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Albert ST, Shadmehr R. Estimating properties of the fast and
slow adaptive processes during sensorimotor adaptation. J Neuro-
physiol 119: 1367–1393, 2018. First published November 29, 2017;
doi:10.1152/jn.00197.2017.—Experience of a prediction error recruits
multiple motor learning processes, some that learn strongly from error
but have weak retention and some that learn weakly from error but
exhibit strong retention. These processes are not generally observable
but are inferred from their collective influence on behavior. Is there a
robust way to uncover the hidden processes? A standard approach is
to consider a state space model where the hidden states change
following experience of error and then fit the model to the measured
data by minimizing the squared error between measurement and
model prediction. We found that this least-squares algorithm (LMSE)
often yielded unrealistic predictions about the hidden states, possibly
because of its neglect of the stochastic nature of error-based learning.
We found that behavioral data during adaptation was better explained
by a system in which both error-based learning and movement
production were stochastic processes. To uncover the hidden states of
learning, we developed a generalized expectation maximization (EM)
algorithm. In simulation, we found that although LMSE tracked the
measured data marginally better than EM, EM was far more accurate
in unmasking the time courses and properties of the hidden states of
learning. In a power analysis designed to measure the effect of an
intervention on sensorimotor learning, EM significantly reduced the
number of subjects that were required for effective hypothesis testing.
In summary, we developed a new approach for analysis of data in
sensorimotor experiments. The new algorithm improved the ability to
uncover the multiple processes that contribute to learning from error.

NEW & NOTEWORTHY Motor learning is supported by multiple
adaptive processes, each with distinct error sensitivity and forgetting
rates. We developed a generalized expectation maximization algo-
rithm that uncovers these hidden processes in the context of modern
sensorimotor learning experiments that include error-clamp trials and
set breaks. The resulting toolbox may improve the ability to identify
the properties of these hidden processes and reduce the number of
subjects needed to test the effectiveness of interventions on sensori-
motor learning.

expectation maximization; motor learning; two-state model

INTRODUCTION

When people and other animals perform a movement that
produces an unexpected outcome, they learn from the resulting

error and retain a portion of this learning over time. Analysis of
behavior in numerous contexts, including saccade paradigms
(Ethier et al. 2008; Kojima et al. 2004), reach paradigms
(Smith et al. 2006; Criscimagna-Hemminger and Shadmehr
2008; Pekny et al. 2011), vestibular paradigms (Colagiorgio et
al. 2015), and classical conditioning paradigms (Stollhoff et al.
2005), has revealed an interesting behavioral property termed
spontaneous recovery; following learning, washout, and then
passage of time, behavior spontaneously reverts back to the
previously learned state. That is, washout does not return
memory to its baseline condition but appears to engage a
process that masks the previously acquired memory. With
passage of time, this mask appears to lift, resulting in reex-
pression of the learned behavior.

Spontaneous recovery is consistent with a mathematical
model of learning where experience of error engages two (or
more) independent learning processes, a fast process that learns
strongly from error but forgets rapidly and a slow process that
learns weakly from error but exhibits robust retention (Kording
et al. 2007; Smith et al. 2006). It is possible that the putative
learning processes represent interactions between distinct neu-
ral systems such as the cerebellum, the motor cortex, and the
parietal cortex (Galea et al. 2011; Herzfeld et al. 2014b; Kim
et al. 2015). The learning processes may also be represented in
behavior as explicit and implicit processes (McDougle et al.
2015), body vs. world estimation (Berniker and Kording 2011),
temporally labile vs. temporally stabile processes (Hadjiosif
and Smith 2015), a memory of errors (Herzfeld et al. 2014b;
Leow et al. 2016), and preparation-time dependent processes
(Haith et al. 2015). In all of these approaches, experience of
error engages multiple hidden processes that act in parallel,
each responding to error with their own characteristic learning
and retention properties and then combining their outputs to
jointly influence behavior.

An example of a neural system that might implement such a
learning model is the cerebellum and its principal cells, the
Purkinje cells (P cells). Following experience of a visual error,
some P cells prefer that error (Herzfeld et al. 2015; Kojima et
al. 2010) and experience a strong modulation of their complex
spikes. Experience of a complex spike in a P cell produces
plasticity among some of the synapses, resulting in a reduction
in the simple spikes that the P cell produces on the subsequent
trial (Yang and Lisberger 2014). This resembles a learning
process that adapts strongly from error. Interestingly, these
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neurons also exhibit rapid forgetting, displaying little or no
retention (in terms of change in their simple spikes) after 10 s
of time has passed since experience of error (Yang and Lis-
berger 2014). Other P cells do not prefer that same error; for
them, that error produces suppression of their complex spikes
below baseline, resulting in a weak potentiation of their simple
spiking rate. This resembles a learning process that adapts
weakly from error. With repeated trials, the experience of these
errors produces two time scales of change in the simple spikes,
fast change in the P cells that prefer the error and slow change
in the P cells that do not prefer the error (Yang and Lisberger
2014). Therefore, one potential neural mechanism for the
multiple learning processes may be in the cerebellum, where
the various P cells learn differently from a given error based on
their preference for the direction of that error.

