p > 0.1). Furthermore, the

magnitude of the peak perpendicular velocity, which is a proxy for the early motor

response to the perturbation, was not affected by stimulation (one-way ANOVA,

main effect of tDCS, F (3, 46) = 0.45, p > 0.7). However, a closer examination of the

perpendicular velocity trace suggested that the feedback response to the

perturbation appeared to be delayed in the cathodal cerebellar group, separating

from the other groups approximately 350ms into the movement (Fig. 3.1C). To

quantify this potential delay in the feedback response, we considered the time at

which the perpendicular velocity crossed zero. This quantity represents the time at

which participants had compensated for the cumulative effects of the field, hence
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allowing us to assess the time within a trial when participants in each tDCS

condition compensated for the field. For the cathodal cerebellar group this time was

later than for the sham and anodal cerebellar groups (one-way ANOVA, main effect

of tDCS, F (3, 46) = 3.4, p < 0.05; post-hoc Dunnett’s t-test, cathodal versus sham,

p < 0.05). By contrast, anodal M1 stimulation had no discernible effects on the

ability to respond to sensory feedback: the time when the perpendicular velocity

crossed zero was not significantly different between anodal cerebellar stimulation,

anodal M1 stimulation and the sham group (peak perpendicular velocity: no main

effect of tDCS; zero crossing: post-hoc test, M1 versus sham, p > 0.1).

In summary, we found that cathodal cerebellar stimulation impaired the

ability of participants to respond to error feedback during the reach. This delay was

not due to a general slowness in visual processing, as reaction times were

comparable between various groups that received tDCS.

3.3.3 Effect of cerebellar stimulation on learning from error

To quantify learning from error, we focused on reach kinematics in field trials.

Fig. 3.2A shows average reach trajectories in representative blocks of the experiment

for the cerebellar tDCS groups. In the null block (n2) the trajectories appeared

indistinguishable. When the perturbation was introduced (block a1), the hand was

displaced from its nominal trajectory, and with training the trajectories converged

to an ‘S’ shaped path that over-compensated for the perturbation early in the

movement and under-compensated late in the movement. In healthy individuals,

over-compensation is a characteristic of learning in curl force fields (Thoroughman

and Shadmehr, 2000; Izawa et al., 2008). However, this characteristic of force field

learning is reduced or missing in people with cerebellar

damage (Criscimagna-Hemminger et al., 2010). Here, we found that anodal

cerebellar stimulation enhanced over-compensation, whereas cathodal stimulation
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reduced it (Fig. 3.2A). This is further illustrated in the perpendicular velocity

traces, as shown in Fig. 3.2B. In the early adaptation block (a1), at the onset of the

movement the perpendicular velocity was in the positive direction, reflecting the

effect of the perturbation. However, with further training (blocks a6 and a10) the

perpendicular velocity progressively shifted in the negative direction, reflecting

over-compensation. Over-compensation was evident by block a6 in the anodal

condition, but appeared to develop more slowly in the cathodal condition.

To quantify these patterns, we focused on a measure early in the movement,

hand velocity perpendicular to the direction of the target at 100ms after reach

onset, and a measure relatively late in the movement, maximum perpendicular

displacement. Analysis of other trajectory measures (e.g. perpendicular

displacement at 50ms or 200ms) confirmed the same pattern of results.

We first considered a measure early in the movement (100ms) (Fig. 3.2C). In

block a1, the groups showed comparable performance. There was no significant

difference between the mean perpendicular velocity at 100ms in block a1 (one-way

ANOVA, main-effect of tDCS, F (3, 46) = 0.2, p > 0.8). However, as training

progressed, performance of the three groups diverged. In particular,

over-compensation emerged fastest in the anodal group and slowest in the cathodal

group (when the data values fall below zero, the motor commands exhibited

over-compensation). A GLM with factors of block (a1 to a11) and tDCS found a

main effect of stimulation type (F (3, 46) = 2.8, p < 0.04) and block

(F (10, 460) = 23.1, p < 10−3). Post hoc comparisons indicated that the cathodal

cerebellar group exhibited slower learning, resulting in an increase in the overall

perpendicular velocity compared to the sham group (Dunnett’s t-test, p < 0.01). In

contrast, the anodal group showed faster learning compared to sham (Dunnett’s

t-test, p < 0.05). We next considered a measure that focused on the late part of the

movement (peak displacement from a straight line). Fig. 3.2D plots maximum
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Figure 3.2: Reach kinematics and measures of error-dependent learning during cere-
bellar (left column) and motor cortex (right column) stimulation. A. Hand paths
during cerebellar stimulation. The reach starts at the bottom and ends at the top.
Figures show across participants mean ± SEM of hand position for each tDCS group
during blocks of training labeled at top of the figure. With training, both the anodal
and sham tDCS groups exhibited ‘over-compensation’ early in the reach; this effect
appeared larger in the anodal group and smaller in the cathodal group. B. Hand ve-
locity (cm/s) perpendicular to the direction of target. Over-compensation gradually
emerges across blocks, as reflected in the negative hand velocities in the early period
after movement onset (0 - 100ms). C. Perpendicular velocity at 100ms after reach
onset during selected blocks of training. Positive values represent clockwise deviation
of the hand, and negative values represent over-compensation. D. Maximum dis-
placement of the hand perpendicular to the direction of the target. E-H. The same
as parts A-D, but for anodal stimulation of the motor cortex.

75



displacement caused by the perturbation, averaged for each block. The maximum

displacement curves of the cerebellar anodal and sham groups appeared

indistinguishable, whereas the cathodal group exhibited larger maximum

displacement, indicating reduced compensation for the force field. GLM analysis

identified a significant main effect of tDCS (F (3, 46) = 2.6, p = 0.05) and block

(F (10, 460) = 28.9, p < 10−3), and post-hoc analysis confirmed that the cathodal

group exhibited significantly larger maximum displacement than the sham group

(Dunnett’s t-test, p < 0.001) whereas the anodal group showed no significant

difference compared to sham (Dunnett’s t-test, p > 0.9). This reduced

compensation in the cathodal group relative to sham may be due to

stimulation-induced impairments in learning, or due to impairment of the feedback

response reported earlier.

In summary, kinematic measures during training illustrated that anodal

cerebellar stimulation increased the learning rate, whereas cathodal stimulation

reduced this rate.

3.3.4 Robustness of statistical results

We had n = 9 subjects in the cerebellar cathodal group and a larger number of

subjects in the sham and cerebellar anodal groups. To what extent could this

imbalance in the study population size have affected our conclusion regarding

impairment of learning in the cerebellar cathodal group?

In both GLM and standard one-way ANOVA, the smaller number of subjects

in a group increases in the estimate of the between-subject variability. Therefore,

the cathodal group is at a statistical disadvantage in terms of the likelihood of

finding significant results when it is compared to other groups. Despite this, we

found that the altered rate of learning during cathodal cerebellar stimulation was

the strongest effect in the dataset, showing the highest levels of significance (even
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compared to anodal cerebellar (n = 15) versus sham (n = 12)).

A reasonable way to deal with unequal sample size is to use an autoregressive

structure of the GLM in which each group has a different variance value (diagonal

elements on the variance-covariance matrix). This ensures that when performing

post-hoc contrasts, smaller groups, with measured higher variance values, are at a

statistical disadvantage. Despite using this conservative approach, we found

consistent effects of cerebellar cathodal stimulation.

To directly test the robustness of our inference we performed a bootstrap

analysis in which we randomly sampled n = 9 subjects from the sham group

(without replacement). For each of 100 iterations, we performed a GLM and a

post-hoc comparison between the resampled sham (n = 9) and cerebellar cathodal

groups (n = 9) using the metric of perpendicular displacement at 100ms. We found

that the mean p-value for this corrected comparison was 0.013 ± 0.018 (mean ±

SD), indicating that the cathodal group learned significantly slower than sham, even

when the group sizes were equalized.

3.3.5 Effects of motor cortex stimulation on learning from

error

Were the changes in rates of learning specific to the stimulation of the cerebellum?

Fig. 3.2E and Fig. 3.2F display reach trajectories and perpendicular velocities for

anodal M1 and sham groups during various stages of training. Anodal M1

stimulation did not appear to induce significant changes in reach kinematics. For

example, the over-compensation early in the reach and the ‘S’ shape of the hand

path appeared unaffected by M1 stimulation. These patterns were quantified via

perpendicular velocity at 100ms (Fig. 3.2G) and maximum perpendicular velocity

(Fig. 3.2H). Following a GLM analysis (reported in the cerebellar section above), a

post-hoc comparison did not find a significant difference between M1 and sham
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groups (Dunnett’s t-test, 100ms: p > 0.9, max displacement: p > 0.1).

In summary, we observed an increased rate of learning when the cerebellum

received anodal stimulation, but not when anodal stimulation was applied to the

motor cortex.

3.3.6 Effects of cerebellar stimulation on stability of the mo-

tor memory

To assess stability of the acquired motor memory, we focused on the force patterns

that the participants produced in error-clamp trials. Fig. 3.3A shows examples of

these forces. In general, cerebellar stimulation did not alter the shape of the force

profiles. Rather, participants who received cathodal cerebellar stimulation tended to

produce smaller forces. We quantified force traces in error-clamp trials by

comparing them to the ideal force, as defined in Eq. 3.1, and computed a force index

(reflecting the fraction of compensation). This measure is shown in Fig. 3.3B. Two

features stand out: 1) block after block, the force index increases, compensating for

a greater amount of the perturbation, and 2) within each error-clamp block the

force index decreases, reflecting decay of motor output and de-instantiation of the

motor memory in the absence of error (Vaswani and Shadmehr, 2013).

To quantify the between-block change in the force index, independent of the

within-block decay, we focused on the first five trials of each block. For each

participant we computed the average force index across these five trials in each

block. A GLM revealed a significant main effect of block (F (9, 414) = 10.0,

p < 10−3) as well as a significant effect of tDCS (F (3, 46) = 6.2, p < 0.001). A

post-hoc test revealed that the cathodal cerebellar group produced significantly

smaller forces in error-clamp trials compared to sham (Dunnett’s t-test, p < 0.001)

(Fig. 3.3B). Reach kinematics had shown that anodal stimulation of the cerebellum

led to a larger amount of over-compensation than cathodal or sham stimulation
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Figure 3.3: Force in error-clamp blocks and measures of decay in motor output during
cerebellar or motor cortex stimulation. A. Force in error-clamp trials in various blocks
as a percentage of ideal force in the cerebellar stimulation group. The ideal force was
computed at time of peak velocity during the reach by multiplying velocity by field
strength. B. Force index (Eq. 3.1, a unitless variable) as computed in error-clamp
blocks. Data were smoothed using a sliding window with a bin width of 5 trials.
C. In error-clamp blocks forces decay. However, with training the memory becomes
resistant to decay. Forces were normalized to the first trial of the error-clamp block.
The traces represent data from blocks a1 and a10. Data were smoothed using a
sliding window with a bin width of 5 trials. D. Decay per trial in each block was
estimated by fitting a line to the data shown in part B. The slope of the regression
line represents the rate of change in units of percent force index per trial. E-H. The
same as parts A-D but for anodal stimulation of the motor cortex. Data are mean ±
SEM.
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(Fig. 3.2C). However, the force measurements in error-clamp trials did not suggest a

difference between the anodal and the sham groups (Dunnett’s t-test, p > 0.4, and

as shown in Fig. 3.3B). We hypothesized that the reason for this may be that our

force measure (force index) had quantified the entire trajectory, rather than focusing

on the early component of the movement (when over-compensation occurs).

Therefore, we performed further analysis of the force, but now focused on movement

onset. We defined movement onset as the time when the reach exceeded 10% of

maximum velocity in the direction of the target. This corresponds to time zero on

the force traces shown in Fig. 3.3A. Focusing on force at movement onset, and for

the first five trials of each error-clamp block, GLM showed a significant main effect

of block (F (9, 414) = 3.2, p < 10−3) and a significant main effect of stimulation type

(F (3, 46) = 5.4, p < 0.01). Post-hoc tests revealed that the anodal group produced

significantly larger forces compared to sham (Dunnett’s one-sided test, p < 0.05)

but the cathodal group continued to produce significantly smaller forces than sham

(Dunnett’s one-sided test, p < 0.001). In summary, force measurements early in the

reach at start of error-clamp blocks confirmed kinematic measurements in field

trials, demonstrating increased learning with anodal cerebellar stimulation and

decreased learning with cathodal cerebellar stimulation. A critical question was

whether cerebellar stimulation affected the force decay patterns in error-clamp

trials. To assess the within error-clamp block change in the force index, we

computed the rate at which this index decayed. For example, in a1 the force index

was around 0.55 at the start of the error-clamp block (Fig. 3.3B). This implies that

in block a1, in the field trials that had preceded the start of the error-clamp block,

participants learned about 55% of the ideal force. As the error-clamp block in a1

ended the forces had decayed to approximately 20%. Therefore, the small number of

field trials in a1 produced a great deal of learning (55% of force was learned), but

the resulting memory exhibited decay in the absence of error (loss of around 63%).
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In a10 the force index was around 0.85 at start of the error-clamp block and

decayed to around 0.55 by the end of the block, exhibiting about 35% loss. A useful

way to visualize these patterns is to normalize the force measure with respect to the

first trial of each error-clamp block, illustrated in Fig. 3.3C. At the start of training

the memory could be described as ‘fast,’ exhibiting rapid decay (Smith et al., 2006).

With training, the memory decayed less in the error-clamp block, becoming ‘slow’.

To quantify the decay patterns we fitted the data in Fig. 3.3B to a single line

for each block and each participant and measured the slope of that line. The results

are shown in Fig. 3.3D, represented as percent decay per trial. GLM analysis

revealed a significant main effect of block (F (9, 411) = 6.9, p < 0.001), but no

significant effect of tDCS (F (3, 46) = 1.6, p > 0.1), and no interactions

(F (27, 411) = 0.8, p > 0.7). Therefore, cerebellar stimulation did not significantly

alter the rate of decay in error-clamp blocks. Similar results were obtained with

other measures of performance, such as force at peak velocity.

In summary, analysis of forces in error-clamp trials demonstrated that

cathodal cerebellar stimulation slowed the rate at which the brain learned to predict

and compensate for the perturbation. In blocks of error-clamp trials, these forces

decayed. Early in training the decay per trial was large, but with further training

decay per trial became smaller, suggesting that with training the memory gained

stability. Cerebellar stimulation did not significantly alter these decay patterns.

Therefore, cerebellar stimulation affected the rate of learning, but not the rate of

decay of the resulting memory as assayed in error-clamp trials.

3.3.7 Effects of motor cortex stimulation on stability of the

motor memory

Fig. 3.3E displays the force traces produced by the group that received anodal

stimulation of the motor cortex, and Fig. 3.3F summarizes these results using the
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force index. To quantify the between-block change in the force index, independent

of the within-block decay, we focused on the first five trials of each block. For each

participant we computed the average force index across these five trials in each

block. As reported in the above results, a GLM had revealed a significant effect of

block, and significant effect of tDCS. However, a post-hoc test revealed no

significant effects of anodal M1 stimulation (Dunnett’s t-test, p > 0.1). Fig. 3.3G

and Fig. 3.3H display the decay properties of the force index, demonstrating that

with training the decay rates were reduced (statistics reported above). Nevertheless,

anodal M1 stimulation did not produce any significant changes in these decay

patterns (as demonstrated by the lack of stimulation effect in the GLM, reported

above). Therefore, in contrast to what was observed in a visuomotor rotation

experiment (Galea et al., 2011), in this force field task anodal M1 stimulation did

not alter the rate of decay of the motor memory in the absence of error.

3.3.8 Effect of stimulation on generalization

After completion of block a11, participants were tested in a generalization block

(g2), to assess transfer of performance from trained targets to nearby untrained

targets. Reaches to the generalization targets were in error-clamp. A fraction of the

reaches to the trained targets were in field trials (to prevent decay of the motor

output), and the remaining reaches were in error-clamp trials (to assess the force

index). The force index for the generalization trials was expressed as a fraction of

the average index for the two trained targets (Fig. 3.4A). Generalization was tested

using a compound-symmetric GLM with factors of direction and tDCS group.

There was a significant effect of direction (F (6, 272) = 10.5, p < 0.001), reflecting

transfer of training to untrained target locations, but no effect of tDCS

(F (3, 46) = 0.3, p > 0.8) and no interaction effect (F (18, 272) = 1.2, p > 0.2).

Therefore, stimulation of the motor cortex or the cerebellum did not significantly
82



alter generalization patterns.

3.3.9 Effect of stimulation on over-night retention

Training on Day 1 ended with a final block of field trials (r1), which significantly

improved performance with respect to block a11 (Fig. 3.2D, perpendicular velocity

at 100ms, main effect of block F (1, 46) = 21.9, p < 0.001, with no effects of tDCS,

and no interaction). Subsequently, participants left the experiment room and

returned a day later. Testing on Day 2 began with a block of error-clamp trials

(block b1), which precluded re-exposure to the previously trained force field. As

before, we quantified the forces that subjects produced on each error-clamp trial of

Day 2 using a force index, and the results are plotted in Fig. ??B and Fig. ??C. A

one-way ANOVA on the force index averaged across block b1 revealed a significant

effect of stimulation type (F (3, 46) = 3.1, p < 0.05). Post-hoc tests revealed a

significant difference between the cathodal and sham groups only (Dunnett’s t-test,

p < 0.05). Therefore, participants who had received cerebellar cathodal stimulation

on Day 1 produced smaller forces on Day 2.