Here, our aim was to build a mathematical tool that could, in
principle, extract the hidden processes from observed behavior.
A common tool currently used for analysis of behavioral data
in motor learning is a form of nonlinear optimization called
least mean square error estimation (LMSE). This algorithm
begins with a state space model of learning and then searches
the model’s parameter space to minimize the sum of squared
differences between the observed behavior and the model’s
predictions. LMSE has been widely applied to analyze trial-
by-trial changes of behavior during motor learning (Colagior-
gio et al. 2015; Galea et al. 2015; McDougle et al. 2015;
Trewartha et al. 2014). However, we found that when we
applied LMSE to behavioral data collected during a typical
adaptation experiment, the algorithm fit the measured data
well, but for many subjects, it yielded unrealistic predictions
about the properties of the underlying hidden processes. We
speculated that this problem was due to a fundamental limita-
tion of LMSE; in the context of error-based learning where the
errors we make are influenced by the movements we generate,
the LMSE algorithm is equivalent to a maximum likelihood
estimator for a system that is ignorant of the stochastic nature
of learning and moving.

Therefore, we wondered whether an algorithm that consid-
ered both of these sources of stochasticity, noise in the system
that learned from error and noise in the system that produced
the motor output, could improve our ability to estimate the
hidden processes. We derived a canonical form of the two-state
model that cast the learner in a framework where both learning
from error and the production of a movement were stochastic
processes (Cheng and Sabes 2006; Tanaka et al. 2012). In this
framework, there was uncertainty in both the evolution of
hidden states and the observation of movement (Kording et al.
2007).

To estimate parameters of this more general model of
learning, we considered a maximum likelihood approach that
was first applied to sensorimotor learning by Cheng and Sabes
(2006) called expectation maximization (EM). Unfortunately,
it is difficult to constrain EM to enforce traditional two-state
dynamics. In addition, previous descriptions of the algorithm
assumed time-invariant state space transitions (Ghahramani
and Hinton 1996). In contrast, a typical motor control experi-
ment relies on behavioral probes such as error clamp trials
(Scheidt et al. 2000) and set breaks. The latter type of probe
can make the state space transitions time dependent.

Here, we illustrate how a generalized EM algorithm can be
used to estimate the hidden processes that may underlie a

learning problem, even when constraints are applied to the
model parameters, error clamp trials are included in the exper-
imental paradigm, and the generative model of learning varies
in time due to the occurrence of set breaks. The result is a new
mathematical toolbox.

We demonstrate that EM fits observed human reaching
behavior similarly to LMSE but uses an underlying parameter
set whose likelihood is more likely to explain the observed
behavior. To further evaluate EM, we consider several simu-
lated sensorimotor learning paradigms. Unlike behavioral data
measured in the laboratory, the fast and slow learning pro-
cesses were explicitly known in the simulated data sets, allow-
ing us to objectively quantify performance of EM.

Our work has two main results: 1) behavior during sensori-
motor learning is better represented by a generative model in
which both the generation of movement and learning from
error are stochastic processes, and 2) in such a system, EM
significantly improves the ability to uncover the hidden states
of learning. The resulting algorithm has the practical implica-
tion of reducing the number of subjects that are needed for
statistical testing of hypotheses.

METHODS

Overview. Our goal was to produce a mathematical toolbox that
could robustly estimate the properties of a two-state learning process
from data collected in a typical adaptation experiment. We employed
a statistical algorithm known as EM. EM is an iterative parameter
estimation technique that can be used for system identification in the
presence of latent variables. As its name suggests, EM is composed of
two separate steps. In the expectation step (E-step), a Kalman filter is
used to provide the best estimate of the hidden states under the current
estimate of the model parameters. In the maximization step (M-step),
maximum-likelihood estimation is used to identify a set of model
parameters that maximize an objective function known as the ex-
pected complete log-likelihood function. The E- and M-steps together
are guaranteed to identify model parameters that improve the likeli-
hood of observing the measured data. The E- and the M-steps are
iterated until the likelihood of observing the measured data converges.

Current application of EM in the sensorimotor literature is limited
to linear time-invariant (LTI) systems (Cheng and Sabes 2006), where
the generative model assumes no constraints on the dynamics of the
hidden learning processes. In this case, the E- and M-steps can be
performed analytically via closed-form equations. Although closed-
form equations simplify one’s search for the optimal parameter set,
performing this analytical formulation makes it difficult to enforce the
conventional properties of a two-state model (e.g., the fast process
forgets more rapidly than the slow process). In addition, closed-form
expressions for the M-step of the algorithm cannot always be derived
for complicated likelihood functions, as is the case when set breaks
are included in the generative model. To rectify these issues, we
considered a more general form of the EM algorithm, aptly named
generalized EM (Dempster et al. 1977). Our version of this algorithm
is similar to previous descriptions of EM in the sensorimotor litera-
ture, differing only in the implementation of the M-step. In our
algorithm, numerical techniques are used to search for the maximum
value attained by the expected complete log-likelihood function
within a constrained parameter space. Our implementation is de-
scribed in APPENDIX 1: MATHEMATICAL DESCRIPTION OF THE GENERALIZED
EM ALGORITHM.

To assess the performance of our approach, we tested EM against
a different technique for fitting state-space models to behavioral data,
LMSE. LMSE is a technique in which one identifies model parameters
that minimize the mean-squared-error between the measured behavior
and the model predicted behavior. In an error-based learning model,
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where movement results in errors that teach the motor learning
system, LMSE is identical to a maximum likelihood estimator for a
model that assumes that motor learning and movement production are
deterministic processes, with uncertainty only arising in our measure-
ment of the behavior of the subject, and is described in detail in
APPENDIX 2: OVERVIEW OF THE LMSE ALGORITHM.

We applied our EM and LMSE algorithms to data recorded from
human subjects performing a visuomotor rotation task. Additionally, we
simulated various paradigms and generated data sets in which the fast and
slow states were known. Using these data, we asked how accurately EM
and LMSE could uncover the true states. Finally, we used EM and LMSE
to perform a power analysis, estimating how many subjects were needed
to robustly test the effectiveness of an intervention that modified error
sensitivity and retention in a simulated population.

State space model of learning. Here, we derive a two-state model
of learning. Our model possesses the same canonical form as previous
models in the literature but differs in a fundamental way; we mathe-
matically formalize the inclusion of error clamp trials and set breaks.
This modification yields a more complicated time-varying form of the
state-space equations, but also makes our approach compatible with
general sensorimotor adaptation paradigms.

A learner is presented with a sequence of trials where she is
instructed to make a movement towards a target. On trial n, she is
presented with the target g(n). To achieve this target, she produces a
movement, u(n), and observes the consequences of her action h(n). The
consequence of her action (Eq. 1) is determined by her movement as
well as any external perturbation to her movement, denoted by r(n):

h�n� � u�n� � r�n� (1)

The learner adjusts her movement toward the target according to
her estimate of the perturbation r̂�n�. The movement she produces is
altered by motor execution noise �u

�n�, which has a normal distribution
with mean 0 and variance �u

2. We have

u�n� � g�n� � r̂�n� � �u
�n�. (2)

In a two-state model, we assume that the learner estimates the
perturbation via two independent states, referred to as the slow and
fast states of learning. The values of the two states on trial n are
represented by the vector x�n� � �xs

�n� xf
�n� �Twhere xs and xf are the

scalar-valued slow and fast states. The learner’s estimate of the
perturbation is related to these states according to

r̂�n� � cTx�n� . (3)

Here, c � [1 1]T, meaning that the learner’s estimate is equal to the
sum of the fast and slow states.

Over time, the learner adjusts her estimate of the perturbation accord-
ing to the errors she experiences. Error, denoted by e(n), is the difference
between the observed outcome of the movement, and the target:

e�n� � h�n� � g�n�

� r�n� � cTx�n� � �u
�n� . (4)

Note that this error could be further manipulated by the experi-
menter. In some cases, the experimenter can add additional noise to
the observed movement to increase feedback uncertainty (Wei and
Körding 2010). One could also explicitly attempt to account for
uncertainty in visual or proprioceptive transduction of error. We
remark on these sources of noise further below.

A common experimental manipulation is the occurrence of an error
clamp trial (Scheidt et al. 2000). On these trials, the learner is
presented with an error that is independent of the movement she
performed. Therefore, the error experienced by the learner can take
different functional forms, depending on the trial type, according to

e�n� � �r�n� � cTx�n� � �u
�n�, not an error clamp trial

ec
�n�, error clamp trial.

(5)

Here, the variable ec
�n� takes the value of the error imposed on

trial n.
Two separate processes determine how the learner’s estimate of the

perturbation changes from one trial to the next: learning and forgetting.
Together, learning and forgetting are captured by the state update
equation:

x�n�1� � Ax�n� � be�n� � �x
�n�. (6)

The forgetting process is controlled by the matrix A, which encodes
the rate at which states decay in the absence of error due to the passage
of time. If we assume that each state evolves independently, we can

represent A as a diagonal matrix of the form A � �as 0

0 af
�. Here, as

and af are retention factors for the slow and fast states, respectively.
The learning process is controlled by the vector b, which encodes the

learning rates of the fast and slow states. The parameter b is a 2 � 1
vector of the form b�[bs bf]

T, where bs and bf are the error sensitivities
of the slow and fast states, respectively. These error sensitivities deter-
mine the rate at which each state learns from error.

The entire process of updating the learner’s estimate of the pertur-
bation, like the process of generating a movement, is affected by
noise, represented by �x. This noise source represents the combined
effect of many sources of noise that accumulate in afferent pathways
involved in learning from error. These include but are not limited to
noise in the proprioceptive and visual transduction of error, noise in an
error stimulus itself, and noise in the synaptic mechanisms that
contribute to learning from a given error, etc. We will refer to the
collection of these processes as state update noise and assume that it
is distributed according to a multivariate normal distribution with
mean [0 0]T and variance-covariance matrix Q. In accord with our
assumption that the two states evolve independently, we require that
their covariance be equal to zero, implying that Q is a 2 � 2 diagonal
matrix. To simplify the model, we assumed that the fast- and slow-
state update variances were equal, yielding a variance-covariance

matrix of the form Q � ��x
2 0

0 �x
2�, where �x

2 represents the cumulative

state update variance described above. In a set of control analyses, we
also considered a model of learning where the fast and slow states had
different noise variances (see Different noises in the fast and slow
adaptive processes).