However, learning on Day 1 in the cerebellar cathodal group had been

impaired by tDCS. Indeed, the cathodal cerebellar participants did not attain the

same level of task performance as the other groups. Hence, between-group

differences on Day 2 do not simply reflect differences in retention. To address this

issue, we used an approach based on previous work. Joiner and Smith (2008) trained

groups of volunteers in a force field task for various durations, yielding different

levels of task performance. They then tested each group on Day 2 in error-clamp

trials. The authors found that final performance on Day 1 was not a good predictor

of forces exerted on Day 2. Rather, a specific component of performance on Day 1

was a good predictor of Day 2: the component attributed to ’the slow process’, that

which in the absence of error shows little decay. The authors showed that, despite
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Figure 3.4: Effects of tDCS on generalization and retention. A. Generalization was
assayed at end of training in Day 1 (block g2). Force index for each participant at
the various probe targets was normalized to each participant’s own force index in the
trained targets (direction 0). The arrow indicates direction of probe target and the
gray line indicates direction of trained target. Data are mean ± SEM. B. Retention
at 24 hours following completion of training. Force index at the end of training on
Day 1 (block r1), and during testing on Day 2 (block b1) for cerebellar stimulation.
The data in block b1 were smoothed with a sliding window using a bin width of 5
trials. C. The same as in part B, but for anodal stimulation of the motor cortex. D.
Overnight retention, measured as average force index in block b1 as a percentage of
force index in the last 10 trials of block a10. ∗ indicates p < 0.05. E. Hand paths in
block b2. Data are mean ± SEM.
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different final levels of task performance on Day 1, the amount of force participants

produced on Day 2 was a constant fraction of this slow-process component of the

forces produced on Day 1. In our experiment, the error-clamp blocks on Day 1 were

30 trials in duration, long enough to be dominated by the slow process, as the fast

process has a time constant in which forces decay by 95% by the 8th trial (Smith

et al., 2006). Therefore, to compute retention, we averaged the force index during

the final two error-clamp blocks on Day 1 (blocks a9 and a10), and then compared

this for each participant to the average force index during the error-clamp block on

Day 2 (block b1). The results are plotted in Fig. 3.4D. ANOVA indicated a

significant effect of stimulation type (F (3, 46) = 3.19, p < 0.05), and a post-hoc test

revealed impaired retention in the cathodal group (Dunnett’s t-test, p < 0.05).

Following the error-clamp block b1, re-learning was assessed in a block of

field trials (block b2 was examined in a subset of participants from each cerebellar

tDCS group, n = 12/12 anodal cerebellar, n = 10/12 sham, and n = 8/10 cathodal).

Fig. 3.4E shows hand trajectories during block b2. All groups exhibited faster

re-learning (i.e., ‘savings’), showing a maximum perpendicular displacement in the

first 10 trials of b2 that was within 95% of the final value of block r1 in the previous

day. In addition, the anodal group exhibit greater over-compensation than the

cathodal group (one-way ANOVA on the perpendicular velocity at 100ms identified

a main effect of stimulation type, F (2, 28) = 3.7, p < 0.05, and Dunnett’s post-hoc

t-test showed significantly larger over-compensation in the anodal versus sham

groups, p < 0.05).

In summary, we found that retention, as measured by the ratio of force

produced in error-clamp trials on Day 2 with respect to end of Day 1, was impaired

in the cerebellar cathodal group, but unaffected by anodal M1 or anodal cerebellar

stimulation.

85



3.4 Discussion

We performed a two day experiment to measure effects of non-invasive brain

stimulation on the ability to learn to reach in a force field. We found that increasing

the excitability of the cerebellum via anodal tDCS increased the rate of learning,

while decreasing cerebellar excitability via cathodal tDCS impaired the ability to

respond to sensory feedback and decreased the rate of learning. On Day 1, training

resulted in a motor output that decayed in the absence of error. This decay was fast

in the early part of training, but with further training the decay slowed, suggesting

that with training the motor memory gained stability. Stimulation of the cerebellum

or the motor cortex did not alter these decay patterns. On Day 2, when re-exposed

to the same learning context, participants reproduced some of the motor commands

that they had learned the previous day. Participants who had acquired the task

while receiving cathodal cerebellar stimulation exhibited impaired retention,

whereas anodal stimulation of the motor cortex or the cerebellum did not alter

overnight retention.

3.4.1 Feedback control

When the nervous system detects an error during a reach, motor commands that

correct the error and bring the hand to the target originate in the spinal cord, the

motor cortex, and the cerebellum. If the cerebellar deep nuclei are cooled, the early

component of the error-feedback response (associated with a response in the agonist

muscle) is generally unaltered, but the later component (associated with a response

in the antagonist muscle) is delayed (Vilis and Hore, 1980). Here, we observed that

cathodal cerebellar stimulation reduced the feedback gain of the arm, resulting in

motor commands that were slower than normal in correcting for the perturbation.

How might cathodal stimulation of the cerebellum affect the error-feedback
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response? Results from TMS experiments (Ugawa et al., 1995) suggest that

cathodal tDCS decreases the resting membrane potential of cerebellar

neuron (Galea et al., 2009), apparently decreasing the proportion of cells that

respond to input. Because Purkinje cell activity is modulated by unexpected

sensory feedback in the context of a self-generated movement (Gilbert and Thach,

1977; Brooks and Cullen, 2013), a reduced sensitivity to mossy fiber input may

underlie the impairment in error-feedback response.

Given the extensive evidence regarding the role of the motor cortex in

feedback control (Evarts and Tanji, 1976; Kimura and Gomi, 2009) it seems likely

that disruption of M1 via cathodal stimulation, something that we did not attempt,

would also affect the ability of the brain to respond to a perturbation. An

interesting future experiment would be to compare the effects of cathodal

stimulation of the cerebellum with M1.

3.4.2 Learning from error

We used reach kinematics to assay learning from error and found that anodal

cerebellar stimulation enhanced error-dependent learning, whereas cathodal

cerebellar stimulation impaired it. This is consistent with results reported in a

visuomotor rotation task, in which anodal cerebellar stimulation enhanced

learning (Galea et al., 2011), and in a walking task, where anodal cerebellar

stimulation enhanced learning while cathodal stimulation impaired it (Jayaram

et al., 2012). Together, the results suggest that the cerebellum is a unique structure

that supports the general process of error-dependent motor learning.

In the force field task, the result of learning is not a return to the null,

unperturbed trajectory (Izawa et al., 2008). Rather, movements exhibit

over-compensation early in the reach and under-compensation late in the reach,

resulting in an S-shaped path to the target. Why do the motor commands exhibit
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over-compensation? The motor commands that are produced in response to the

perturbation during the reach may act as a teacher for the brain (Kawato, 1996),

driving the change in motor commands that are generated in the subsequent

movement (O’Shea et al., 2014). Recordings from muscles show a gradual and

orderly transition of the motor commands from one that responds to the

perturbation force during the reach (early in training), to one that predicts it near

the onset of the reach (late in training) (Thoroughman and Shadmehr, 1999). The

fact that cathodal cerebellar stimulation impaired both functions suggests that the

later function may benefit from the former.

In contrast to the effects of cerebellar stimulation, we did not observe any

effect of anodal stimulation of M1 on learning from error (2mA, 25min, 25cm2

electrodes). This is consistent with an earlier work in which we found no effect of

anodal or cathodal stimulation (1mA, 20min, 25cm2 electrodes) of M1 in a similar

force field task (de Xivry et al., 2011b). Similarly, in a visuomotor rotation task,

Galea et al. (2011) used anodal stimulation of M1 (2mA, 15min, 25cm2 electrodes)

and found no effects of stimulation during training in the presence of the

perturbation and no differences in the subsequent after-effects when the

perturbation was removed. By contrast, Hunter et al. (2009) reported that anodal

tDCS of M1 (1mA, 17min, 35cm2 electrodes) produced a larger reduction in

kinematic errors from the first to the 4th block of force-field training than did sham

stimulation (their ‘signed-error’ measure). Following training in the field, these

subjects were exposed to a null field condition, in which they exhibited after-effects.

However, using the same ‘signed-error’ measure Hunter et al. (2009) did not find an

effect of tDCS on the resulting after-effect. Hence, the results of tDCS studies do

not, at present, paint a consistent picture of the function of M1 during motor

learning. Most of the studies to date, however, have found that learning from error

is not affected by anodal stimulation of M1.
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3.4.3 Functional stages of motor memory

While there are many factors that can affect kinematic performance in field trials,

including changes in muscle co-contraction (Thoroughman and Shadmehr, 1999),

and changes in the gain of the long-latency sensory feedback pathways (Kimura

and Gomi, 2009; Ahmadi-Pajouh et al., 2012) in error-clamp trials these factors are

eliminated. Forces that participants produce in error-clamp trials are a proxy for a

model that the brain constructs, associating state of the limb to expected

perturbation forces (Hwang and Shadmehr, 2005; Sing et al., 2009). In Smith et al.

(2006), we predicted that early in training, motor memory was ‘fast’, decaying

rapidly in the absence of error, but that with further training, the memory was

transformed to ‘slow’, showing gradual decay. Here we found direct evidence for this

prediction: we observed that early in training the decay rates of motor output in

error-clamp trials were high, but with further training the decay rates declined by

about 50% (Fig. 3.3C). Therefore, with increased practice motor memory gained

stability, as reflected in its decay properties in the absence of error. What was the

neural basis of this transformation?

In our study, we found no effect of cerebellar or M1 tDCS on the rate of

decay of the motor memory. By contrast, Galea et al. (2011) in a visuomotor

rotation task found that anodal M1 stimulation reduced the decay rate of the

learned motor output (assayed after learning/tDCS had finished, specifically when

no visual feedback was provided). In our experiment, we repeatedly measured the

decay rate of the evolving motor memory in the absence of error (error-clamp trials).

Despite repeated measurements, we found no effects of M1 anodal stimulation. Of

course, a null result does not constitute evidence of no effect. Nevertheless, our null

effect observations are consistent with another work on force field learning (de

Xivry et al., 2011b), in which anodal or cathodal stimulation to M1, or anodal
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stimulation to the posterior parietal cortex (1mA, 20min), did not change the decay

rates. What could explain this difference with respect to Galea et al.’s findings?

First, learning in force fields and visuomotor rotations engage distinct areas

of the cerebellum (Donchin et al., 2012), and the cerebral cortex (Diedrichsen et al.,

2005). This difference in functional anatomy may underlie the reported differences

in the effects of M1 stimulation in force field and visuomotor tasks. For example,

our earlier work on visuomotor rotatin (Hadipour-Niktarash et al., 2007) found that

M1 TMS during exposure did not affect the ability to learn from error, but resulted

in a motor memory that was fragile, exhibiting rapid decay. Hence, for visuomotor

rotation, our earlier results and those of Galea et al. (2011) are consistent, both

finding no evidence of a functional role for M1 in learning from error, and both

suggesting a role for M1 in the decay of the resulting motor memory. By contrast

with these results for visuomotor rotation, in a force field task rTMS of M1 did not

induce a deficit in retention, as assayed immediately after learning/stimulation

(Baraduc et al., 2004), an effect that appears inconsistent with the predictions of

Galea et al. (2011). The existing brain stimulation data suggest that different

functional substrates mediate learning in visuomotor rotation and force fields.

Second, in our experimental design we included periodic error-clamp blocks,

interleaved amongst blocks of learning in the field. Because the error-clamp blocks

induce decay, they may reduce the overall amount of learning achieved during the

task, and also reduce the rate of repetition of the motor commands, a natural

component of most motor learning paradigms. Repetition is thought to produce a

form of memory that is distinct from the memory that is produced from

error-dependent learning (Diedrichsen et al., 2010; Huang et al., 2011). Importantly,

repetition may produce a memory that depends on the cerebral cortex (de Xivry

et al., 2011a). Hence, it is possible that if we had included a greater degree of

repetition of motor commands in our training protocol, anodal M1 stimulation may
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have slowed memory decay in error-clamp trials. Future work could test this

hypothesis.

Finally, the way in which decay is assayed may change the effects of anodal

M1 stimulation. Here, we measured decay using error-clamp trials in which the

proprioceptive and visual error components of each movement were artificially

constrained. In contrast, Galea et al. (2011) measured decay in trials in which

visual feedback was withheld. Continuous feedback versus no-feedback trials have

been shown to elicit differences in the rate of adaptation, and by extension, this

difference likely impacts on the decay of acquired motor memories (Kitago et al.,

2013). In particular, Galea et al. (2011) showed that when subjects were exposed to

washout after learning, using a full-visual feedback condition, which requires a

combination of learning from error as well as extinction of the acquired memories,

there was no difference in the rate of decay with M1 anodal tDCS versus sham.

In summary, whereas our study of force field learning found that anodal M1

stimulation did not change the decay properties of the motor memory during

acquisition, as assayed using error-clamp trials, the same stimulation in visuomotor

rotation has been reported to reduce the decay rate of the acquired motor memory

measured after learning. Hence, in combination, brain stimulation evidence to date

suggests a role for M1 in stabilizing the motor memory that results from visuomotor

rotation but not force field learning.

3.4.4 Retention

When participants returned on Day 2, they held the robot handle and reached in

error-clamp trials. They produced forces that were correlated with those that they

had learned on Day 1, demonstrating retention. These forces were significantly

smaller in the cathodal cerebellar group than other groups. However, the critical

question was whether this effect was a reflection of the fact that they had learned to
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a lesser degree on Day 1, or whether the performance on Day 2 was evidence for

reduced retention over and beyond the basic effect associated with acquisition.

Therefore, to measure retention, we faced the issue that learning had been impaired

in Day 1 in the cerebellar cathodal group: they had not reached the same levels of

performance as other groups. To solve this problem, we used the analytic approach

developed by Joiner and Smith (2008), which showed that retention of force field

learning on Day 2, as assayed in error-clamp trials, was a constant fraction of the

slow-component of forces produced on Day 1. We found that cathodal cerebellar

stimulation showed significantly impaired retention. Anodal cerebellar or M1

stimulation had no effect on overnight retention.

Our results on the potential role of the cerebellum in retention are intriguing

because of other results from the force field learning literature. Imaging studies of

the cerebellum in the force field task suggest that during multi-week training

activity in the anterior cerebellar cortex decreases while activity in the deep nuclei

increases (Nezafat et al., 2001). In other motor tasks (e.g. VOR or optokinetic

reflex), there is also evidence for this interplay between the cerebellar cortex and

nuclei during acquisition and retention (Kassardjian et al., 2005; Okamoto et al.,

2011a;b).

The fact that we did not observe an effect of anodal M1 stimulation

contrasts with the results of Reis et al. (2009), who examined a skill learning task

and found that M1 anodal stimulation produced greater over-night learning gains

than sham. This highlights a potential difference between error-dependent learning,

which appears to rely predominantly on the cerebellum, and skill learning, which

has been proposed to rely more on the cerebral cortex.
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3.4.5 Generalization

Generalization can be viewed as a signature of the tuning properties of the cells that

participate in learning (Shadmehr, 2004). Force field learning produces narrow

generalization to neighboring directions of movements, and broad generalization to

neighboring positions of the arm, consistent with a neural coding that relies on

proprioception (Hwang and Shadmehr, 2005). We have previously found that

stimulation of M1 altered spatial generalization patterns, producing greater

generalization in joint coordinates of the arm (de Xivry et al., 2011b). Here, we

found that stimulation of the cerebellum or M1 did not affect directional

generalization patterns, i.e., learning declined as a function of distance to the

trained target. An important future experiment is to compare the effects of

cerebellar and M1 stimulation on spatial generalization.

3.4.6 Limitations

Given the size of the tDCS electrodes (25cm2), and the dipole nature of a direct

current stimulation montage, it seems likely that stimulation was not confined solely

to the cerebellum or M1. For instance, it is well-established that M1 tDCS alters

the excitability of the motor cortico-spinal tract (Nitsche and Paulus, 2000), and

also changes functional brain activity in distal inter-connected brain regions, with

the pattern of spread varying with cognitive state (Lang et al., 2005; Stagg et al.,

2011). The functional consequence of these distal changes is unclear. With

cerebellar stimulation, physiological evidence (MEPs) indicates that the

tDCS-induced changes in measures of cerebellar-brain inhibition do not arise from

local spread of current to the adjacent brainstem or visual cortex (Galea et al.,

2011; 2009). Nevertheless, It is possible that cerebellar tDCS affects processing in

M1 and thalamus by changing tonic neural activity in the cerebello-thalamo-cortical
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pathway. Hamada et al. (2012) aimed to test this physiologically, by assessing

sensory evoked potentials in M1 before and after anodal cerebellar tDCS, but they

found no change in the excitability of these pathways. Hence, while future work is

required to characterize the spatial distribution of tDCS-induced changes in

functional brain activity, the available evidence, though not conclusive, does suggest

that the current induced by the stimulation protocols used here probably affected

mainly the cerebellum or the motor cortex.

We measured feedback response during the early phase of learning, and not

in a situation where the perturbations were random. This potentially confounds the

ability to learn from error (trial-to-trial change in motor commands), with the

ability to correct for error (within trial change in motor commands). However, we

think that we can dissociate these two factors: the main effect of learning from error

was to produce changes very early in the movement, reflected in the perpendicular

displacement at near movement onset (Fig. 3.2B), whereas the stimulation induced

differences that we attributed to feedback control occurred late in the movement

(Fig. 3.1B). Regardless, we envision a future experiment that includes continuous

measurements of muscle activity in the context of feedback responses during

cerebellar or M1 stimulation.

We found that anodal M1 stimulation produced no significant enhancement

of learning or retention. Given the substantial neurophysiological evidence for

involvement of M1 in the force field task (Li et al., 2001; Arce et al., 2010), and the

fact that rTMS of M1 impairs overnight retention (Richardson et al., 2006) and the

ability to switch from learning of one field to another (Cothros et al., 2006), an

important next experiment is to compare the effects of cathodal M1 stimulation

with cathodal cerebellar stimulation.
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3.5 Conclusion

In summary, we demonstrated that anodal stimulation of the cerebellum enhanced

the error-dependent learning process, whereas cathodal stimulation impaired it. We

demonstrated that with training, the motor memory was transformed from a process

that decayed rapidly in the absence of error, to one that decayed slowly. Neither

cerebellar nor motor cortical stimulation affected this transformation. Finally, we

found that cathodal stimulation of the cerebellum during acquisition resulted in

impaired retention as measured in 24 hours. Overall, we found a critical role for the

human cerebellum in the ability to correct for error during a movement, the ability

to learn from that error, and the ability to retain the resulting motor memory.
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4 ENCODING OF ACTION BY THE PURKINJE

CELLS OF THE CEREBELLUM

We showed in Chapter 3 that anodal transcranial direct current stimulation of the

cerebellum, a stimulation technique that is thought to increase neuronal excitability,

leads to faster learning of a novel motor task. In addition, we found that

error-sensitivity is down-regulated when cathodal cerebellar stimulation is used.