Equation 6 treats the errors experienced in error clamp and non-
error clamp trials the same. That is, we assume that the learner does
not differentiate from an error that was produced by her own behavior
and an error that was presented to her in an error clamp trial. The
validity of this assumption is currently under debate. Although blocks
of error clamp trials have been used extensively in the literature to
assess decay properties of motor memory, two recent reports have
found evidence that in some cases error clamp blocks appear to
contain contextual cues that can affect the process of learning (Vas-
wani and Shadmehr 2013; Vaswani et al. 2015). In contrast, another
report has found evidence that learning in error clamp trials remains
consistent with learning in non-error clamp trials (Brennan and Smith
2015) or that differences in learning become evident only after long
passages of time away from the task (Pekny and Shadmehr 2015).
Given that this question remains unanswered, here we chose the
simplest model wherein all errors were treated equally.

We do not directly observe the states of the fast and slow processes.
Instead, we measure the movement of the subject on each trial. In
many experiments, to normalize across different targets that may be
presented to the subject, it is useful to define the subject’s movement
relative to the target location, y(n):

y�n� � g�n� � u�n�

� cTx�n� � �u
�n� . (7)
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Substitution of the motor action in Eq. 7 into our expression for
error in Eq. 5 yields the following simplification:

e�n� � �r�n� � y�n�, not an error clamp trial

ec
�n�, error clamp trial.

(8)

Finally, we account for set breaks in our generative model of
learning, noting that set breaks result in significant forgetting of
previously learned behavior (Ethier et al. 2008). Therefore, we imag-
ined that set breaks could be modeled as additional decay that elapses
after the conclusion of the trial preceding a set break:

x�n�1� � D�n��Ax�n� � be�n� � �x
�n�� �x

�n� 	 N��0 0 �T, Q�

where D�n� �
Ad � �as
d 0

0 af
d � , trial n is followed by a set break

�1 0

0 1 � , trial n is not followed by a set break.

(9)

The parameter d in Eq. 9 is a decay factor that parametrizes elapsed
time between trials to account for additional forgetting of the fast and
slow states (Joiner and Smith 2008) across a set break. A value of
d�0 means that a set break results in no further forgetting beyond
that which accompanies an experimental intertrial interval (ITI). A
positive value of d indicates that a set break results in more
forgetting than an experimental ITI. Here, we assumed that all set
breaks are an equal length of time, although Eq. 9 could be easily

modified to allow for set breaks of variable length by replacing d
by the product of d with the ratio of the duration of a set break to
the average ITI.

The form of Eq. 9 assumes that the rate of decay of the fast and
slow states follows the retention properties that are observed trial
by trial in the absence of set breaks. Our two-state model can now
be represented as the following system of state-space equations
that account for both error clamp trials and set breaks:

x�n�1� � A�n�x�n� � b�n�e�n� � �x
�n� �x

�n� 	 N��0 0 �T, Q�n��
y�n� � cTx�n� � �u

�n� �u
�n� 	 N�0, �u

2�

A�n� � �A no set break

Ad�1 set break
Q�n� � �Q no set break

AdQAdT
set break

b�n� � �b no set break

Adb set break
e�n� � �r�n� � y�n� not an error clamp trial

ec
�n� error clamp trial

. (10)

In Eq. 10, the “no set break” condition indicates that trial n is not
followed by a set break. The “set break” condition indicates that trial
n is followed by a set break. The “not an error clamp trial” condition
indicates that trial n was not an error clamp trial. The “error clamp
trial” condition indicates that trial n was an error clamp trial. Note that
the sign of the motor noise in Eq. 10 was flipped; because this noise
is Gaussian with mean zero, changing its sign describes an equivalent
system.

Experimental procedure. We recruited n � 20 healthy right-handed
subjects (ages 17–59 yr, 8 male) to perform a visuomotor adaptation
study. All subjects signed a consent form approved by the Johns
Hopkins University School of Medicine Institutional Review Board
before participating in the experiment.

Subjects were seated in a chair and held the handle of a planar
robotic manipulandum. The arm of the subject was obscured from
view, and the position of the hand was represented by a white cursor
projected onto the screen situated directly on top of the hand. The x-
and y-positions of the manipulandum (i.e., the subject’s hand) were
recorded at 200 Hz from optical encoders at a resolution of �0.1 mm
using custom C�� code. Subjects were instructed to move their hand
from a starting circle through a target circle (radius � 1 cm). The
target circle was presented in one of eight positions in the workspace
at a displacement of 10 cm. On some trials, the subject was provided
no visual feedback of the cursor. We term these trials “no-feedback
trials.” Apart from these no-feedback trials, subjects had continual
visual feedback of their hand position during the outward reach. Our
experiment employed a single perturbation condition. The perturba-
tion was a 30° counterclockwise rotation to the cursor position, about
the starting position. The subject was awarded a point each time the
cursor passed through the target within 190–290 ms following move-

ment onset. Subjects were instructed to obtain as many points as
possible during the experiment.

An epoch consisted of eight trials, one to each of the eight targets
around the circle, chosen in a random sequence. The task began with
a baseline period of 30 epochs where subjects reached without any
perturbation (Fig. 1A). We interspersed three epochs of no-feedback
trials within this baseline period to familiarize subjects with this
condition. The baseline period was followed by a block of 30
perturbation epochs. After the perturbation period, visual feedback
was removed for 15 epochs. After this no-feedback period, feedback
was reinstated and the perturbation removed (washout trials) for 30
epochs.

Our analysis focused on the hand end-point error, which was taken
as the angular displacement of the hand from the target when the
subject’s hand displacement exceeded the 10-cm target displacement.