Our results, therefore, suggest a role for the cerebellum in manipulation of

error-sensitivity.

However, to understand the mechanisms involved in modulation of

error-sensitivity and its role in adaptation, it is useful to go beyond behavior and

identify the neural substrates responsible for motor learning in the cerebellum.

However, the storage of motor memories in the cerebellar circuitry has remained

elusive since a clear encoding of movement kinematics has not been demonstrated.

Previous results has conclusively demonstrated that execution of accurate

movements depend critically on the cerebellum. In this chapter, we focus on the

simplest of all voluntary movements: saccades. These rapid eye movements have

been been shown to depend on the presence of an intact cerebellum, suggesting that

the primary output cells in the cerebellum, Purkinje cells (P-cells), likely predict

motion of the eye. Yet, this encoding has remained a long-standing puzzle: P-cells

show little consistent modulation with respect to saccade amplitude, or direction,

and critically, their discharge lasts longer than duration of a saccade.

In this chapter, we analyze P-cell discharge data from the oculomotor vermis

of behaving monkeys, and find that individual neurons increase or decrease their

activity during saccades. We then estimate the combined effect of these two
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populations via their projections on the caudal fastigial nucleus (cFN) and uncover

a simple-spike population response that precisely predicts the real-time motion of

the eye. Our results suggest that it is not the response of an individual Purkinje cell

that is responsible for encoding of saccade kinematics, but rather the combined

response of P-cells across a population.

We then take our results a crucial step further: when we organize the P-cells

according to each cell’s complex-spike directional tuning, the simple-spike

population response predicted both the real-time speed and direction of the saccade

multiplicatively via a gain-field. This suggests that the cerebellum predicts the

real-time motion of the eye during saccades via the combined inputs of P-cells onto

individual nucleus neurons. A gain-field encoding of simple spikes emerges if the

P-cells that project onto a nucleus neuron are not selected at random, but share a

common complex-spike property. Only using this hypothesized organization of the

cerebellum can we begin to understand the role of P-cell responses in motor learning

tasks.

4.1 Introduction

Previous studies have focused on bursting activity of Purkinje-cells (P-cells) during

saccades (Thier et al., 2000; Catz et al., 2005; 2008) and found no consistent

modulation with saccade amplitude (Ohtsuka and Noda, 1995; Helmchen and

Büttner, 1995) speed (Helmchen and Büttner, 1995; Thier et al., 2000; Kase et al.,

1980), or direction (Ohtsuka and Noda, 1995). A recent simulation (Gad and

Anastasio, 2010) suggested that P-cells that pause during saccades may be

important in understanding the responses observed in the deep cerebellar nucleus

neurons. The main puzzle that we wished to tackle was how the P-cells encoded the

real-time motion of the eye.
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4.2 Materials and Methods

We analyzed data from n = 72 Purkinje cells in the oculomotor vermis of 5 rhesus

monkeys as they made saccades to visual targets.

4.2.1 The dataset

The data set included Purkinje-cell (P-cell) discharge from the oculomotor vermis

(OMV) in 5 rhesus monkeys (Macaca mulatta; males; 5.0-7.4kg; monkeys B, F, W,

K, and KO). These data were collected during two previous studies (Kojima et al.,

2010; Soetedjo et al., 2008). A scleral search coil was surgically implanted into one

eye of each monkey, allowing measurement of eye kinematics via standard

techniques (Fuchs and Robinson, 1966). Following recovery from surgery, the

monkeys were trained to make saccades to visual targets (less than 0.4◦ in diameter)

in a dimly lit room. The targets appeared within 25◦ of center. Monkeys were

rewarded with applesauce for keeping their eyes within a virtual window which

extended ±3◦ in both the horizontal and vertical directions about the target. After

the monkeys were trained to saccade to a single target, they were trained to make

saccades between successively presented targets.

Once the monkey could reliably track the targets for an extended period of

time, a recording chamber was implanted on the midline of the cerebellum (14.5mm

posterior of the interaural axis and directed straight down), providing access to the

OMV. Single-unit activity was recorded with homemade tungsten electrodes with

an iron-particle coating (100kΩ impedance at 1kHz). The position of the electrode

for each recording was measured with respect to the center of the recording

chamber, providing approximate coordinates of each P-cell within OMV. We

recognized OMV by observing saccade-related changes in background activity. An

isolated unit was classified as a P-cell if it produced a complex-spike (CS), which
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was identified online as a positive action potential with multiple wavelets. We

focused our recordings on units which showed a saccade-related change in

simple-spike activity in at least one direction (a burst, pause, or a combination of

the two). Saccade activity was assessed while the monkey made 15◦ saccades from

the central fixation point to one of eight targets spaced at 45◦ intervals.

Neurophysiology data was sampled at 50kHz by a Power 1401 digitizer

(Cambridge Electronic Design, Cambridge, UK) and subsequently band-pass filtered

between 30Hz and 10kHz. The location of the eye, as measured by the scleral search

coil, was sampled at 1kHz. Data were displayed in real-time on a computer monitor

running Spike2 and saved for offline analysis (Soetedjo and Fuchs, 2006).

We performed spike-sorting to isolate the simple-spike activity of each P-cell.

The timing of each simple-spike was identified and subsequently down-sampled to

1kHz to coincide with the timing of the behavioral recordings. We identified

saccades via an absolute velocity threshold, marking onset of the saccade as the

time when the speed of the eye exceeded 20◦/s. The end of the saccade was

similarly defined as the time when speed fell below 20◦/s. Trials in which the

monkey moved its eyes in the wrong direction (> 90◦ with respect to the target), or

trials in which the error at the endpoint exceeded 15◦, were removed from the

analysis (4.6% of all trials). The peak speed for each saccade was determined as the

maximum magnitude of the velocity vector in the direction of the presented target.

To convert the simple-spikes of the P-cells into firing rates, we computed the

inter-spike interval between two consecutive spikes, and then replaced the period

between these two spikes with a box-car of magnitude equal to the reciprocal of the

interval. We smoothed the resulting time-sequence with a normalized Gaussian of

2.5ms standard deviation (integral one), and then used this rate function to

compute the mean and peak firing rate of the cell during the saccade period. The

peak firing rate is the mathematical maximum of the firing rates during the saccade
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period, for both pause and burst cells. We use the term “firing rate” to refer to this

instantaneous rate, and quantify it using units of Hertz (Hz).

4.2.2 Statistical analysis

Statistical analyses were conducted in R (R-project, Vienna, Austria). To assess the

relationship between two variables we report Pearson’s R2 coefficient as well as the

results of a repeated measures analysis of variance (RM-ANOVA). If the data used

for an RM-ANOVA failed the test for sphericity, we report the Greenhouse-Geisser

corrected statistics. Paired sample t-tests were used to assess differences in response

characteristics as a function of direction (CS-on/off). In cases where we used

independent samples t-tests, we also assumed unequal variances between the two

groups. All tests were two-sided with a significance level of 0.05, unless otherwise

noted.

4.2.3 Complex-spikes

After we had identified a P-cell that exhibited phasic changes in simple-spike

activity during a saccade, we identified the cell’s preferred complex-spike direction,

termed CS-on. To do so we induced errors at the end of a saccade and recorded the

resulting complex spikes in the P-cell. To induce errors, we used the intra-saccadic

step paradigm (McLaughlin, 1967), blanking the original target during execution of

the saccade and replacing it with another target so that at saccade termination the

eyes appeared to miss the target by approximately 5◦, as illustrated in Fig. 4.3A.

The monkey began by fixating the central point. The central point disappeared and

a target appeared at either 12◦ or 15◦ in one of 8 directions (spaced at 45◦

intervals). During the execution of the saccade to the target (when the eye velocity

exceed 70◦), the target was back-stepped by 5◦ relative to the original target. As a

result the saccade over-shot the target, resulting in an error of approximately 5◦. A
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second presentation of this intra-saccadic step paradigm in the opposite direction

brought the monkey’s eyes back to the central fixation point. For each monkey, we

collected more than 30 trials in each direction. We counted the number of

complex-spikes in the 50-200ms period following termination of the first (primary)

saccade. The back-step direction (error direction) which elicited the highest

probability of complex-spikes was classified as the CS-on direction (Fig. 4.3B).

The paradigm that we used for identifying the error vector that produced the

highest probability of complex-spikes (i.e., CS-on direction) suffered from the

short-coming that saccade direction and error direction were 180◦ apart. Therefore,

we examined whether probability of CS was dependent only on the direction of

error, or whether it was also affected by the saccade direction that preceded that

error (Soetedjo and Fuchs, 2006). To dissociate these two variables, for n = 39 cells

we systematically varied both error and saccade directions. An example of this is

shown for a cell in Fig. 4.3C. This cell (N1) had a high probability of complex-spikes

when the error vector was -45◦, regardless of whether the primary saccade was at

direction of error+0◦, or direction of error+180◦. Similarly, the cell had a low

probability of complex-spikes when the error vector was +135◦, regardless of whether

the primary saccade was at direction of error+0◦, or direction of error+180◦.

Across the population of n = 39 cells probability of complex-spikes was

modulated by direction of the error vector, but not the direction of the saccade

(Fig. 4.3D): two-way RM-ANOVA showed a main effect of error direction (p < 10−4)

but no effect of saccade direction (p > 0.5).

For n = 39 cells we were able to maintain excellent isolation of the P-cell

throughout the recording period. For these cells, we manually identified a subset of

complex-spike waveforms which served as a template for matching against all other

complex-spikes during the recording. Using a Gaussian mixture model, we

determined the presence/absence of a complex-spike in 30ms overlapping windows,
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providing us with the onset of a complex-spike with millisecond resolution. Looking

at the same period (50-200ms following the primary saccade), we were able to

construct an estimate of the probability of observing a complex-spike as a function

of the angle between the endpoint of the primary saccade and the back-stepped

target with better than 45◦ resolution (Fig. 4.6D, brown). For the remaining n = 33

cells, we used the manually identified CS-on direction for all analyses.

The data sets that we analyzed were collected under two slightly different

experimental protocols (Soetedjo et al., 2008; Kojima et al., 2010). In all cases, we

focused our analysis on the simple-spike related activity of the primary saccade

rather than changes in activity due to adaptation or complex-spikes. For n = 16

units, we presented primary targets in either the CS-on or CS-off direction and then

pseudo-randomly modified the magnitude of the intra-saccadic step (ranging from

-9◦ to +9◦). Because the direction of intra-saccadic step (backwards, forwards, or no

back-step) was randomized, the saccade to the presented target did not undergo

adaptation. For the remaining cells, we asked the monkey to make primary saccades

whose magnitude was either approximately 15◦ or 25◦. Approximately 20 trials in

both the CS-on and CS-off directions were presented without an intra-saccadic step

(0◦). After this block, we induced saccade adaptation in both the CS-on and CS-off

directions by consistently stepping the target inwards (5-11◦). We did not observe a

qualitative difference between the population response for those saccades during the

adaptation period and those during the stationary period (changes in eye velocity

during adaptation coincided with changes in the magnitude of the population

response). We therefore elected to use data from all saccades.

4.2.4 Population response

About 50 P-cells synapse onto a single neuron in the caudal fastigial

nucleus (Person and Raman, 2012). The P-cells that project onto a single cFN
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neuron may be organized by their inputs from the inferior olive (De Zeeuw et al.,

2011; Kojima et al., 2011). In this scenario, the olive projections divide the P-cells

into clusters where each cluster of P-cells projects onto one cFN neuron. We

therefore made the assumption that P-cells that projected onto a cFN neuron

shared a critical feature: they had the same CS-on direction (Fig. 4.5A). We

computed what a typical cFN neuron would receive from this population of P-cells

by estimating a population response.

A recent study had shown that each simple-spike induced by the presynaptic

firing of a P-cell influenced the post-synaptic cell in the deep cerebellar nucleus by

producing an inhibition that had a 2.5ms time constant (Person and Raman, 2012).

We therefore convolved the simple-spike train of each recorded P-cell with a

normalized (i.e., integral of one) Gaussian of 2.5ms standard deviation. In all

figures, we dissociate this quantity from the measurement of firing rate computed

via the inverse of the inter-spike interval by using units of Hz to quantify firing

rates, and units of spikes/second to quantify population response.

We calculated the population response by a bootstrapping procedure in

which we sampled at random n = 50 P-cells (with replacement) from our population

of recorded neurons. In our recorded sample, we had roughly equal numbers of

bursting (n = 39) and pausing (n = 33) cells. Therefore, in our bootstrapped

population of 50 cells, we also had roughly equal numbers of bursting and pausing

cells (27.1 ± 1.9 bursting cells, mean ± SD). As the bursting and pausing

populations had different saccade-related response profiles, standard error of the

mean would result in a significant over-estimation of the variance of the population

response that would be experienced at a nuclear neuron. We therefore elected to

bootstrap 50 different populations of 50 randomly chosen P-cells. The standard

error bars in these plots represent mean ± SEM across bootstrapped samples.
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4.3 Results

We analyzed simple-spike activity of 72 oculomotor vermis (OMV, cerebellar lobules

VI and VII) P-cells from five monkeys during saccades. Our population included

cells that exhibited increased activity (bursting; n = 39, Fig. 4.1A) or decreased

activity (pausing; n = 33, Fig. 4.1B). Consistent with previous reports (Helmchen

and Büttner, 1995; Thier et al., 2000; Catz et al., 2008), the majority of the neurons

were poorly modulated by saccade amplitude (Fig. 4.1C, and Fig. 4.2). However,

the mean firing rate of burst cells (but not pause cells) increased significantly with

saccade peak speed (Fig. 4.1D, p < 10−10). Previous work had demonstrated that

the population response encoded additional saccade-related information that was

not reliably present in the responses of individual neurons (Thier et al., 2000; Dash

et al., 2013; Prsa et al., 2009). To examine the population response, we measured

change in firing rates (from baseline) for the bursting and pausing cells during slow

(400◦/s) and fast (650◦/s) saccades (Fig. 4.1E), pooled across all directions. The

onset of change in firing rates in both populations generally led saccade onset by

more than 50ms. The termination of activity was also significantly later than the

saccade: a 650◦/s saccade was 38 ± 1.2ms in duration (mean ± SEM), whereas

activity of burst and pause cells persisted for a more than 100ms. Given that the

cerebellum is thought to play a critical role in termination of ipsiversive

saccades (Fuchs et al., 1993; Robinson et al., 1993), how can P-cells be involved in

controlling the eye if their activity persists so much longer than the saccade?

4.3.1 P-cell population response predicts saccade speed

P-cells project to the caudal fastigial nucleus (cFN), where about 50 P-cells

converge onto a cFN neuron (Person and Raman, 2012). For each P-cell we

computed the probability of a simple-spike in 1ms time-bins during saccades of a
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Figure 4.1: A population of burst and pause P-cells together predict eye speed in real-
time. Perisaccade histograms for a bursting A and pausing B P-cell during saccades
of various speeds and directions (red arrow). The trace on the top row is saccade
speed. The gray arrow indicates saccade end. C and D. Mean firing rates over the
duration of saccade computed across all directions. Changes in speed produced an
increase in the firing rate of the burst cells but not the pause cells. E. Change in firing
rates (with respect to baseline) of the bursting and pausing P-cells for two saccade
speeds. Gray bars are onset and termination of the saccade (width is SEM). F. The
total rate of simple-spikes produced by a random selection of 50 P-cells.
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given peak speed, averaged across all directions. We then chose 50 P-cells at

random and computed the total number of simple-spikes generated by the

population at each millisecond of time, resulting in an estimate of the rate of

presynaptic spikes converging onto a cFN cell. The results (Fig. 4.1F) revealed a

real-time encoding of the speed of the eye: the peak of the activity preceded peak

speed, increased in magnitude when speed increased, and returned to baseline just

before saccade termination (R2 at the optimal delay, 400 ◦/s: R2 = 0.52, p < 10−22;

650 ◦/s: R2 = 0.62, p < 10−43). It appeared that the simple-spikes of the pause and

burst cells combined together to predict motion of the eye.

Let us hypothesize that the P-cells that project to a nucleus neuron are not

selected randomly, but are organized by their inputs from the inferior olive (De

Zeeuw et al., 2011). That is, suppose that the olive projections divide the P-cells

into clusters where each cluster of P-cells projects onto a single nucleus neuron. The

input from the olive produces complex-spikes (CS) in the P-cells. We found that if

we organized the simple-spikes of the P-cells based on each cell’s CS properties,

additional features of the population activity were unmasked.

We measured CS properties of each P-cell by inducing a post-saccadic error

through displacement of the target during the saccade, and then measured the

probability of CS as a function of the direction of this error (Fig. 4.3, also

Section 4.2.3). For each P-cell, the direction of error that produced the largest

probability of a CS during the 50-200ms post-saccade period was labeled as CS-on,

and the opposite direction was labeled as CS-off9 (Fig. 4.4). We then made the

assumption that the P-cells that projected onto a nucleus neuron all had the same

CS-on direction (Fig. 4.5A). Under this assumption, we computed the rate of

presynaptic simple-spikes that a nucleus neuron would receive from the cluster of

P-cells (see Section 4.2.4). We did this by convolving each P-cell simple-spike train

with a 2.5ms standard-deviation normalized Gaussian, approximating the temporal
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probability of a CS as a function of the direction of the error vector. For this neuron,
the highest probability (CS-on) occurred when the error vector was in direction -45◦.
Direction of CS-off for this cell was 135◦.

characteristics of the inhibition produced in the nucleus neuron due to a

simple-spike in the P-cell (Person and Raman, 2012; Telgkamp et al., 2004).

Fig. 4.5B shows the change in population response from baseline when a

saccade was made in the same direction as CS-off. The response rose above baseline

before saccade onset, peaked prior to peak speed, and then returned to near

baseline. The peak response scaled robustly with saccade amplitude (Fig. 4.5C,

R2 = 0.93, p < 10âĂŚ5). We observed a strong correspondence between the real-time

population response and the real-time speed (lower plot of Fig. 4.5D, Fig. 4.7). The

population response led eye speed by an average of 21.2 ± 0.4ms (correlation

analysis in the CS-off direction, mean ± SEM). Peak population response precisely
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predicted peak speed (Fig. 4.5E, R2 = 0.98, p < 10âĂŚ7).

We took advantage of natural variability in saccades to further test the

relationship between the population response and speed. We sorted all 10◦ saccades

(direction CS-off) according to peak speed (Fig. 4.5F) and found that despite the

constant amplitude, the population response precisely predict the actual peak speed

of the eye (Fig. 4.5G, R2 = 0.96, p < 10âĂŚ7).
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Figure 4.5: A cluster of P-cells, organized by their complex-spikes, produced a pop-
ulation response that predicted in real-time the motion of the eye. A. Hypothesized
organization of the oculomotor vermis. To compute a population response, we mea-
sured the simple-spikes of each P-cell as a function of saccade direction with respect
to the CS-on direction of that cell. For the P-cells shown here, the CS-on is an error
vector to the left (arrow). B. Change in population response (with respect to baseline)
as a function of saccade amplitude in 0.5◦ bins, for saccades in the CS-off direction.
Data in the amplitude axis were smoothed by a first-order Savitzky-Golay filter with
a width of 3 bins (Thier et al., 2000). Bottom plot shows the population response for
three representative amplitudes. C. Peak population response increased linearly with
saccade amplitude. P-values indicates significant linear correlation. D. Population
response as a function of saccade peak-speed. Bottom plot shows representative re-
sponses with their corresponding speed traces. E. Peak population response increased
linearly with saccade peak-speed. F. Population response for 10◦ saccades (±1◦), as a
function of saccade peak-speed. Bottom plot shows the population response for slow,
medium, and fast saccades of 10◦ amplitude. G. Peak population response increased
linearly as a function of peak-speed even for a fixed magnitude saccade. Error bars
are SEM.

4.3.2 P-cell responses, organized by error, predict saccade

kinematics as a gain-field

Therefore, when the simple-spikes were organized according to each cell’s CS

directional preference, the population response for saccades of constant direction

predicted nearly all of the variability in saccade peak speed. No previous work, to

our knowledge, had revealed how direction of a saccade is encoded in the activity of

P-cells. For the burst and pause cells, the mean and peak firing rates during the

saccade did not vary as a function of direction (Fig. 4.8). However, organizing the

population response according to each P-cell’s CS tuning preference revealed a clear

encoding of direction: the peak response was greater if the saccades were in the

same direction as CS-off as compared to CS-on (Fig. 4.6A, t-test p < 10−16).

Indeed, the peak population response rose linearly as a function of peak speed in

both directions, but with a larger gain when the saccade direction was congruent

with CS-off (Fig. 4.6B, RM-ANOVA with main effects of peak-speed, p < 10−15;
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CS-direction p < 10−7; and a speed by CS-direction interaction, p < 10−15).

To more closely examine the effects of saccade direction, we plotted the

population response across saccade directions with respect to CS-on (Fig. 4.6C). We

found that the population response was highest for saccades made in the CS-off

direction, with an encoding of direction that resembled a cosine function (Fig. 4.6D).

That is, when we organized the P-cells into clusters in which each cluster was

composed of bursting and pausing cells (54% burst cells), all with a common CS-on

direction (Fig. 4.5A), and then computed the population response, i.e., an estimate

of the rate of simple spikes that converged onto a single cFN neuron during a

saccadic eye movement. We found that when the saccade was in direction CS-off,

the peak population response correlated near perfectly with peak saccade speed at

R2 = 0.98 (Fig. 4.5E). When the saccade was in direction CS-on, the peak

population response also correlated near perfectly with peak saccade speed at

R2 = 0.99 (p < 10−8) (Fig. 4.6B). A change in saccade direction altered the gain

relating the population response to saccade speed (Fig. 4.6D): the gain was lowest

when the saccade was in direction CS-on, and highest when the saccade was in

direction CS-off. These results suggested that the P-cells, clustered by their CS-on

direction, as a population produced simple spikes that were related to the real-time

motion of the eye via a gain-field:

s(t) = |ẋ(t + ∆)| [a cos(θ − θCS) + b] + c (4.1)

In this equation, s(t) is the rate of simple spikes, ẋ is the magnitude of the eye

velocity vector at time t + ∆, a is a scaling factor, θ is saccade direction, θCS is the

direction of CS-off for that cluster of P-cells, and b and c are baseline offsets. The fit

of this equation to the measured data (real-time motion of the eye vs. real-time

population response, t = -100ms to +150ms with respect to peak saccade speed, for
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Figure 4.6: Population response of P-cells predicted saccade speed and direction
in real-time as a gain-field. A. Population response for saccades in direction CS-on
and CS-off. The population response is larger when the saccade is in the CS-off
direction. B. Peak population response grew linearly with saccade speed, but had a
higher gain for saccades in CS-off direction. C. Real-time population response as a
function of saccade direction relative to CS-on. Data smoothed as in Fig. 4.5B. D.
Peak population response (labeled as simple-spikes) as a function of saccade direction
with respect to CS-on. Brown curve shows probability of observing a complex-spike
as a function of the angle relative to each neuron’s CS-on. Black curve indicates
cosine fit of probability of CS. E. Gain-field encoding by a cluster of P-cells whose
CS-off direction is to the right (Eq. 4.1). F. Contribution of single P-cells to the
population response. A change in direction coincides with a shift in timing of the
pause cells. Error bars are SEM.
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saccades in directions CS-on and CS-off, and peak speeds of 400-650 deg/s, binned

by 25 deg/s) was highly significant (R2 = 0.80, p < 10−5), resulting in the following

parameter values: a = 0.37 spk/deg, b = 1.88 spk/deg, c = 2588 spk/s with a time

lead of ∆ = 19 ms. The resulting gain-field encoding of eye motion is depicted in

Fig. 4.6E.

4.3.3 Individual Purkinje cells do not predict saccade kine-

matics

In contrast to organizing the P-cells into clusters and computing a population

response, we also attempted to relate activity of single cells to motion of the eye.

With this approach we found that the mean activity of the individual pause cells

did not vary with saccade speed (Fig. 4.1D, p > 0.20), and mean activity of the

individual pause cells did not vary with saccade direction (Fig. 4.7A, p > 0.4).

Mean activity of the burst cells increased with saccade speed (Fig. 4.1D, p < 10−10),

but mean activity of the burst cells did not vary with direction (Fig. 4.7A, p > 0.4).

Therefore, consistent with previous reports (Ohtsuka and Noda, 1995; Kase et al.,

1980), we could not detect an encoding of direction in the peak or mean activity of

individual cells. If the mean or peak response of the individual cells did not vary

significantly with direction, how did the population response produce an encoding of

direction (i.e., the cosine tuning)? We found that a change in saccade direction

produced a subtle shift in the timing of the discharge in the pause cells (Fig. 4.6F).

The pause in these cells occurred earlier when the saccade was in the CS-on

direction, and later when the saccade was in the CS-off direction. In contrast, the

burst timing was not dependent on saccade direction. As a result, the population

response exhibited a smaller gain when the saccade was in direction CS-on, and a

larger gain when the saccade was in direction CS-off (Fig. 4.6B). We next asked how

well the population of P-cells, clustered by their complex spike properties, predicted
114



the real-time speed of the eye. According to Eq. 4.1, if we consider the data across

all directions, using the measured population response we should be able to predict

the actual motion of the eye:

|ˆ̇x(t + ∆)| = 1
b

[s(t) − c] (4.2)

In the above equation, ˆ̇x(t + ∆) is the predicted real-time speed of the eye. The

parameters b and c were identical to those determined in Eq. 4.1. Using Eq. 4.2 we

plotted the predicted real-time motion of the eye (Fig. 4.8A, saccades with peak

speeds of 400, 525, and 650 deg/s). The predicted motion led the actual motion by

+19ms, and was highly correlated with the actual motion (data for all saccades

ranging from 400-650 deg/s, binned by 25 deg/s, R2 = 0.74, p < 10−5). Of

particular importance was the fact that the predicted speed not only rose above

baseline before saccade onset, it returned to below baseline before the end of the

saccade. That is, the population response predicted in real-time the motion of the

eye, and therefore could play a central role in controlling that motion, particularly

in terminating the saccade.

We next asked whether individual neurons could predict the real-time speed

of the eye. For each recorded cell, we fitted the parameters in Eq. 4.2 for all

saccades from 400-650 deg/s in 25 deg/s bins, leading to three parameter estimates

for each neuron (b, c, and ∆). We found that after finding the best fit for each

neuron, the predicted eye speed did not return to baseline until long after saccade

termination (Fig. 4.8B). Across the neurons, the average delay was not significantly

different than zero (two-sided t-test, p > 0.5), indicating that when we used

individual cells, rather than the population, the predicted motion did not lead or lag

the real-time actual motion of the eye. The mean squared error (MSE) for

individual neurons was 245% (±10%) of the MSE achieved by the population
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response. That is, the real-time motion of the eye predicted by individual neurons

was much poorer than the population estimate.

We next considered whether a population composed entirely of either burst

or pause cells could predict the real-time motion of the eye. We fitted Eq. 4.2 to the

mean activities of the burst and pause cells, and plotted the results in Fig. 4.8C and

Fig. 4.8D. For the population composed entirely of burst cells, the predicted speed

led the actual speed by +11ms, but critically did not return to baseline until long

after saccade termination (Fig. 4.8C). The mean squared error for this bursting

population was 146% of the MSE achieved by the population response composed of

both bursting and pausing cells. A population consisting solely of pausing cells

predicted that speed followed the actual speed by 9ms (that is, the best fit was a

lag, not a lead). Similar to the exclusively bursting population, the predicted speed

did not return to baseline until long after saccade termination (Fig. 4.8D). The

mean squared error for pausing population was 162% of the MSE achieved by the

population response which included all cells.

Therefore, our results suggest that the combined activity of burst and pause

cells, but not the activity of either population individually (Fig. 4.8), aligned to

CS-off, produced a population response that exhibited gain-field encoding: the

magnitude of the population response increased linearly with speed, and was cosine

tuned in direction, with a multiplicative interaction between speed and direction.

How did the activity of individual cells within the burst and pause clusters

produce this directional encoding in the population response? The main

contributors were the pause cells, which started their pause approximately 10ms

earlier when the saccade was in the CS-on direction (Fig. 4.6F), a change which was

independent of saccade speed (Fig. 4.10). This subtle shift in the timing of spikes

produced an increase of the population response when saccade direction changed

from CS-on to CS-off (Fig. 4.6A).
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Figure 4.8: Mean and peak/trough firing rates of the burst and pause cells were
poorly modulated by saccade direction. A. Maximum, minimum, and mean firing
rates averaged across burst or pause cells with respect to saccade direction, relative
to CS-on direction of each cell. B. Mean firing rates of the burst and pause cells,
as measured across all saccades, were not significantly different for saccades in the
CS-on vs. CS-off direction (burst p > 0.10, pause p > 0.05). C. Mean firing rates
of the burst and pause cells as a function of saccade speed, for saccades in the CS-
on versus CS-off direction. Saccade speed modulated mean firing rates of the burst
cells, but there were no significant interaction between saccade direction and speed
(p > 0.6), nor a significant effect of saccade direction (p > 0.7). D. Peak (maximum)
firing rates of the burst cells and the minimum firing rate of the pause cells as a
function of saccade speed, for saccades in the CS-off and CS-on directions. We asked
whether the maximum response of the burst cells or the minimum response of the
pause cells was significantly modulated by direction. Separate RM-ANOVAs showed
that for the burst cells, peak activity increased as a function of saccade peak speed
(p < 0.001), but this relationship was unaffected by saccade direction (p > 0.4). For
the pause cells, the response was not affected by saccade speed (p > 0.6), and this
relationship was not modulated by saccade direction (p > 0.4). In summary, we found
that saccade direction did not significantly alter the encoding of peak speed in either
the mean or minimum/maximum activity of P-cells.
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Figure 4.9: Population of P-cells, organized by their complex spike properties, pre-
dicted the real-time speed of the eye better than activity of individual cells. A. We
employed Eq. 4.2 and used the measured population response of P-cells to predict the
real-time speed of the eye . The plot shows the predicted speed for saccades of 400,
525, and 650 deg/sec. The predicted speed led the actual speed by 19ms. MSE is the
mean squared error between the predicted and actual eye trajectory at the optimal
value of ∆. B. The result of fitting Eq. 4.2 to the response of individual neurons. C.
The result of fitting Eq. 4.2 to the discharge of a population composed exclusively of
burst cells. D. The result of fitting Eq. 4.2 to the discharge of a population composed
exclusively of pause cells.
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Figure 4.10: Change in saccade direction was associated with a change in the timing
of the reduction of discharge in the pause cells, i.e., pause onset (see Fig. 4.6F). A.
Timing of pause onset with respect to saccade onset for saccades of various speeds
and directions. We computed the pause onset as the time when the neuron’s response
reached 20% of its minimum response. Positive numbers indicate that the pause onset
occurred before saccade onset. B. Within neuron measure of pause onset for saccade
in direction CS-on, minus onset from saccades in direction CS-off. Negative numbers
indicate that the pause onset occurred earlier for saccades in the CS-on direction.
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4.3.4 Anatomical distribution of Purkinje cells supports pop-

ulation hypothesis

We found that the anatomical distribution of P-cells, as labeled by their CS-off

direction, was not random, but lateralized (Soetedjo et al., 2008) (Fig. 4.11),

confirming previous anatomical studies suggesting that olivary projections are

contralateral (Yamada and Noda, 1987; Kralj-Hans et al., 2006). P-cells with

rightward CS-off were more likely to be on the right side of the cerebellum (t-test,

p < 10−4). This indicates that saccades made in the same direction as CS-off were

typically ipsiversive whereas saccades congruent with CS-on were contraversive. In

contrast, pause and burst cells were uniformly distributed across the cerebellum

(p > 0.4).

Our results rely critically on our hypothesis that P-cells organize into

clusters with roughly equal number of pause and burse cells, all with a common

complex-spike tuning preference (Fig. 4.5A). If, contrary to our hypothesis, pause

and burst cells organized into separate clusters, the population response would not

predict the real-time motion of the eye (Fig. 4.1E). Similarly, if each cluster was not

composed of roughly equal number of pause and burst cells, the population response

could not predict the real-time speed of the eye (Fig. 4.12, Section 4.4.1). The fact

that burst and pause cells were distributed uniformly across the recording locations,

and not lateralized as we found with the CS tuning properties, suggests that a

cluster is composed of both burst and pause. Finally, if we ignored the CS

properties of the P-cells, and made the typical assumption that simple-spikes were

sufficient to uncover the coordinate system of encoding motion, then the gain-field

representation of speed and direction would disappear (Fig. 4.13, Section 4.4.2).

In summary, organizing the P-cell into clusters where all the cells shared a

common complex-spike property resulted in simple spikes that encoded speed and
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Figure 4.11: CS-dependent organization of the P-cells. A. Hypothesized anatomical
organization of the oculomotor vermis (OMV). Bursting and pausing P-cells are or-
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were more probable on the left side of the cerebellum. P-cells with CS-off to the right
were more probable on the right-side of the cerebellum. D. Pause (red) and burst
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direction in real-time via a gain-field.

4.4 Discussion

In summary, the population of P-cells, clustered by their CS-on direction, produced

simple spikes that predicted the real-time motion of the eye. In this encoding, the

speed and direction of the motion of the eye were multiplicatively encoded via a gain

field, with the gain being largest for when the eye moved toward CS-off, and lowest

for when the eye moved toward CS-on. Neither individual neurons, nor populations

that exclusively included burst or pause cells, predicted the real-time speed of the

eye with the accuracy of a population which combined these two cell types.

Our results have broad implications regarding function and organization of

the cerebellum. During saccades, the transformation of efference copy (via mossy

fibers) into prediction of kinematic state, a concept termed a forward model, does

not occur in the individual P-cells, but via combined activity of burst and pause

P-cells that produce inhibition at the deep cerebellar nucleus. It is this inhibition

produced by the combined activity of both groups of P-cells that predicts the

motion of the eye during a saccade via a gain field, multiplicatively encoding speed

and direction of movement. Therefore, our results demonstrate that the forward

model, a theoretical concept central to conductance views of motor control, and

often hypothesized to depend on the cerebellum, (Xu-Wilson et al., 2009; Izawa

et al., 2012; Miall and Wolpert, 1996), is represented during a saccade not in the

activity of individual P-cells, but in the population activity that converges onto the

cells in the deep cerebellar nuclei.

This encoding of movements is present only if there is a specific anatomical

organization in the cerebellum: the projections from P-cells to nucleus neurons are

not random, but likely organized by the complex-spike properties of the P-cells.
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That is, a nucleus cell receives projections from P-cells that share the same

complex-spike field.

4.4.1 The importance of bursting and pausing cells in the

population

The proportion of bursting and pausing cells in our data set were approximately

equal (n = 39 bursting, n = 33 pausing), resulting in 54% burst cells. However, two

previous reports suggested that there may be a higher concentration of bursting

cells in the OMV (Ohtsuka and Noda, 1995; Helmchen and Büttner, 1995). Both

reports found that bursting neurons comprised approximately 70% of all cells in

OMV. Therefore we asked if changes in the ratio of bursting to pausing P-cells

would significantly alter our primary result that the population activity of OMV

predicted eye velocity.

We performed the same analysis as in Fig. 4.5D, in which we estimated the

population response, but rather than choosing 50 neurons randomly from our pool

of 72 neurons, we always chose 35 bursting cells and 15 pausing cells (corresponding

to 70% bursting in the population). We found that our primary result was robust to

this modest change in ratio of bursting to pausing cells. That is, when 70% of the

population was chosen to be bursting neurons, the peak response scaled linearly with

the peak velocity of the saccade (R2 = 0.94, p < 10−6). Importantly, the timing of

the population response waveform remained tightly coupled with saccade kinematics

in that the response returned to near zero at saccade termination (Fig. 4.12).