Epoch vs. trial-by-trial analysis of behavior. The two-state model
described in Eq. 10 is readily applied to trial-by-trial data where only
a single target is presented during the experiment. However, in our
visuomotor rotation task, as in many experiments, the paradigm
consisted of multiple targets. In paradigms with multiple targets, the
learning process should be represented with different states for each
target, that is, separate fast and slow states of learning for each target
in the workspace. This expansion of the hidden state dimensionality is
further complicated by generalization of learning across targets. That
is, the error experienced when the subject moves toward one target
generalizes to other targets in the workspace, resulting in differential
amounts of learning across the workspace (Krakauer et al. 2000).

In our task, we did not directly probe this generalization function.
Therefore, we attempted to minimize the effect of generalization on
the learning process by averaging behavior across the eight trials/
targets visited in each epoch of the experiment. In this case, whereas
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the same target may not be visited from one trial to the next, the same
set of targets is visited from one epoch to the next, reducing the effect
of generalization on the recorded epoch-by-epoch behavior. Unless
otherwise noted, all analysis of subject behavior in our visuomotor
rotation task is based on application of the two-state model in Eq. 10
to epoch-by-epoch behavior.

However, we also considered two-state model fits to the raw
trial-by-trial data. To apply our two-state model to the trial-by-trial
data, we first had to decide how best to deal with generalization. We
considered two extreme cases: 1) where learning generalized com-
pletely from one target to all other targets and 2) where there was no
generalization of learning to any other targets. We will refer to these
trial-by-trial models as our full-generalization and no-generalization
models, respectively. In the full-generalization model, we assumed
that the learner used a single fast and slow state to account for the
perturbation for all targets as in Eq. 10. The fast and slow states were
ignorant of the target location and fully generalized learning that
occurred from one target to all other targets. Therefore, in the
full-generalization model, we applied Eq. 10 to the trial-by-trial data
as if the same target had been visited on each trial.

In the no-generalization trial-by-trial model, learning from one
target did not generalize to other targets. This trial-by-trial model had
16 states, one fast and one slow state for each of the 8 targets. All
fast/slow states experienced forgetting on every trial according to a
common fast/slow retention factor. However, if target k was visited on
trial n, then only the fast and slow states associated with target k
learned from the error experienced on that trial (all fast/slow states
had a common fast/slow error sensitivity). Furthermore, all fast and
slow states were subject to a non-zero state noise on each trial. In
APPENDIX 3: MULTIPLE TARGET STATE-SPACE MODEL OF LEARNING, we
provide a complete description of this model and show how it can be
extended to account for generalization that might extend beyond the
width of a single target.

To summarize, the majority of our analysis of behavioral data were
averaged in epochs of eight trials where all eight targets were visited
once in the epoch. In a set of control analyses (see Trial-by-trial
analysis of behavior), we considered two trial-by-trial models that
covered the extremes of generalization, one where learning general-

ized completely across targets and one where learning did not gener-
alize at all across targets. For the simulations (see Simulating realistic
data), we never performed averaging of the simulated behavior.

Simulating realistic data. To test our algorithm, we simulated
realistic data using the two-state system described in Eq. 10. We
simulated four paradigms (Fig. 3A) commonly encountered in the
literature. These paradigms differed with respect to the inclusion or
exclusion of error clamp trials and set breaks as well as the manner in
which the perturbation was introduced (i.e., abruptly vs. gradually).

All paradigms began with a baseline period in which the learner
was simulated for many trials in the absence of any external pertur-
bation to her movements. In paradigm 1 (Fig. 3) this perturbation was
followed by an abrupt introduction of a perturbation. We used a 30°
perturbation to match our visuomotor rotation task. In paradigm 2
(Fig. 3), we built upon paradigm 1 by adding a prolonged error clamp
period that followed the perturbation, where error was completely
eliminated. This type of intervention is a common way to isolate and
measure retention of learned behavior. Paradigm 2 concluded with a
washout period that allowed the simulated learner to return to baseline
behavior. Paradigm 2 closely resembled our visuomotor task, consid-
ering that the simulated error clamp trials produced qualitatively
similar behavior to that demonstrated by our subjects during no-
feedback trials. In paradigm 3, we simulated a learner in a gradual
perturbation environment, followed again by an error clamp period. In
paradigm 4, we built upon the other paradigms by adding set breaks.
In this simulated experiment, we followed a trial structure that is
known to promote spontaneous recovery of behavior (Ethier et al.
2008; McDougle et al. 2015; Smith et al. 2006). After being exposed
to a positive 30° perturbation, the sign of the perturbation is abruptly
switched until the learner expresses approximately baseline behavior.
Then, a block of error clamp trials is provided to test for spontaneous
recovery (Fig. 3, paradigm 4).