However, this tight coupling of the population response and saccade speed

disappeared if the population of P-cells was composed of a super majority of

bursting or pausing cells. To illustrate this, we estimated what the population

response by simulating populations that had differing proportions of burst and

pause cells. The resulting population responses under the assumption that the
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Figure 4.12: The population response was sensitive to the fraction of pause and burst
cells that composed a cluster of P-cells. In our data set, 54% of the population was
composed of burst cells. We computed the population response under the assumption
that the membership of a cluster was 54% burst cells. Here, we tested how sensitive
the population response was to this membership ratio. The vertical lines indicate
saccade onset and offset for all saccades pooled across direction and speed. As the
percentage of burst cells in the cluster becomes larger than 70%, or smaller than 50%,
the population response no longer returns to baseline at saccade offset.

population is composed entirely of bursting cells (100%), or 90% bursting, or 50%

bursting, or 0% bursting (i.e., entirely pausing) are plotted in Fig. 4.12. We found

that as the membership within the population became highly skewed toward

bursting or pausing, the population response no longer returned to zero at saccade

termination. Therefore, the ability of the population to predict in real-time the

speed of the eye was present only if the composition of the P-cells that converged

onto a single cFN neuron (i.e., a P-cell cluster) included roughly equal number of

pausing and bursting cells.
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4.4.2 The importance of organizing the P-cells via their complex-

spike properties

How critical is our assumption that each cluster is composed of P-cells that all share

a similar complex-spike field? The traditional approach to measure population

activity is to organize the cells based on their simple-spike activity, where for each

cell the “preferred direction” is computed as the direction of action for which the

cell shows the greatest simple-spike firing rate. This kind of analysis effectively

assumes that the P-cells organize into clusters in which the cells share the same

preferred direction of saccade, where preferred direction is measured via the rate of

simple-spikes (Fig. 4.13A). Let us consider the consequences of this hypothesis.

We estimated the preferred direction of P-cells in two ways. First, we defined

the preferred direction of each neuron as the direction which elicited the largest

mean simple-spike firing rate during the saccade (max response). We then computed

the population response for saccades of various speed (Fig. 4.13B). We found that

the population response was no longer modulated by saccade speed (p > 0.3).

Next, we calculated the preferred direction as the saccade direction in which

there was the largest change in the magnitude of the simple-spike firing rate (max

modulation). For bursting cells, this was the direction which elicited the largest

mean simple-spike firing rate during the saccade. For pausing cells, this was the

direction which featured the lowest simple-spike firing rate response (i.e., the

direction of the largest pause). We then computed the population response for

saccades of various speeds in this preferred direction (Fig. 4.13C). Again we found

that the population response was not modulated by the speed of the saccade

(p > 0.7). Therefore, when we organized clusters of P-cells based on their

simple-spike responses rather than their complex-spike responses, the population

response no longer encoded the speed of the saccade. An important limitation is
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that our cells were recorded one at a time, yet in computing the population response

we analyzed the data as if the cells were recorded simultaneously. Future work is

needed to confirm our observations with simultaneous multi-cellular recordings.

4.5 Conclusion

Together, our results suggest three principles of cerebellar function during control of

saccadic eye movements. First, the cerebellum predicts real-time motion not in the

time-course of individual P-cell simple-spikes, nor in the individual activities of the

bursting or pausing populations, but in the combined activities of these two

populations via the simple-spikes that converge onto cells in the deep cerebellar

nucleus. A similar population coding has been suggested during smooth

pursuit (Krauzlis, 2000). Second, this population input to each nucleus neuron

encodes direction and speed via a gain-field. Because a similar encoding has been

shown in the posterior parietal cortex during saccades (Andersen et al., 1985), as

well as in the motor cortex during reaching (Paninski et al., 2004), our observation

in the cerebellum suggests a common principle of encoding in disparate regions of

the motor system. Finally, the gain-field encoding was present if we assumed a

specific anatomical organization: a cluster of P-cells that projected onto a single

nucleus neuron was composed of approximately equal numbers of bursting and

pausing P-cells, all sharing a common complex-spike property. Because the

complex-spikes of a P-cell are due to input from the inferior olive, the gain-field

encoding predicts that the oculomotor vermis is organized into clusters of P-cells

that share similar climbing fiber projections from the inferior olive. This in turn

suggests that motor memories are anatomically clustered in the cerebellum by the

errors that were experienced during movements (Herzfeld et al., 2014b).
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Figure 4.13: Gain-field encoding of saccade kinematics in the population response of
the P-cells disappeared if the P-cells were organized by their simple-spike activity. A.
In this analysis we assumed that a collection of 50 P-cells projected onto a single cFN
neuron, with the property that all the P-cells shared a similar simple-spike preferred
direction. Therefore, the cluster was organized based on the simple-spike properties
of the P-cells, not their complex-spike properties. B. The population response for
saccades made in the direction for which each P-cell showed the largest mean firing
rate (simple-spikes), for various saccade peak speeds. The peak population response
was not modulated with saccade speed. Error bars are boot-strap estimated SEM. C.
The population response for saccades made in the direction of maximal modulation.
For burst cells, this was the direction for which the P-cell showed the largest mean
firing rate, whereas for pause cells, this was the direction associated with the minimum
activity (largest pause). The peak population response was not modulated with
saccade speed when clusters were organized based on the direction of maximal simple-
spike modulation.
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5 CONCLUSIONS & FUTURE DIRECTIONS

Motor learning seeks to answer a fundamental question: how do we learn from

error? When a subject experiences an error during a motor task, they adapt their

next movement to compensate. Even when perturbations are random, trial-to-trial

changes in the motor output are still present (Marko et al., 2012; Izawa et al., 2008;

Donchin et al., 2003), demonstrating that on every movement the brain learns from

error.

Previous theoretical models of motor learning suggest that error-sensitivity,

which corresponds to the fraction of the error that the subject learns on the next

trial, is fixed both as a function of trial and as a function of error. That is,

regardless of the magnitude of the error that a subject experiences, that subject will

learn the same fractional amount of that error on the next trial. However, previous

results as well as our own experimental evidence suggests that this is not the

case (Marko et al., 2012; Fine and Thoroughman, 2006; Wei and Körding, 2009).

In Chapter 2, we suggest that the brain stores a previously unknown form of

motor memory: a memory of errors. Imagine that the brain makes a movement in

trial n, resulting in an error, e(n). The subject then updates their next motor

command, also resulting in an error, e(n+1). Given these two error signals, the brain

can evaluate whether the amount of adaptation (i.e., the level of error-sensitivity) is

appropriate for the error experienced in trial n. For instance, imagine that the

movement u(n) resulted in an undershoot of the target. If an updated movement,

u(n+1) also results in an undershoot, then the error-sensitivity associated with e(n)

needs to be larger. However, if u(n+1) resulted in an overshoot, then error-sensitivity

is too large and needs to be smaller.
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We show that human subjects use the history of prior errors to modulate

how much they are willing to learn from error. The simple computational rule that

governs manipulation of this error-sensitivity explains a host of previous motor

control results. In particular, our error-sensitivity hypothesis describes why subjects

learn faster following initial learning, savings. The model suggests that savings

occurs not because subjects recall the previous motor commands they produced

during initial learning, but rather recall the errors that they experienced, resulting

in higher error-sensitivity upon re-exposure. In addition, this model explains how

subjects are able to learn a perturbation faster than naïve even if they have never

experienced the motor commands required to compensate for the perturbation.

That is, the phenomenon of meta-learning can also be explained by a memory of

errors.

What region of the brain is responsible for maintaining this memory of

errors? In Chapter 3 we used non-invasive brain stimulation to manipulate the

process of learning a novel perturbation. We showed that positive (anodal)

stimulation of the cerebellum resulted in significantly faster motor learning of a

force-field perturbation. That is, when we increased the excitability of neurons in

the cerebellum, subjects tended to increase their error-sensitivity and learn the

perturbation faster. Conversely, when we applied negative (cathodal) stimulation of

the cerebellum, error-sensitivity decreased. Since cathodal stimulation has been

associated with reduced neuronal excitability, our results suggest that decreasing

the activity of neurons in the cerebellum results in lower error-sensitivity and

therefore slower motor learning.

We contrast these results with anodal and cathodal tDCS stimulation of the

primary motor cortex. Application of either anodal or cathodal stimulation did not

substantially alter the learning rate of subjects. Taken together, our results suggest

that the cerebellum is crucially responsible for determining error-sensitivity, and
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that the activity of cells within the cerebellum likely corresponds directly to how

much a subject is willing to learn from an error.

Our results, along with numerous previous results, provides a critical role for

the cerebellum in motor adaptation. Why has the neural basis of

cerebellar-dependent adaptation remained elusive? Much of the problem centers on

the role of Purkinje cells in the control of movement. Lesions and inactivations of

the cerebellum affect not only motor learning, but also accurate execution of

movements. These results lead to the hypothesis that the primary neurons of the

cerebellum should be related to movement parameters. However, decades of

recordings in the cerebellum do not provide compelling evidence that kinematics are

encoded in Purkinje cell firing rates. How can we begin to address the question of

motor adaptation, which entails a change in the encoding of movement kinematics,

without first identifying how Purkinje cells are affecting movements?

In Chapter 4, we provided a resolution to this problem: encoding of

kinematics is not present in the response of individual Purkinje cells, rather it is the

combined activity of populations of Purkinje cells via their projections to the deep

cerebellar nuclei that encodes movement parameters. Further, we suggest that the

subpopulation (micro-cluster) of neurons that project to an individual neuron in the

deep cerebellar nuclei are not selected at random, but rather share a common

preference for error via climbing fiber projections from the inferior olive. When the

cerebellum is organized in this fashion, a beautiful encoding of kinematics emerges.

Both the speed and direction of movement are encoded via a gain-field, which

appears to be a common type of encoding across multiple movement centers in the

primate brain. Using these results, we can begin to determine the neural substrates

of adaptation in the cerebellum.
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5.1 Future directions

The cerebellum is the key neural substrate for adaptation (Smith and Shadmehr,

2005; Criscimagna-Hemminger et al., 2010; Donchin et al., 2012) suggesting that the

responses of the major output neurons of the cerebellum, Purkinje cells, should

reflect the changes in movement that occur following an error. Classical theories of

cerebellar learning are based on three fundamental principles (Medina and

Lisberger, 2008). First, when a movement occurs and the result is an error, that

error is transmitted to the cerebellum via climbing fiber projections from neurons in

the inferior olive (Gilbert and Thach, 1977), resulting in complex spikes (CSs) in

P-cells. Second, the presence of a CS results in plasticity in the cerebellum, which

affects the generation of P-cell simple spikes (Ito, 2001). Finally, changes in the

responses of these cells affects neurons in the primary output structure of the

cerebellum, the deep cerebellar nuclei, resulting in a modification of motor behavior.

That is, there is a direct link between P-cell responses and movement. This

relationship is then modified following an error.

This hypothesis of motor learning, sometimes termed the Marr-Albus-Ito

hypothesis, has guided cerebellar research for the last half century. While this

hypothesis has many testable elements, the role of the cerebellum in motor

adaptation has remained unclear. For instance, this classical view of the cerebellar

learning suggestions that the role of complex spikes is to convey a prediction error

signal (Marr, 1969; Albus et al., 1971). Recent neurophysiological studies, however,

do not lend credence to this limited view of CS as merely an encoder of prediction

error. For instance, in a recent study, monkeys adapted their saccades (a rapid

movement of the eyes) to a constant visual perturbation (Catz et al., 2005). As the

monkey adapted, performance improved and the magnitude of the errors declined.

Yet, the probability of CSs in some P-cells increased, opposite of what was expected
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by a strict interpretation of the error-encoding hypothesis. Another study noted

that as saccade adaptation proceeded, errors decreased, yet there were no

corresponding changes in the average probability of CSs (Soetedjo and Fuchs, 2006).

Therefore, the role of CSs in adaptation remains more complicated than would be

predicted by the Marr-Albus-Ito hypothesis.

In addition, the classical theory of cerebellar learning implies a link between

the activity of P-cells in the cerebellum and behavior. That is, the activity of

P-cells directly affects the subject’s motor output and the relationship between

P-cell responses and behavior changes during learning. However, evidence linking

P-cell response and behavior has been lacking. For instance, accurate execution of

saccades depends critically on the oculomotor vermis (OMV) (Barash et al., 1999)

as well as its target in the caudal fastigial nucleus (cFN) (Goffart et al., 2004;

Kurzan et al., 1993; Pélisson et al., 2003). This leads to the prediction that P-cell

responses should be well correlated with the kinematic measures of the eye

movement. However, this encoding has historically remained unclear: P-cells show

little consistent modulation with respect to kinematic parameters such as saccade

amplitude (Ohtsuka and Noda, 1995; Helmchen and Büttner, 1995),

speed (Helmchen and Büttner, 1995; Kase et al., 1980; Thier et al., 2000), or

direction (Ohtsuka and Noda, 1995). Without a clear understanding of the encoding

of movement, the problem of learning from error, which entails a change in this

encoding, has been even more difficult to solve. However, our results in Chapter 4

now provide a framework that we can use to understand cerebellar adaptation.

5.1.1 Cerebellar organization provides clues for determining

the neurophysiological basis of adaptation

When we experience a movement error, this error is transmitted to the cerebellum

from the inferior olive via climbing fibers, resulting in complex spikes in Purkinje
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cells (Gilbert and Thach, 1977). A population of approximately 50 P-cells project to

a single neuron in the caudal fastial nucleus (Person and Raman, 2012). In

Chapter 4, we show evidence for a new model of cerebellar organization: P-cells

that project to a single nucleus neuron are not selected at random, but rather share

a common preference for error (see Fig. 4.5A). In this model, the encoding of

movement is not in the response of an individual P-cell, but rather in the combined

activity in this micro-cluster of 50 P-cells. Using this hypothesized anatomy, we

show that decoding of movement kinematics from micro-clusters of P-cells is now

possible (Herzfeld et al., 2015).

We suggest that adaptation may also be understood when P-cells are

organized using this hypothesized anatomy. When a movement error occurs,

complex spikes would occur in the set of micro-clusters which prefer that particular

error. Presence of a CS results in plasticity and affects the output of the

micro-cluster, and in turn behavior. That is, while changes in the simple-spike

responses of individual P-cells may be heterogeneous, we would expect to observe

consistent changes at the micro-cluster level. In summary, we may only be able to

understand execution of movements and adaptation when P-cell responses are

organized by their preference for error.

Cerebellar organization protects previously learned memories

Using behavioral psychophysics, in Chapter 2 we demonstrate that the brain stores

a previously unknown form of memory: a memory of errors. That is, the history of

the errors a subject experiences affects how much they are willing to learn from an

error in the future. This result provides an interesting interpretation of the

phenomenon of savings. Savings occurs because the subject experiences an set of

errors which are then re-experienced upon the second exposure, resulting in faster

learning than naïve. Importantly, washout of the perturbation following initial
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learning preserves this memory of errors. How can the cerebellum accomplish this

task? Using the hypothesized organization of the cerebellum described in

Chapter 4, we can begin to understand these results.

We have suggested that the cerebellum is organized into micro-clusters

wherein P-cells share a common preference for error. When a subject experiences a

perturbation (A), the errors they encounter tend to be in the same direction,

leading to complex spikes in a micro-cluster whose preference for error aligns with

those errors. During washout of (A), the errors experienced by the subject are

opposite the errors that were experienced during learning of (A). That is, the errors

during washout change direction. This change in direction will result in CSs in a

different micro-cluster of P-cells, and the original micro-cluster of P-cells will no

longer receive CSs. Therefore, the memory of perturbation (A) is functionally

distinct from the motor memory of washout. When the subject is re-exposed to

perturbation (A), the original micro-cluster is reengaged, leading to an improvement

in performance, or savings. Our hypothesized organization of the cerebellum shows

how the anatomy results in protection of previously learned motor memories,

providing a novel view of savings.

Linking complex spikes to adaptation

Previous studies have failed to provide a consistent link between CSs and error. For

instance, as monkeys adapt to a saccadic perturbation, the magnitude of the error

decreases. However, the probability of complex spikes as reported by previous

studies does not follow this decrease in error (Catz et al., 2005). How can we rectify

this result with our previous observations that complex spikes signal foveal error

(e.g., Fig. 4.3)?

Imagine that P-cells are organized into micro-clusters based on their

preference for foveal error, as demonstrated by the results in Chapter 4. P-cells are
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active for saccades in all directions (see Fig. 4.6). However, micro-cluster responses

are larger when the saccade is made in direction CS-off than CS-on. If we imagine

that the cerebellum is divided into many micro-clusters, each with a different error

preference, when the subject makes a saccade at least two micro-clusters are active:

one whose preference for error is close to the saccade direction and one whose

preferred error direction is opposite the saccade direction. How do these two

populations interact? We found anatomical evidence for a complex spike dependent

organization of P-cells (Fig. 4.11): an error vector to the right produces complex

spikes for P-cells on the left of the vermis, but an error vector to the left produces

complex spikes on the right of the vermis. Cells on the right of the vermis project to

cells in the right cFN whereas cells on the left project to left cFN. Activity in the

cFN is related to acceleration of the contralateral eye and deceleration of the

ipsilateral eye. Therefore, it is likely that the motion of the eye results from a

functional subtraction of activities of P-cell micro-clusters in their preferred and

anti-preferred directions.

When the subject makes a saccade to the left, the resulting saccade

kinematics are determine by the difference in the activities of the two micro-clusters

on the right (R) and left (L) sides of the cerebellum (e.g., R - L). We can

understand gain-down saccade adaptation as a decrease in the population activity of

(R), an increase in (L), or both. Conversely, inducing an increase in the gain of the

saccade could result from an increase in the activity of (R), a decrease in the

response (L), or a combination of the two.

Further imagine that the monkey is performing a saccadic task in which the

target is consistently stepped inwards during leftwards saccades. When the monkey

finishes their primary saccade, there is a foveal error pointing towards the right, and

the magnitude of this error decreases over the course of adaptation. We hypothesize

that, at the start of adaptation, when the error is large, the probability of CSs in
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the (R) micro-cluster will also be large (since the error is in the preferred CS

direction of the (R) micro-cluster). Conversely, the probability of CSs in the (L)

population will be substantially less than the baseline probability of CSs since the

error here resides in the (L) micro-cluster’s anti-preferred direction. As the monkey

adapts, the probability of CSs in the (R) micro-cluster will decrease whereas the

probability of CSs in the (L) micro-cluster will increase. If we were to average the

probability of CSs across multiple P-cells without first characterizing their preferred

error direction, then the probability of CSs would not precisely track the magnitude

of the saccadic error. However, by organizing P-cells by their preference for error, a

differential encoding of error emerges.

A large increase in the probability of CSs in population (R) would result in a

decrease in the simple-spike activity of this population. Conversely, the lack of a

baseline level of CSs in the (L) micro-cluster would result in an overall increase in

the simple-spike responses. Therefore, it is likely that adaptation is a combination

of changes in simple-spike activity whose direction is dependent on the preferred

error direction of each P-cells.

In this way, we can rectify the results of previous studies of saccadic

adaptation with the Marr-Albus-Ito hypothesis. Complex spikes do signal error,

however, this error is defined along a preferred direction. That is, the presence of a

complex spike represents the presence of an error along the cell’s preferred direction

whereas lack of complex spike (below baseline) signals an error in the anti-preferred

direction. Future studies can test these intriguing hypotheses.

138



BIBLIOGRAPHY

Mohammad Ali Ahmadi-Pajouh, Farzad Towhidkhah, and Reza Shadmehr.
Preparing to Reach: Selecting an Adaptive Long-Latency Feedback Controller.
The Journal of Neuroscience, 32(28):9537–9545, November 2012. ISSN
0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.4275-11.2012.

Hirotogu Akaike. Information Theory and an Extension of the Maximum Likelihood
Principle. In Emanuel Parzen, Kunio Tanabe, and Genshiro Kitagawa, editors,
Selected Papers of Hirotugu Akaike, Springer Series in Statistics, pages
199–213. Springer New York, 1998. ISBN 978-1-4612-7248-9
978-1-4612-1694-0. doi: 10.1007/978-1-4612-1694-0_15.

James S. Albus, Datu Techltiques Branch, Communicated Donald, and H. Perkel. A
Theory of Cerebellar Function. 1971.

R. A. Andersen, G. K. Essick, and R. M. Siegel. Encoding of spatial location by
posterior parietal neurons. Science (New York, N.Y.), 230(4724):456–458,
October 1985. ISSN 0036-8075.

Fritzie Arce, Itai Novick, Yael Mandelblat-Cerf, and Eilon Vaadia. Neuronal
Correlates of Memory Formation in Motor Cortex after Adaptation to Force
Field. The Journal of Neuroscience, 30(27):9189–9198, July 2010. ISSN
0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.1603-10.2010.

Pierre Baraduc, Nicolas Lang, John C. Rothwell, and Daniel M. Wolpert.
Consolidation of Dynamic Motor Learning Is Not Disrupted by rTMS of
Primary Motor Cortex. Current Biology, 14(3):252–256, February 2004. ISSN
0960-9822. doi: 10.1016/j.cub.2004.01.033.

Shabtai Barash, Armenuhi Melikyan, Alexey Sivakov, Mingsha Zhang, Mitchell
Glickstein, and Peter Thier. Saccadic Dysmetria and Adaptation after Lesions
of the Cerebellar Cortex. The Journal of Neuroscience, 19(24):10931–10939,
December 1999. ISSN 0270-6474, 1529-2401.

Hannah Block and Pablo Celnik. Stimulating the Cerebellum Affects Visuomotor
Adaptation but not Intermanual Transfer of Learning. The Cerebellum, 12(6):

139



781–793, April 2013. ISSN 1473-4222, 1473-4230. doi:
10.1007/s12311-013-0486-7.

Daniel A. Braun, Ad Aertsen, Daniel M. Wolpert, and Carsten Mehring. Motor
Task Variation Induces Structural Learning. Current Biology, 19(4):352–357,
February 2009. ISSN 0960-9822. doi: 10.1016/j.cub.2009.01.036.

Jessica X. Brooks and Kathleen E. Cullen. The Primate Cerebellum Selectively
Encodes Unexpected Self-Motion. Current Biology, 23(11):947–955, June 2013.
ISSN 0960-9822. doi: 10.1016/j.cub.2013.04.029.

Nicolas Catz, Peter W. Dicke, and Peter Thier. Cerebellar Complex Spike Firing Is
Suitable to Induce as Well as to Stabilize Motor Learning. Current Biology, 15
(24):2179–2189, December 2005. ISSN 0960-9822. doi:
10.1016/j.cub.2005.11.037.

Nicolas Catz, Peter W. Dicke, and Peter Thier. Cerebellar-dependent motor
learning is based on pruning a Purkinje cell population response. Proceedings
of the National Academy of Sciences, 105(20):7309–7314, May 2008. ISSN
0027-8424, 1091-6490. doi: 10.1073/pnas.0706032105.

Haiyin Chen, Sherwin E. Hua, Maurice A. Smith, Frederick A. Lenz, and Reza
Shadmehr. Effects of Human Cerebellar Thalamus Disruption on Adaptive
Control of Reaching. Cerebral Cortex, 16(10):1462–1473, January 2006. ISSN
1047-3211, 1460-2199. doi: 10.1093/cercor/bhj087.

Sen Cheng and Philip N. Sabes. Modeling Sensorimotor Learning with Linear
Dynamical Systems. Neural Computation, 18(4):760–793, March 2006. ISSN
0899-7667. doi: 10.1162/neco.2006.18.4.760.

Nicholas Cothros, Stefan Köhler, Erin W. Dickie, Seyed M. Mirsattari, and Paul L.
Gribble. Proactive Interference as a Result of Persisting Neural
Representations of Previously Learned Motor Skills in Primary Motor Cortex.
Journal of Cognitive Neuroscience, 18(12):2167–2176, November 2006. ISSN
0898-929X. doi: 10.1162/jocn.2006.18.12.2167.

Sarah E. Criscimagna-Hemminger and Reza Shadmehr. Consolidation Patterns of
Human Motor Memory. The Journal of Neuroscience, 28(39):9610–9618,

140



September 2008. ISSN 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.3071-08.2008.

Sarah E. Criscimagna-Hemminger, Amy J. Bastian, and Reza Shadmehr. Size of
Error Affects Cerebellar Contributions to Motor Learning. Journal of
Neurophysiology, 103(4):2275–2284, April 2010. ISSN 0022-3077, 1522-1598.
doi: 10.1152/jn.00822.2009.

Suryadeep Dash, Peter W. Dicke, and Peter Thier. A vermal Purkinje cell simple
spike population response encodes the changes in eye movement kinematics
due to smooth pursuit adaptation. Frontiers in Systems Neuroscience, 7:3,
2013. doi: 10.3389/fnsys.2013.00003.

Jean-Jacques Orban de Xivry, Sarah E. Criscimagna-Hemminger, and Reza
Shadmehr. Contributions of the Motor Cortex to Adaptive Control of Reaching
Depend on the Perturbation Schedule. Cerebral Cortex, 21(7):1475–1484,
January 2011a. ISSN 1047-3211, 1460-2199. doi: 10.1093/cercor/bhq192.

Jean-Jacques Orban de Xivry, Mollie K. Marko, Sarah E. Pekny, Damien Pastor,
Jun Izawa, Pablo Celnik, and Reza Shadmehr. Stimulation of the Human
Motor Cortex Alters Generalization Patterns of Motor Learning. The Journal
of Neuroscience, 31(19):7102–7110, November 2011b. ISSN 0270-6474,
1529-2401. doi: 10.1523/JNEUROSCI.0273-11.2011.

Chris I. De Zeeuw, Freek E. Hoebeek, Laurens W. J. Bosman, Martijn Schonewille,
Laurens Witter, and Sebastiaan K. Koekkoek. Spatiotemporal firing patterns
in the cerebellum. Nature Reviews Neuroscience, 12(6):327–344, June 2011.
ISSN 1471-003X. doi: 10.1038/nrn3011.

Jörn Diedrichsen, Yasmin Hashambhoy, Tushar Rane, and Reza Shadmehr. Neural
Correlates of Reach Errors. The Journal of Neuroscience, 25(43):9919–9931,
October 2005. ISSN 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.1874-05.2005.

Jörn Diedrichsen, Olivier White, Darren Newman, and Níall Lally. Use-Dependent
and Error-Based Learning of Motor Behaviors. The Journal of Neuroscience,
30(15):5159–5166, April 2010. ISSN 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.5406-09.2010.

141



Opher Donchin, Joseph T. Francis, and Reza Shadmehr. Quantifying Generalization
from Trial-by-Trial Behavior of Adaptive Systems that Learn with Basis
Functions: Theory and Experiments in Human Motor Control. The Journal of
Neuroscience, 23(27):9032–9045, August 2003. ISSN 0270-6474, 1529-2401.

Opher Donchin, Kasja Rabe, Jörn Diedrichsen, Níall Lally, Beate Schoch, Elke Ruth
Gizewski, and Dagmar Timmann. Cerebellar regions involved in adaptation to
force field and visuomotor perturbation. Journal of Neurophysiology, 107(1):
134–147, January 2012. ISSN 0022-3077, 1522-1598. doi:
10.1152/jn.00007.2011.

E. V. Evarts and J. Tanji. Reflex and intended responses in motor cortex pyramidal
tract neurons of monkey. Journal of Neurophysiology, 39(5):1069–1080,
September 1976. ISSN 0022-3077, 1522-1598.

R. Ferrucci, S. Marceglia, M. Vergari, F. Cogiamanian, S. Mrakic-Sposta,
F. Mameli, S. Zago, S. Barbieri, and A. Priori. Cerebellar Transcranial Direct
Current Stimulation Impairs the Practice-dependent Proficiency Increase in
Working Memory. Journal of Cognitive Neuroscience, 20(9):1687–1697, March
2008. ISSN 0898-929X. doi: 10.1162/jocn.2008.20112.

Michael S. Fine and Kurt A. Thoroughman. Motor Adaptation to Single Force
Pulses: Sensitive to Direction but Insensitive to Within-Movement Pulse
Placement and Magnitude. Journal of Neurophysiology, 96(2):710–720, August
2006. ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.00215.2006.

Michael S. Fine and Kurt A. Thoroughman. Trial-by-Trial Transformation of Error
Into Sensorimotor Adaptation Changes With Environmental Dynamics.
Journal of Neurophysiology, 98(3):1392–1404, September 2007. ISSN
0022-3077, 1522-1598. doi: 10.1152/jn.00196.2007.

A. F. Fuchs and D. A. Robinson. A method for measuring horizontal and vertical
eye movement chronically in the monkey. Journal of Applied Physiology, 21(3):
1068–1070, May 1966. ISSN 8750-7587, 1522-1601.

A. F. Fuchs, F. R. Robinson, and A. Straube. Role of the caudal fastigial nucleus in
saccade generation. I. Neuronal discharge pattern. Journal of Neurophysiology,
70(5):1723–1740, November 1993. ISSN 0022-3077, 1522-1598.

142



Yash P. Gad and Thomas J. Anastasio. Simulating the shaping of the fastigial deep
nuclear saccade command by cerebellar Purkinje cells. Neural Networks, 23(7):
789–804, September 2010. ISSN 0893-6080. doi: 10.1016/j.neunet.2010.05.007.

Joseph M. Galea, Gowri Jayaram, Loni Ajagbe, and Pablo Celnik. Modulation of
Cerebellar Excitability by Polarity-Specific Noninvasive Direct Current
Stimulation. The Journal of Neuroscience, 29(28):9115–9122, July 2009. ISSN
0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.2184-09.2009.

Joseph M. Galea, Alejandro Vazquez, Neel Pasricha, Jean-Jacques Orban de Xivry,
and Pablo Celnik. Dissociating the Roles of the Cerebellum and Motor Cortex
during Adaptive Learning: The Motor Cortex Retains What the Cerebellum
Learns. Cerebral Cortex, 21(8):1761–1770, January 2011. ISSN 1047-3211,
1460-2199. doi: 10.1093/cercor/bhq246.

Prateek C. Gandiga, Friedhelm C. Hummel, and Leonardo G. Cohen. Transcranial
DC stimulation (tDCS): A tool for double-blind sham-controlled clinical
studies in brain stimulation. Clinical Neurophysiology, 117(4):845–850, April
2006. ISSN 1388-2457. doi: 10.1016/j.clinph.2005.12.003.

P. F. C. Gilbert and W. T. Thach. Purkinje cell activity during motor learning.
Brain Research, 128(2):309–328, June 1977. ISSN 0006-8993. doi:
10.1016/0006-8993(77)90997-0.

Laurent Goffart, Longtang L. Chen, and David L. Sparks. Deficits in Saccades and
Fixation During Muscimol Inactivation of the Caudal Fastigial Nucleus in the
Rhesus Monkey. Journal of Neurophysiology, 92(6):3351–3367, December 2004.
ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.01199.2003.

Luis Nicolas Gonzalez Castro, Alkis M. Hadjiosif, Matthew A. Hemphill, and
Maurice A. Smith. Environmental Consistency Determines the Rate of Motor
Adaptation. Current Biology, 24(10):1050–1061, May 2014. ISSN 0960-9822.
doi: 10.1016/j.cub.2014.03.049.

Arash Hadipour-Niktarash, Christine K. Lee, John E. Desmond, and Reza
Shadmehr. Impairment of Retention But Not Acquisition of a Visuomotor
Skill Through Time-Dependent Disruption of Primary Motor Cortex. The
Journal of Neuroscience, 27(49):13413–13419, May 2007. ISSN 0270-6474,
1529-2401. doi: 10.1523/JNEUROSCI.2570-07.2007.

143



Masashi Hamada, Gionata Strigaro, Nagako Murase, Anna Sadnicka, Joseph M.
Galea, Mark J. Edwards, and John C. Rothwell. Cerebellar modulation of
human associative plasticity. The Journal of Physiology, 590(10):2365–2374,
May 2012. ISSN 1469-7793. doi: 10.1113/jphysiol.2012.230540.

C. Helmchen and U. Büttner. Saccade-related Purkinje cell activity in the
oculomotor vermis during spontaneous eye movements in light and darkness.
Experimental Brain Research, 103(2):198–208, March 1995. ISSN 0014-4819,
1432-1106. doi: 10.1007/BF00231706.

David J. Herzfeld, Damien Pastor, Adrian M. Haith, Yves Rossetti, Reza Shadmehr,
and Jacinta O’Shea. Contributions of the cerebellum and the motor cortex to
acquisition and retention of motor memories. NeuroImage, 98:147–158,
September 2014a. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2014.04.076.

David J. Herzfeld, Pavan A. Vaswani, Mollie K. Marko, and Reza Shadmehr. A
memory of errors in sensorimotor learning. Science, 345(6202):1349–1353,
December 2014b. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1253138.

David J. Herzfeld, Yoshiko Kojima, Robijanto Soetedjo, and Reza Shadmehr.
Encoding of action by the Purkinje cells of the cerebellum. Nature, 526(7573):
439–442, October 2015. ISSN 0028-0836. doi: 10.1038/nature15693.

Vincent S. Huang, Adrian Haith, Pietro Mazzoni, and John W. Krakauer.
Rethinking Motor Learning and Savings in Adaptation Paradigms: Model-Free
Memory for Successful Actions Combines with Internal Models. Neuron, 70(4):
787–801, May 2011. ISSN 0896-6273. doi: 10.1016/j.neuron.2011.04.012.

Timothy Hunter, Paul Sacco, Michael A. Nitsche, and Duncan L. Turner.
Modulation of internal model formation during force field-induced motor
learning by anodal transcranial direct current stimulation of primary motor
cortex. The Journal of Physiology, 587(12):2949–2961, June 2009. ISSN
1469-7793. doi: 10.1113/jphysiol.2009.169284.

Eun Jung Hwang and Reza Shadmehr. Internal models of limb dynamics and the
encoding of limb state. Journal of Neural Engineering, 2(3):S266, 2005. ISSN
1741-2552. doi: 10.1088/1741-2560/2/3/S09.

144



Masao Ito. Cerebellar Long-Term Depression: Characterization, Signal
Transduction, and Functional Roles. Physiological Reviews, 81(3):1143–1195,
July 2001. ISSN 0031-9333, 1522-1210.

Jun Izawa, Tushar Rane, Opher Donchin, and Reza Shadmehr. Motor Adaptation
as a Process of Reoptimization. The Journal of Neuroscience, 28(11):
2883–2891, December 2008. ISSN 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.5359-07.2008.

Jun Izawa, Sarah E. Criscimagna-Hemminger, and Reza Shadmehr. Cerebellar
Contributions to Reach Adaptation and Learning Sensory Consequences of
Action. The Journal of Neuroscience, 32(12):4230–4239, March 2012. ISSN
0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.6353-11.2012.

Gowri Jayaram, Byron Tang, Rani Pallegadda, Erin V. L. Vasudevan, Pablo Celnik,
and Amy Bastian. Modulating locomotor adaptation with cerebellar
stimulation. Journal of Neurophysiology, 107(11):2950–2957, June 2012. ISSN
0022-3077, 1522-1598. doi: 10.1152/jn.00645.2011.

Wilsaan M. Joiner and Maurice A. Smith. Long-Term Retention Explained by a
Model of Short-Term Learning in the Adaptive Control of Reaching. Journal
of Neurophysiology, 100(5):2948–2955, November 2008. ISSN 0022-3077,
1522-1598. doi: 10.1152/jn.90706.2008.

Michael I. Jordan and David E. Rumelhart. Forward Models: Supervised Learning
with a Distal Teacher. Cognitive Science, 16(3):307–354, July 1992. ISSN
1551-6709. doi: 10.1207/s15516709cog1603_1.

Manabu Kase, David C. Miller, and Hiroharu Noda. Discharges of Purkinje cells
and mossy fibres in the cerebellar vermis of the monkey during saccadic eye
movements and fixation. The Journal of Physiology, 300(1):539–555, March
1980. ISSN 1469-7793. doi: 10.1113/jphysiol.1980.sp013178.