For each paradigm, we simulated subject behavior 1,000 times
using fixed model parameter values. On each run, we varied the seed
for the random number generator, which resulted in different learning
profiles due to motor and state noise. To simulate realistic data sets,
we selected retention factors and error sensitivities that matched

Fig. 1. Experimental paradigm: expectation maximization (EM) and least mean square error estimation (LMSE) algorithms uncover different hidden processes.
A: subjects (n � 20) participated in a reach adaptation task. There were 8 targets in total, each chosen pseudo-randomly and presented once in epochs of 8 trials.
Following a no-perturbation baseline period, a 30° counterclockwise rotation was applied to the cursor representing the subject’s hand position. After 30 epochs
of this perturbation, visual feedback was removed for 15 epochs. Finally, visual feedback was reinstated during a washout block of 30 epochs. B: single-subject
behavior. We fit the epoch-by-epoch data (reach direction) of each subject with EM (blue lines; top) and LMSE (red lines; top). Both provide good fits to the
measured data. Each algorithm estimated the fast and slow processes that produced the measured behavior (bottom). For subject S9, these time courses agreed
across algorithms. For subject S16, EM and LMSE time courses exhibited reasonable two-state behavior but had differing learning dynamics. For subjects S2
and S1, the EM and LMSE predictions diverged completely.
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parameters estimated from our experimental data; we fit each sub-
ject’s reaching behavior using EM and LMSE (described below) and
used the mean parameter values across subjects and algorithms for the
simulated retention factors and error sensitivities. For the state and
motor noise variances, we selected the mean values obtained using the
EM algorithm, as LMSE does not provide an estimate of these two
noise sources. The complete parameter set is reported in Table 1.
Three additional parameters appear in Table 1 that were not discussed
in our derivation of the two-state model. These parameters are related
to the initial state of the learner (see APPENDIX 1: MATHEMATICAL
DESCRIPTION OF THE GENERALIZED EM ALGORITHM). We modeled the
initial fast and slow states of the learner as normally distributed
random variables with mean xs

�1� and xf
�1�, respectively, and common

variance �1
2. For our simulations, we considered a naïve learner who

had an initial slow and fast state equal to zero.
Fitting EM and LMSE to data. We fit our measured data collected

in the visuomotor rotation experiment and the simulated data in an
identical manner. Both the EM and LMSE algorithms were given the
observed motor actions y. Each algorithm then used its objective
function to identify an estimate of the model parameters. This process
is described in APPENDIX 1: MATHEMATICAL DESCRIPTION OF THE GENER-
ALIZED EM ALGORITHM for EM and APPENDIX 2: OVERVIEW OF THE LMSE
ALGORITHM for LMSE.

To obtain the model parameters, both algorithms were treated
identically; they were numerically constrained to search an identical
parameter space using the function fmincon in MATLAB R2016a.
Our constrained parameter space was defined by upper and lower
bounds as well as linear inequality constraints relating some of the
parameters. The upper and lower bounds for each parameter are
provided in Table 2. Linear inequality constraints were specified to
enforce traditional two-state model dynamics according to

as � af � 0.001

bf � bs � 0.001
. (11)

The first of these inequalities requires that the slow state be retained
more strongly trial by trial than the fast state. The second of these
inequalities requires that the fast state learn more rapidly from error
than the slow state.

EM is an iterative algorithm that attempts to increase the value of
the likelihood function from one iteration to the next (see APPENDIX 1:

MATHEMATICAL DESCRIPTION OF THE GENERALIZED EM ALGORITHM). For
each EM fit, we performed 100 iterations of the algorithm. The EM
algorithm is sensitive to the initial conditions used to initialize the first
iteration (see APPENDIX 1: MATHEMATICAL DESCRIPTION OF THE GENERAL-
IZED EM ALGORITHM). For each simulation, we started the EM algorithm
from five different initial guesses. For our experimental data, we used
10 different initial guesses for each subject. These initial guesses were
randomly sampled from the constrained parameter space. We selected
the parameter set with the greatest likelihood at the conclusion of the
one-hundredth iteration of the algorithm. Numerical implementation
of the LMSE algorithm can also require different initial guesses for
proper convergence of the fmincon algorithm. For LMSE, we seeded
the fmincon search using 50 different starting parameter sets to better
ensure the identification of minimal squared error within the con-
strained parameter space. As for the EM algorithm, these initial
starting parameter sets were also sampled randomly from within the
constrained parameter space.

Measuring the performance of the algorithms. We assessed how
well EM and LMSE recovered the properties of the fast and slow
states of learning in our simulated experiments, where the hidden
states were explicitly known. After obtaining the parameter sets for
EM and LMSE, we asked how well they predicted the time courses of
the fast and slow states. To do this, we used each parameter set to
simulate noise-free behavior. The noise-free version of our two-state
model was obtained by removing the noise terms from Eq. 10:

x�n�1� � A�n�x�n� � b�n�e�n�

y�n� � cTx�n� (12)

This noise-free system is equivalent to the expected value of the
hidden states and observed behavior at any point in time. We com-
pared the noise-free time courses of the slow state, fast state, and
overall behavior, predicted by EM and LMSE, to the actual time
courses for each simulation. To determine how well the EM and
LMSE time courses matched the actual time courses, we computed the
root mean squared error (RMSE) between the model fit and the actual
data.

We also asked how well the EM and LMSE parameter sets matched
the true parameter set. For this, we computed the absolute error
between the fitted parameters and the underlying two-state model
parameters used to simulate the data.

Sources of noise. In our model of learning, we considered two
potential sources of noise, one in the generation of an action and
the other in learning from error. Our EM algorithm identifies a
parameter set that maximizes a likelihood function that attributes
randomness in measured behavior to these two processes. In
contrast, the likelihood function maximized by the LMSE param-
eter set attributes randomness in measured behavior to the mea-
surement of the behavior itself and assumes that the underlying
learning system behaves deterministically (see APPENDIX 2: OVER-
VIEW OF THE LMSE ALGORITHM). Therefore, the critical difference
between EM and LMSE is the manner in which their corresponding
likelihood functions account for variance in measured behavior.