D. Kaski, S. Quadir, M. Patel, N. Yousif, and A. M. Bronstein. Enhanced locomotor
adaptation aftereffect in the “broken escalator” phenomenon using anodal
tDCS. Journal of Neurophysiology, 107(9):2493–2505, May 2012. ISSN
0022-3077, 1522-1598. doi: 10.1152/jn.00223.2011.

145



Charles D. Kassardjian, Yao-Fang Tan, Ji-Yeon J. Chung, Raquel Heskin, Michael J.
Peterson, and Dianne M. Broussard. The Site of a Motor Memory Shifts with
Consolidation. The Journal of Neuroscience, 25(35):7979–7985, August 2005.
ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.2215-05.2005.

M. Kawato. Learning internal models of the motor apparatus. The acquisition of
motor behavior in vertebrates, page 409, 1996.

M. Kawato, K. Furukawa, and R. Suzuki. A hierarchical neural-network model for
control and learning of voluntary movement. Biological Cybernetics, 57(3):
169–185, 1987. ISSN 0340-1200.

Toshitaka Kimura and Hiroaki Gomi. Temporal Development of Anticipatory
Reflex Modulation to Dynamical Interactions During Arm Movement. Journal
of Neurophysiology, 102(4):2220–2231, October 2009. ISSN 0022-3077,
1522-1598. doi: 10.1152/jn.90907.2008.

Tomoko Kitago, Sophia L. Ryan, Pietro Mazzoni, John W. Krakauer, and Adrian M.
Haith. Unlearning versus savings in visuomotor adaptation: comparing effects
of washout, passage of time, and removal of errors on motor memory. Frontiers
in Human Neuroscience, 7:307, 2013. doi: 10.3389/fnhum.2013.00307.

JoAnn Kluzik, Jörn Diedrichsen, Reza Shadmehr, and Amy J. Bastian. Reach
Adaptation: What Determines Whether We Learn an Internal Model of the
Tool or Adapt the Model of Our Arm? Journal of Neurophysiology, 100(3):
1455–1464, September 2008. ISSN 0022-3077, 1522-1598. doi:
10.1152/jn.90334.2008.

Yoshiko Kojima, Yoshiki Iwamoto, and Kaoru Yoshida. Memory of Learning
Facilitates Saccadic Adaptation in the Monkey. The Journal of Neuroscience,
24(34):7531–7539, August 2004. ISSN 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.1741-04.2004.

Yoshiko Kojima, Robijanto Soetedjo, and Albert F. Fuchs. Changes in Simple Spike
Activity of Some Purkinje Cells in the Oculomotor Vermis during Saccade
Adaptation Are Appropriate to Participate in Motor Learning. The Journal of
Neuroscience, 30(10):3715–3727, October 2010. ISSN 0270-6474, 1529-2401.
doi: 10.1523/JNEUROSCI.4953-09.2010.

146



Yoshiko Kojima, Robijanto Soetedjo, and Albert F. Fuchs. Effect of inactivation and
disinhibition of the oculomotor vermis on saccade adaptation. Brain Research,
1401:30–39, July 2011. ISSN 0006-8993. doi: 10.1016/j.brainres.2011.05.027.

Konrad P. Kording, Joshua B. Tenenbaum, and Reza Shadmehr. The dynamics of
memory as a consequence of optimal adaptation to a changing body. Nature
Neuroscience, 10(6):779–786, June 2007. ISSN 1097-6256. doi:
10.1038/nn1901.

Ines Kralj-Hans, Joan S. Baizer, Catherine Swales, and Mitchell Glickstein.
Independent roles for the dorsal paraflocculus and vermal lobule VII of the
cerebellum in visuomotor coordination. Experimental Brain Research, 177(2):
209–222, September 2006. ISSN 0014-4819, 1432-1106. doi:
10.1007/s00221-006-0661-x.

R. J. Krauzlis. Population coding of movement dynamics by cerebellar Purkinje
cells. Neuroreport, 11(5):1045–1050, April 2000. ISSN 0959-4965.

R. Kurzan, A. Straube, and U. Büttner. The effect of muscimol micro-injections
into the fastigial nucleus on the optokinetic response and the vestibulo-ocular
reflex in the alert monkey. Experimental Brain Research, 94(2):252–260, June
1993. ISSN 0014-4819, 1432-1106. doi: 10.1007/BF00230293.

Nicolas Lang, Hartwig R. Siebner, Nick S. Ward, Lucy Lee, Michael A. Nitsche,
Walter Paulus, John C. Rothwell, Roger N. Lemon, and Richard S.
Frackowiak. How does transcranial DC stimulation of the primary motor
cortex alter regional neuronal activity in the human brain? European Journal
of Neuroscience, 22(2):495–504, July 2005. ISSN 1460-9568. doi:
10.1111/j.1460-9568.2005.04233.x.

Jeong-Yoon Lee and Nicolas Schweighofer. Dual Adaptation Supports a Parallel
Architecture of Motor Memory. The Journal of Neuroscience, 29(33):
10396–10404, August 2009. ISSN 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.1294-09.2009.

Chiang-Shan Ray Li, Camillo Padoa-Schioppa, and Emilio Bizzi. Neuronal
Correlates of Motor Performance and Motor Learning in the Primary Motor
Cortex of Monkeys Adapting to an External Force Field. Neuron, 30(2):
593–607, May 2001. ISSN 0896-6273. doi: 10.1016/S0896-6273(01)00301-4.

147



N. J. Mackintosh. A theory of attention: Variations in the associability of stimuli
with reinforcement. Psychological Review, 82(4):276–298, 1975. ISSN
1939-1471(Electronic);0033-295X(Print). doi: 10.1037/h0076778.

Laura A. Malone, Erin V. L. Vasudevan, and Amy J. Bastian. Motor Adaptation
Training for Faster Relearning. The Journal of Neuroscience, 31(42):
15136–15143, October 2011. ISSN 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.1367-11.2011.

Mollie K. Marko, Adrian M. Haith, Michelle D. Harran, and Reza Shadmehr.
Sensitivity to prediction error in reach adaptation. Journal of Neurophysiology,
108(6):1752–1763, September 2012. ISSN 0022-3077, 1522-1598. doi:
10.1152/jn.00177.2012.

David Marr. A theory of cerebellar cortex. The Journal of Physiology, 202(2):
437–470.1, June 1969. ISSN 0022-3751.

Firas Mawase, Lior Shmuelof, Simona Bar-Haim, and Amir Karniel. Savings in
locomotor adaptation explained by changes in learning parameters following
initial adaptation. Journal of Neurophysiology, 111(7):1444–1454, April 2014.
ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.00734.2013.

Samuel C. McLaughlin. Parametric adjustment in saccadic eye movements.
Perception & Psychophysics, 2(8):359–362, August 1967. ISSN 0031-5117,
1532-5962. doi: 10.3758/BF03210071.

Javier F. Medina and Stephen G. Lisberger. Links from complex spikes to local
plasticity and motor learning in the cerebellum of awake-behaving monkeys.
Nature Neuroscience, 11(10):1185–1192, October 2008. ISSN 1097-6256. doi:
10.1038/nn.2197.

R. C. Miall and D. M. Wolpert. Forward Models for Physiological Motor Control.
Neural Networks, 9(8):1265–1279, November 1996. ISSN 0893-6080. doi:
10.1016/S0893-6080(96)00035-4.

Reza Nezafat, Reza Shadmehr, and Henry H. Holcomb. Long-term adaptation to
dynamics of reaching movements: a PET study. Experimental Brain Research,
140(1):66–76, September 2001. ISSN 0014-4819, 1432-1106. doi:

148



10.1007/s002210100787.

M. A. Nitsche and W. Paulus. Excitability changes induced in the human motor
cortex by weak transcranial direct current stimulation. The Journal of
Physiology, 527(3):633–639, September 2000. ISSN 1469-7793. doi:
10.1111/j.1469-7793.2000.t01-1-00633.x.

K. Ohtsuka and H. Noda. Discharge properties of Purkinje cells in the oculomotor
vermis during visually guided saccades in the macaque monkey. Journal of
Neurophysiology, 74(5):1828–1840, November 1995. ISSN 0022-3077,
1522-1598.

Takehito Okamoto, Shogo Endo, Tomoaki Shirao, and Soichi Nagao. Role of
Cerebellar Cortical Protein Synthesis in Transfer of Memory Trace of
Cerebellum-Dependent Motor Learning. The Journal of Neuroscience, 31(24):
8958–8966, June 2011a. ISSN 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.1151-11.2011.

Takehito Okamoto, Tomoaki Shirao, Fumihiro Shutoh, Toshinori Suzuki, and Soichi
Nagao. Post-training cerebellar cortical activity plays an important role for
consolidation of memory of cerebellum-dependent motor learning.
Neuroscience Letters, 504(1):53–56, October 2011b. ISSN 0304-3940. doi:
10.1016/j.neulet.2011.08.056.

Jacinta O’Shea, Valérie Gaveau, Matthieu Kandel, Kazuo Koga, Kenji Susami,
Claude Prablanc, and Yves Rossetti. Kinematic markers dissociate error
correction from sensorimotor realignment during prism adaptation.
Neuropsychologia, 55:15–24, March 2014. ISSN 0028-3932. doi:
10.1016/j.neuropsychologia.2013.09.021.

Liam Paninski, Shy Shoham, Matthew R. Fellows, Nicholas G. Hatsopoulos, and
John P. Donoghue. Superlinear Population Encoding of Dynamic Hand
Trajectory in Primary Motor Cortex. The Journal of Neuroscience, 24(39):
8551–8561, September 2004. ISSN 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.0919-04.2004.

James L. Patton, Yejun John Wei, Preeti Bajaj, and Robert A. Scheidt. Visuomotor
Learning Enhanced by Augmenting Instantaneous Trajectory Error Feedback
during Reaching. PLOS ONE, 8(1):e46466, January 2013. ISSN 1932-6203.

149



doi: 10.1371/journal.pone.0046466.

John M. Pearce and Geoffrey Hall. A model for Pavlovian learning: Variations in
the effectiveness of conditioned but not of unconditioned stimuli. Psychological
Review, 87(6):532–552, 1980. ISSN 1939-1471(Electronic);0033-295X(Print).
doi: 10.1037/0033-295X.87.6.532.

Denis Pélisson, Laurent Goffart, Alain Guillaume, and Julie Quinet. Visuo-motor
deficits induced by fastigial nucleus inactivation. The Cerebellum, 2(1):71–76,
March 2003. ISSN 1473-4222, 1473-4230. doi: 10.1080/14734220310015629.

Abigail L. Person and Indira M. Raman. Purkinje neuron synchrony elicits
time-locked spiking in the cerebellar nuclei. Nature, 481(7382):502–505,
January 2012. ISSN 0028-0836. doi: 10.1038/nature10732.

Mario Prsa, Suryadeep Dash, Nicolas Catz, Peter W. Dicke, and Peter Thier.
Characteristics of Responses of Golgi Cells and Mossy Fibers to Eye Saccades
and Saccadic Adaptation Recorded from the Posterior Vermis of the
Cerebellum. The Journal of Neuroscience, 29(1):250–262, July 2009. ISSN
0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.4791-08.2009.

Janine Reis, Heidi M. Schambra, Leonardo G. Cohen, Ethan R. Buch, Brita Fritsch,
Eric Zarahn, Pablo A. Celnik, and John W. Krakauer. Noninvasive cortical
stimulation enhances motor skill acquisition over multiple days through an
effect on consolidation. Proceedings of the National Academy of Sciences, 106
(5):1590–1595, March 2009. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.0805413106.

RA Rescorla and AW Wagner. A theory of Pavlovian conditioning: Variations in
the effectiveness of reinforcement and nonreinforcement. In AH Black and
WF Prokasy, editors, Classical Conditioning II: Current Research and Theory,
pages 64–99. Appleton-Century-Crofts, 1972.

Andrew G. Richardson, Simon A. Overduin, Antoni Valero-Cabré, Camillo
Padoa-Schioppa, Alvaro Pascual-Leone, Emilio Bizzi, and Daniel Z. Press.
Disruption of Primary Motor Cortex before Learning Impairs Memory of
Movement Dynamics. The Journal of Neuroscience, 26(48):12466–12470,
November 2006. ISSN 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.1139-06.2006.

150



M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation
learning: the RPROP algorithm. In , IEEE International Conference on
Neural Networks, 1993, pages 586–591 vol.1, 1993. doi:
10.1109/ICNN.1993.298623.

F. R. Robinson, A. Straube, and A. F. Fuchs. Role of the caudal fastigial nucleus in
saccade generation. II. Effects of muscimol inactivation. Journal of
Neurophysiology, 70(5):1741–1758, November 1993. ISSN 0022-3077,
1522-1598.

Farrel R. Robinson, Christopher T. Noto, and Scott E. Bevans. Effect of Visual
Error Size on Saccade Adaptation in Monkey. Journal of Neurophysiology, 90
(2):1235–1244, August 2003. ISSN 0022-3077, 1522-1598. doi:
10.1152/jn.00656.2002.

A. M. E. Sarwary, L. P. J. Selen, and W. P. Medendorp. Vestibular benefits to task
savings in motor adaptation. Journal of Neurophysiology, 110(6):1269–1277,
September 2013. ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.00914.2012.

Robert A. Scheidt, Jonathan B. Dingwell, and Ferdinando A. Mussa-Ivaldi.
Learning to Move Amid Uncertainty. Journal of Neurophysiology, 86(2):
971–985, August 2001. ISSN 0022-3077, 1522-1598.

Jennifer A. Semrau, Amy L. Daitch, and Kurt A. Thoroughman. Environmental
experience within and across testing days determines the strength of human
visuomotor adaptation. Experimental Brain Research, 216(3):409–418,
December 2011. ISSN 0014-4819, 1432-1106. doi: 10.1007/s00221-011-2945-z.

R. Shadmehr and T. Brashers-Krug. Functional stages in the formation of human
long-term motor memory. Journal of Neuroscience, 17(1):409–419, 1997. ISSN
0270-6474.

R. Shadmehr and F.A. Mussa-Ivaldi. Adaptive representation of dynamics during
learning of a motor task. Journal of Neuroscience, 14(5 II):3208–3224, 1994.
ISSN 0270-6474.

R. Shadmehr, J. Brandt, and S. Corkin. Time-dependent motor memory processes
in amnesic subjects. Journal of Neurophysiology, 80(3):1590–1597, 1998. ISSN

151



0022-3077.

Reza Shadmehr. Generalization as a behavioral window to the neural mechanisms
of learning internal models. Human Movement Science, 23(5):543–568,
November 2004. ISSN 0167-9457. doi: 10.1016/j.humov.2004.04.003.

Gary C. Sing, Wilsaan M. Joiner, Thrishantha Nanayakkara, Jordan B. Brayanov,
and Maurice A. Smith. Primitives for motor adaptation reflect correlated
neural tuning to position and velocity. Neuron, 64(4):575–589, November 2009.
ISSN 1097-4199. doi: 10.1016/j.neuron.2009.10.001.

Maurice A Smith and Reza Shadmehr. Modulation of the rate of error-dependent
learning by the statistical properties of the task. Advances in Computational
Motor Control, 3(2004), 2004.

Maurice A. Smith and Reza Shadmehr. Intact Ability to Learn Internal Models of
Arm Dynamics in Huntington’s Disease But Not Cerebellar Degeneration.
Journal of Neurophysiology, 93(5):2809–2821, May 2005. ISSN 0022-3077,
1522-1598. doi: 10.1152/jn.00943.2004.

Maurice A Smith, Ali Ghazizadeh, and Reza Shadmehr. Interacting Adaptive
Processes with Different Timescales Underlie Short-Term Motor Learning.
PLoS Biol, 4(6):e179, May 2006. doi: 10.1371/journal.pbio.0040179.

Robijanto Soetedjo and Albert F. Fuchs. Complex Spike Activity of Purkinje Cells
in the Oculomotor Vermis during Behavioral Adaptation of Monkey Saccades.
The Journal of Neuroscience, 26(29):7741–7755, July 2006. ISSN 0270-6474,
1529-2401. doi: 10.1523/JNEUROSCI.4658-05.2006.

Robijanto Soetedjo, Yoshiko Kojima, and Albert F. Fuchs. Complex Spike Activity
in the Oculomotor Vermis of the Cerebellum: A Vectorial Error Signal for
Saccade Motor Learning? Journal of Neurophysiology, 100(4):1949–1966,
October 2008. ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.90526.2008.

Robijanto Soetedjo, Albert F. Fuchs, and Yoshiko Kojima. Subthreshold Activation
of the Superior Colliculus Drives Saccade Motor Learning. The Journal of
Neuroscience, 29(48):15213–15222, February 2009. ISSN 0270-6474, 1529-2401.
doi: 10.1523/JNEUROSCI.4296-09.2009.

152



C. J. Stagg, G. Jayaram, D. Pastor, Z. T. Kincses, P. M. Matthews, and
H. Johansen-Berg. Polarity and timing-dependent effects of transcranial direct
current stimulation in explicit motor learning. Neuropsychologia, 49(5):
800–804, April 2011. ISSN 0028-3932. doi:
10.1016/j.neuropsychologia.2011.02.009.

Hirokazu Tanaka, Terrence J. Sejnowski, and John W. Krakauer. Adaptation to
Visuomotor Rotation Through Interaction Between Posterior Parietal and
Motor Cortical Areas. Journal of Neurophysiology, 102(5):2921–2932,
November 2009. ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.90834.2008.

Petra Telgkamp, Daniel E Padgett, Veronica A Ledoux, Catherine S Woolley, and
Indira M Raman. Maintenance of High-Frequency Transmission at Purkinje to
Cerebellar Nuclear Synapses by Spillover from Boutons with Multiple Release
Sites. Neuron, 41(1):113–126, January 2004. ISSN 0896-6273. doi:
10.1016/S0896-6273(03)00802-X.

Peter Thier, Peter W. Dicke, Roman Haas, and Shabtai Barash. Encoding of
movement time by populations of cerebellar Purkinje cells. Nature, 405(6782):
72–76, May 2000. ISSN 0028-0836. doi: 10.1038/35011062.

K. A. Thoroughman and R. Shadmehr. Electromyographic correlates of learning an
internal model of reaching movements. The Journal of Neuroscience: The
Official Journal of the Society for Neuroscience, 19(19):8573–8588, October
1999. ISSN 1529-2401.

K. A. Thoroughman and R. Shadmehr. Learning of action through adaptive
combination of motor primitives. Nature, 407(6805):742–747, October 2000.
ISSN 0028-0836. doi: 10.1038/35037588.

Michael C. III Trent and Alaa A. Ahmed. Learning from the value of your mistakes:
evidence for a risk-sensitive process in movement adaptation. Frontiers in
Computational Neuroscience, 7:118, 2013. doi: 10.3389/fncom.2013.00118.

Edward J. A. Turnham, Daniel A. Braun, and Daniel M. Wolpert. Facilitation of
learning induced by both random and gradual visuomotor task variation.
Journal of Neurophysiology, 107(4):1111–1122, February 2012. ISSN
0022-3077, 1522-1598. doi: 10.1152/jn.00635.2011.

153



Yoshikazu Ugawa, Yoshikazu Uesaka, Yasuo Terao, Ritsuko Hanajima, and Ichiro
Kanazawa. Magnetic stimulation over the cerebellum in humans. Annals of
Neurology, 37(6):703–713, June 1995. ISSN 1531-8249. doi:
10.1002/ana.410370603.

Robert J. van Beers. Motor Learning Is Optimally Tuned to the Properties of
Motor Noise. Neuron, 63(3):406–417, August 2009. ISSN 0896-6273. doi:
10.1016/j.neuron.2009.06.025.

Robert J. van Beers. How Does Our Motor System Determine Its Learning Rate?
PLoS ONE, 7(11):e49373, November 2012. doi: 10.1371/journal.pone.0049373.

Pavan A. Vaswani and Reza Shadmehr. Decay of Motor Memories in the Absence of
Error. The Journal of Neuroscience, 33(18):7700–7709, January 2013. ISSN
0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.0124-13.2013.

T. Vilis and J. Hore. Central neural mechanisms contributing to cerebellar tremor
produced by limb perturbations. Journal of Neurophysiology, 43(2):279–291,
1980. ISSN 0022-3077.

Kunlin Wei and Konrad Körding. Relevance of Error: What Drives Motor
Adaptation? Journal of Neurophysiology, 101(2):655–664, February 2009.
ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.90545.2008.

Minnan Xu-Wilson, Haiyin Chen-Harris, David S. Zee, and Reza Shadmehr.
Cerebellar Contributions to Adaptive Control of Saccades in Humans. The
Journal of Neuroscience, 29(41):12930–12939, October 2009. ISSN 0270-6474,
1529-2401. doi: 10.1523/JNEUROSCI.3115-09.2009.

Jinzo Yamada and Hiroharu Noda. Afferent and efferent connections of the
oculomotor cerebellar vermis in the macaque monkey. The Journal of
Comparative Neurology, 265(2):224–241, November 1987. ISSN 1096-9861. doi:
10.1002/cne.902650207.

Eric Zarahn, Gregory D. Weston, Johnny Liang, Pietro Mazzoni, and John W.
Krakauer. Explaining Savings for Visuomotor Adaptation: Linear
Time-Invariant State-Space Models Are Not Sufficient. Journal of
Neurophysiology, 100(5):2537–2548, November 2008. ISSN 0022-3077,

154



1522-1598. doi: 10.1152/jn.90529.2008.

155



David J. Herzfeld, B.S., M.S.
Born on March 23, 1988 in Milwaukee, WI

Contact Information
David J. Herzfeld, B.S., M.S. Department of Biomedical Engineering
416 Traylor, 720 Rutland Ave. Johns Hopkins University School of Medicine
Baltimore, MD 21205 USA Cell: (414) 690-8965
www.davidherzfeld.com E-mail: dherzfe1@jhmi.edu

Education
Ph.D., Johns Hopkins University School of Medicine
Department of Biomedical Engineering, June 2016
• Advisor: Reza Shadmehr, Ph.D.
• Area of Study: Motor Control & Motor Learning

M.S. (5 Year Master’s Degree), Marquette University
Department of Biomedical Engineering, July 2011
• Thesis Topic: Modeling and Computational Framework for the Specification and

Simulation of Large-scale Spiking Neural Networks
• Advisor: Scott A. Beardsley, Ph.D.
• Area of Study: Bioinstrumentation & Biocomputation

B.S., Marquette University
Department of Biomedical Engineering, May 2010
• Summa cum laude, Top Scholar in Curriculum
• Biocomputing specialization
• Emphasis on computational modeling using parallel and distributed systems

Research Experience
Ph.D. Student January 2012 to June 2016
• Department of Biomedical Engineering, Johns Hopkins University School of

Medicine
• Computation Motor Control Laboratory
• Laboratory Director: Reza Shadmehr, Ph.D.
• Laboratory topics include psychophysical motor learning experiments,

functional imaging experimental design and analysis, and neurophysiology
analysis.

Master’s Student (5 Year Master’s Degree) May 2008 to July 2011
• Department of Biomedical Engineering, Marquette University
• Integrative Neural Systems Laboratory
• Laboratory Director: Scott A. Beardsley, Ph.D.

156

http://www.bme.jhu.edu
http://www.hopkinsmedicine.org
www.davidherzfeld.com
mailto:dherzfe1@jhmi.edu
http://www.hopkinsmedicine.org
http://www.bme.jhu.edu
http://www.shadmehrlab.org
http://www.marquette.edu
http://www.marquette.edu/engineering/biomedical
http://www.marquette.edu/engineering/biomedical/facstaff_beardsley.shtml
http://www.marquette.edu
http://www.marquette.edu/engineering/biomedical
http://www.bme.jhu.edu
http://www.hopkinsmedicine.org
http://www.hopkinsmedicine.org
http://www.marquette.edu/engineering/biomedical
http://www.marquette.edu


• Laboratory topics include computational neural modeling, implementation and
analysis of psychophysics tasks, and EEG/fMRI analysis.

Research Assistant May 2009 to May 2010
• Department of Math, Statistics, and Computer Science, Marquette University
• Bistro Lab (Bioinformatics & Biomathematical Modeling)
• Laboratory Director: Craig A. Struble, Ph.D.
• Implemented a series of software applications to deploy campus grids of

virtualized Linux systems in Windows environments.

Teaching Experience
• Learning Theory, Teaching Assistant & Guest Lecturer, Johns Hopkins

University (Spring 2014)
• Intro. to Embedded Microcontrollers, Instructor, Johns Hopkins University

(Winter Intersession 2014)
• Biocomputer Design Lab II, Teaching Assistant, Marquette University (Spring

2011)
• Embedded Biomedical Instrumentation, Teaching Assistant, Marquette

University (Spring 2011)
• Computing for Biomedical Engineers, Teaching Assistant & Guest Lecturer,

Marquette University (Fall 2010)
• Biocomputer Design Lab I, Teaching Assistant & Guest Lecturer, Marquette

University (Fall 2010)

Professional Experience
Consultant, Ardian, Inc., Medtronic May 2010 to Present
• Project: Renal ablation radio frequency generator used in surgical procedure to

permanently reduce/eliminate chronic hypertension.
• Developed algorithms and research framework for evaluating treatment

outcomes and a reduction in treatment error conditions.
• Work resulted in U.S. and international patents

Research Interests
• Motor learning & motor control
• Cerebellar contributions to learning
• Computational neural modeling
• Neuroengineering
• Neural coding/decoding

Honors and Awards
• Martin & Carol Macht Award, Johns Hopkins Young Investigators’ Day, 2016

157

http://www.mscs.mu.edu/mscs/
http://www.marquette.edu
http://www.ardian.com/


• Siebel Scholar, Class of 2016. Awarded annually for academic excellence and
demonstrated leadership to 93 top students from the world’s leading graduate
schools

• Mette Strand Award, Johns Hopkins Young Investigators’ Day, 2015
• Society for the Neural Control of Movement Fellowship, 2015
• NIH Ruth L. Kirschstein National Research Service Award (NRSA F31), 2014 to

2016
• Neuroengineering Training Initiative (NETI) Scholar, 2011 to 2012
• Richard W. Jobling Fellowship, Marquette University, September 2010
• Top Scholar In Curriculum, Marquette University, April 2010
• Anthony J. and Rose E. Bagoszzi Medical Research Fellowship, Marquette

University, September 2009
• National Dean’s List, Marquette University, 2006 to 2010
• Allen Edmonds Scholarship, Marquette University, 2006 to 2010

Peer Reviewed Publications
Herzfeld, D.J., Kojima, Y., Soetedjo, R., and R. Shadmehr. Encoding of action in

the Purkinje cells of the cerebellum. Nature, 526:439-442.
Herzfeld, D.J., Kojima, Y., Soetedjo, R., and R. Shadmehr. Encoding of action in

the Purkinje cells of the cerebellum. TCMC: Translational and Computational
Motor Control, 2014.

Herzfeld, D.J., Vaswani, P.A., Marko, M.K., and R. Shadmehr. A memory of
errors in sensorimotor learning. Science, 345:1349-1352, 2014.

Herzfeld, D.J.*, Pastor, D.*, Haith, A.M., Rossetti, Y., Shadmehr, R., and J.
O’Shea. Contributions of the cerebellum and the motor cortex to acquisition and
retention of motor memories. NeuroImage, 98:147-158, 2014.

Herzfeld, D.J., Vaswani, P.A., Marko, M.K. and R. Shadmehr. Sensitivity of
motor adaptation depends on the history of experienced errors. TCMC:
Translational and Computational Motor Control, 2013.

Herzfeld, D.J., and S.A. Beardsley. Synaptic Weighting for Physiological
Responses in Recurrent Spiking Neural Networks. IEEE Engineering in Medicine
and Biology. 2011:4187-90, 2011.

Herzfeld, D.J., and S.A. Beardsley. Improved multi-unit decoding at the
brain-machine interface using population temporal linear filtering. J Neural Eng.,
7(4):046012, 2010.

Herzfeld, D.J., Olson, L.E. and C.A. Struble. Pools of virtual boxes: building
campus grids with virtual machines. HPDC: Proceedings of the ACM. 667–675,
2010.

Herzfeld, D.J., Kojima, Y., Soetedjo, R., and R. Shadmehr. Cerebellar output
predicts movement kinematics as a forward model, In preparation.

Herzfeld, D.J., Kojima, Y., Soetedjo, R., and R. Shadmehr. Neural correlates of
learning in the vermis of the cerebellum, In preparation.

Invited Reviews
158

http://www.marquette.edu
http://www.marquette.edu
http://www.marquette.edu
http://www.marquette.edu
http://www.marquette.edu
http://www.marquette.edu


Herzfeld, D.J. and R. Shadmehr. Motor variability is not noise, but grist for the
learning mill. Nat Neurosci, 17(2):149-50, 2014.

Herzfeld, D.J. and R. Shadmehr. Cerebellum estimates the sensory state of the
body. Trends in Cognitive Sciences, 18(2)66-7, 2013.

Selected Abstracts
Herzfeld, D.J., Kojima, Y., Soetedjo, R., and R. Shadmehr. Sensory prediction

errors during saccade adaptation drive cerebellar complex spikes and learning.
Soc. Neurosci, 2016. San Diego, CA.

Herzfeld, D.J., Kojima, Y., Soetedjo, R., and R. Shadmehr. Encoding of action in
the Purkinje cells of the cerebellum. Soc. Neurosci, 2015. Chicago, IL.

Herzfeld, D.J., Kojima, Y., Soetedjo, R. and R. Shadmehr. Encoding of action in
the Purkinje cells of the cerebellum. Gordon Cerebellar Conference, 2015.
Lewiston, ME.

Shadmehr, R. and D.J. Herzfeld. Changes in error-sensitivity account for
sensorimotor savings. Soc. Neurosci, 2014. Washington, D.C.

Herzfeld, D.J., Kojima, Y., Soetedjo, R., and R. Shadmehr. Encoding of
prediction error by complex spikes of the cerebellum. Soc. Neurosci, 2014.
Washington, D.C.

Herzfeld, D.J., Vaswani, P.A., and R. Shadmehr. Sensitivity of motor adaptation
depends on the history of experienced errors. Soc. Neurosci, 2013. San Diego,
CA.

Herzfeld, D.J., Vaswani, P.A., Marko, M.K., Kojima, Y., Soetedjo, R. and
R. Shadmehr. Sensitivity of motor adaptation depends on the history of
experienced errors. Gordon Cerebellar Conference, 2013. New London, NH.

Herzfeld, D.J., and R. Shadmehr. Sensitivity to error depends on perturbation
statistics. Soc. Neurosci, 2012. New Orleans, LA.

Herzfeld, D.J., and S.A. Beardsley. Localization of synaptic changes using
simulated hemodynamic responses. Soc. Neurosci, 2011. Washington, D.C.

Herzfeld, D.J., and S.A. Beardsley. Improved multi-unit decoding at the
brain-machine interface using population temporal linear filtering. Soc. Neurosci,
2009. Chicago, IL.

Selected Invited Talks
• Encoding of action in the Purkinje cells of the cerebellum. Gordon Cerebellar

Conference, Lewiston, ME, August 2015.
• A memory of errors in sensorimotor learning, Johns Hopkins Young

Investigator’s Day, April 2015.
• Encoding of action in the Purkinje cells of the cerebellum, Neural Control of

Movement, Raleigh, N.C., April 2015.
• Encoding of action in the Purkinje cells of the cerebellum, Biomedical

Engineering Seminar Series, Johns Hopkins University, January 2015.
• A memory of errors in sensorimotor learning, Brotz Seminar, Marquette

University, September 2014.
159



• A memory of errors in sensorimotor learning, Workshop on Neural Population
Dynamics Underlying Sensorimotor Integration, Janelia Farms (Howard Hughes
Medical Institutes), Ashburn VA, June 2014.

• Learning from error: history of past errors dictates sensitivity to error, TCMC:
Translational and Computational Motor Control, San Diego, November 2013.

• Deploying Condor using VirtualBox on Windows Hosts, Condor Week,
University of Wisconsin - Madison, April 2009.

Patents
Herzfeld, D.J., Ballakur S., Beetel R.J., Friedricks P., Wu A., Zarins D., and

Leung M.S. Devices, systems and methods for evaluation and feedback of
neuromodulation treatment. Patent filed October, 2011. US and International
Patents (11888774, PCT/US2011/057740, 13281269).

Herzfeld, D.J., Beetel R.J., Friedricks P., and Wu A. Evaluation and feedback for
a radiofrequency treatment. Provisional patent filed 2010.

Funding
F31NS090860 (Role: PI) 01/01/15 - Current

A memory of errors in motor adaptation
NIH Ruth L. Kirschstein National Research Service Award which focuses on the
role of error-sensitivity to the processes of savings and meta-learning.
Understanding how to increase error-sensitivity may speed motor recovery during
rehabilitation training following neurotrauma or disease.

Professional Service
• Reviewer: PLOS Computational Biology, Experimental Brain Research, Neural

Networks
• Assistant Reviewer: Nature, Science, Nature Neuroscience, Brain, Journal of

Neuroscience, Journal of Neurophysiology

160

http://www.cs.wisc.edu/condor/CondorWeek2009/presentations.html

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Background
	Previous models of error-based learning
	Previous experimental evidence that error-sensitivity is not static
	Previous experimental evidence for modulation of error-sensitivity

	Specific aims
	Determine the rules that govern control of error-sensitivity
	Identify the locus of error-sensitivity in the human brain
	Purkinje cells in the cerebellum encode movement kinematics necessary for motor learning

	Significance

	A memory of errors in sensorimotor learning
	Introduction
	Materials and Methods
	Experiment 1
	Experiment 2
	Model of error-sensitivity
	Experiment 3
	Experiment 4
	Data collection and statistical analysis

	Results
	History of errors alters error-sensitivity
	Error-sensitivity is local to the experienced error
	Computational model of error-sensitivity
	Experimental tests of error-sensitivity model predictions
	Error-sensitivity model explains savings and meta-learning

	Discussion
	Why does learning from error saturate with large perturbations?
	Why does error-sensitivity depend on the mean of the perturbation distribution?
	Why does error-sensitivity depend on the sequential order of the perturbation distributions?
	Model explains data attributed to structural learning
	Model explains savings following washout
	Model explains savings in a gait-adaptation experiment
	Model explains the limited range of savings
	Model explains savings that was attributed to reinforced repetition
	Why do gradual perturbations sometimes produce savings, and sometimes not?

	Conclusion

	Contributions of the cerebellum to acquisition of motor memories
	Introduction
	Materials and Methods
	Experiment 1: cerebellar stimulation
	Experiment 2: motor cortex stimulation
	Behavioral procedures
	Data collection and statistical analysis

	Results
	Effects of tDCS in the null field
	Effects of tDCS on reaction time
	Effect of cerebellar stimulation on learning from error
	Robustness of statistical results
	Effects of motor cortex stimulation on learning from error
	Effects of cerebellar stimulation on stability of the motor memory
	Effects of motor cortex stimulation on stability of the motor memory
	Effect of stimulation on generalization
	Effect of stimulation on over-night retention

	Discussion
	Feedback control
	Learning from error
	Functional stages of motor memory
	Retention
	Generalization
	Limitations

	Conclusion

	Encoding of action by the Purkinje cells of the cerebellum
	Introduction
	Materials and Methods
	The dataset
	Statistical analysis
	Complex-spikes
	Population response

	Results
	P-cell population response predicts saccade speed
	P-cell responses, organized by error, predict saccade kinematics as a gain-field
	Individual Purkinje cells do not predict saccade kinematics
	Anatomical distribution of Purkinje cells supports population hypothesis

	Discussion
	The importance of bursting and pausing cells in the population
	The importance of organizing the P-cells via their complex-spike properties

	Conclusion

	Conclusions & Future Directions
	Future directions
	Cerebellar organization provides clues for determining the neurophysiological basis of adaptation


	Bibliography
	Curriculum Vitae