To compare these likelihood models, we turned to our experimental
data. We computed the corrected Akaike Information Criterion
(AICc) for the likelihood models maximized by EM (Eq. A1.25) and
LMSE (Eq. A2.4). AICc is a metric that can be used to compare the
likelihoods associated with different models discounted by the num-
ber of parameters contained by these models. The corrected Akaike
Information Criterion (AICc) differs from the conventional Akaike
Information Criterion (AIC) by further penalizing the number of

Table 1. Two-state model parameters

Parameter as af bs bf �x
2, ° �u

2, °
2

xs
�1�, ° xf

�1�, ° �1
2, °

2
d

Value 0.985 0.556 0.097 0.213 1.694 1.037 0 0 0 8

Model parameters used for the simulated experiments in our primary
analyses. We selected these parameters specifically to match the dynamics of
learning observed in our experimental data (Fig. 1). To do this, we fit
epoch-by-epoch single subject behavior with expectation maximization (EM)
and least mean square error (LMSE) estimation. For the retention factors and
error sensitivities, we computed the average parameter value across all 20
subjects and both the EM and LMSE fits. We assumed that both the initial slow
and fast states were equal to 0 to represent a naïve learner. For the initial state
variance, we used a value of 0, indicating that each simulated fast and slow
state truly began at the value zero for all simulations. For the state and motor
noise, we used the mean variances predicted by the EM algorithm, as LMSE
does not separately measure these noise terms. Finally, note that the parameter
d only applies for simulation of paradigm 4, which included set breaks.

Table 2. Upper and lower bounds

Parameter as af bs bf �x
2, °

2
�u

2, °
2

xs
�1�, ° xf

�1�, ° �1
2, °

2
d

Value 0,1.1 0,1.1 0,1 0,1 10�7,10 10�7,10 �30,30 �30,30 10�7,10 10�6,30

When fitting our behavioral data and simulated data, EM and LMSE searched the same bounded parameter space. Here, we provide the upper and lower bounds
used for each model fit.
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parameters in the model. In this sense, it is a more conservative way
to compare models that differ in parameter complexity. AICc is
defined by the following equation:

AICc � 2k � 2loge��y�1
N�	� �

2k�k � 1�
n � k � 1

Here, k refers to the number of model parameters and n is the
number of data points used to fit the model. The smaller the value of
AICc, the greater evidence for the corresponding model. Our likeli-
hood model for EM included a state noise and motor noise but omitted
noise in the measurement of subject behavior. Our likelihood model
for LMSE included noise in the measurement of subject behavior but
omitted state and motor noise in the underlying learning process.
Therefore, because EM has two sources of noise and LMSE only one,
the EM model had one greater parameter. We fit these models to the
experimental data by searching for each model’s maximum log-
likelihood and, along with the number of model parameters, computed
the AICc for each subject. We compared the AICc for both models
using a paired t-test across subjects.

To compute the maximum log-likelihood of the LMSE model, we
searched its incomplete (marginal) log-likelihood function directly
(Eq. A2.4). We performed this search from 50 different initial points
using fmincon in MATLAB 2016a. We used the same search space
and model constraints for EM and LMSE, as described previously.
Note that the likelihood model maximized by LMSE also neglects
noise in the initial state of learning (see APPENDIX 2: OVERVIEW OF THE
LMSE ALGORITHM). Therefore, we excluded this initial state variance
from both of our likelihood models. The total number of parameters
for the EM likelihood model and LMSE likelihood model was 8 and
7, respectively.

Power analysis. One way to study the motor learning system is to
compare how subjects perform in different experimental conditions or
at different points in time. For example, we may perform a savings
experiment where we adapt subjects to a perturbation, wash out the
adapted behavior, and then readapt subjects to the same perturbation
(Leow et al. 2016). Typically, we find that subjects adapt to the
perturbation faster the second time. We can ask how this savings is
expressed; did subjects experience an increase in retention, an
increase in error sensitivity, or perhaps both? In other words, our
analyses typically involve comparisons. To determine whether an
intervention resulted in a change in behavior, we can ask how the
model parameters that describe learning changed as the result of
the intervention. This statistical comparison is dependent on the
variance in our estimates of two-state model parameters; as this
variance increases, more subjects are required to obtain a statisti-
cally significant result.

Here, we imagined that we performed an intervention that resulted
in a change to the error sensitivity of a population and a separate
intervention that resulted in a change to the forgetting rate of the
population. For the former, this is what is observed in savings
paradigms (Herzfeld et al. 2014b; Leow et al. 2016; Smith and
Shadmehr 2004). The latter has been observed in experiments that
provide feedback in rewarding and punishing environments (Galea et
al. 2015). We performed power analyses to determine how well EM
and LMSE could detect changes in these two-state model parameters
at different effect sizes. Our power analysis considered two forms of
experiments, within-subject experiments and between-subject exper-
iments. For our within-subject experiment, we imagined that a set of
subjects performed paradigm 2 at two different time points: point A
and point B. For our between-subject experiment, we imaged that
different sets of subjects performed paradigm 2 in contrasting exper-
imental conditions A and B, like a randomized control trial.

To generate data for condition A, we simulated the behavior of
1,000 subjects for paradigm 2, where each subject’s parameter vector
was sampled from a multivariate normal distribution that we esti-
mated from our experimental data (Table 1) by computing the mean
and covariance matrix of the two-state model parameters estimated for

our 20 individual subjects. To produce performance during exposure
B, we imagined that one of these parameters (i.e., a single entry in the
parameter vector) had changed to a different value and then resimu-
lated a new set of 1,000 subjects. We fit each simulated behavior using
EM and LMSE. From this subject pool, we selected a certain number
of subjects. For our within-subject experiment, we sampled the same
subjects from the exposure A and exposure B periods. For our
between-subject experiment, we sampled subjects independently from
the A and B distributions. We next identified the parameter values that
EM and LMSE predicted for the subjects in each exposure. For our
within-subject experiment, we performed a paired t-test across the
exposure A and exposure B parameter values to determine whether
either algorithm could be used to detect a statistically significant
change in the parameter value at a confidence level of 95%. For our
between-subject experiment, we used a two-sample t-test. We re-
peated this analysis for a given number of subjects a total of 10,000
times, each time resampling subjects from our large 1,000-subject
pool. We tracked the percentage of times that EM and LMSE yielded
a statistically significant difference in the parameter value across the
10,000 experiments. We used this percentage as a measure of how
reliably each algorithm detected statistical differences for a given
group size. We used these data to ask how many subjects would be
required in order for EM and LMSE to detect a statistical difference
for �85% of the simulated experiments.

The parameter values we selected for the exposure B period were
motivated by previous studies. For the slow state retention factor, we
considered differences of �3 to �1.5% of the exposure A retention
factor, in agreement with the dynamic range seen across subjects
adapting to visuomotor rotations with rewarding and punishing feed-
back (Galea et al. 2015). We speculate that the difference in retention
factor for the single-state fits in this study is most reflective of the
slow state of learning during the error clamp period. For the fast state
error sensitivity, we selected �15, 25, and 50% to cover the large
differences in error sensitivity observed for individuals adapting in
punishing and rewarding environments (Galea et al. 2015). This range
in error sensitivity is also similar in magnitude to differences in error
sensitivities of the slow and fast processes observed across the control
and reporting groups in a study examining implicit and explicit
components of learning in force field adaptation and visuomotor
rotation learning (McDougle et al. 2015).

Control studies. We performed a set of control studies where we
tested EM and LMSE identification accuracy in situations of greater
noise, different dynamics for the fast and slow processes, and different
assumptions about the structure of our two-state model of learning.
For each of these control studies, we followed the same general
approach; we simulated our two-state model and fit-simulated behav-
ior with EM and LMSE to determine how well each algorithm
identified the slow and fast states of learning. For certain control
analyses, we reanalyzed our subject data. Each of our control studies
is discussed in each of the sections in RESULTS. In Modeling higher
levels of noise, we tested EM and LMSE on simulated data sets with
much greater levels of state and motor noise. In Different noises in the
fast and slow adaptive processes, we discuss evidence for the exis-
tence of two different variances for the update of the fast and slow
states and perform a sensitivity analysis where we test EM and LMSE
on simulated data sets with different levels of fast and slow state
update variances. In Other sources of noise, we consider a way to
model internal noise in the sensory observation of an error. In
Changing the dynamics of the fast and slow adaptive processes, we
tested EM and LMSE on data sets where the dynamics of the fast and
slow processes differed from the average processes measured in the
subject behavior investigated in our primary analysis. In Changing the
bounds on the parameter space, we tested the identification accuracy
of EM and LMSE if we further restricted the parameter space
searched by both algorithms. Finally, in Trial-by-trial analysis of
behavior, we show that fitting our state-space model to the trial-by-
trial subject behavior, as opposed to eight-trial epochs of subject
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behavior, does not have any effect on our primary conclusions. For
brevity, we relegated further details of each of these control studies to
the appropriate section in RESULTS.

RESULTS

Our aim was to design an algorithm that could uncover
hidden processes that contribute to learning from error. We
considered two algorithms, LMSE and EM. To perform our
comparison, we asked volunteers (n � 20) to participate in an
adaptation experiment where they reached to eight targets (Fig.
1A). The task consisted of a baseline period followed by a 30°
visuomotor rotation to the cursor representing the subject’s
hand position. After learning to compensate for the rotation, we
removed visual feedback for an extended set of trials and then
reinstated feedback in the absence of any visual perturbation.

The data, represented in epochs of eight trials, are shown in
Fig. 1B for four subjects. At first, each subject reached to the
target accurately with some noise (top, gray traces). Upon
introduction of the perturbation, subjects rapidly learned to
counter the imposed rotation, learning �80% of the total
rotation within 30 epochs. Upon removing visual feedback, the
adapted behavior decayed gradually toward baseline and then
rapidly washed out during the last 30 epochs of the experiment
when feedback was reinstated.

We assumed that experience of error engaged two learning
processes that differed in their sensitivity to error as well as
retention properties (Eq. 10). We fit this two-state model to the
measured data from each subject to determine the properties of
the hypothesized fast and slow states. To fit our model, we used
two different algorithms, LMSE and EM. Each algorithm was
provided with the noisy, single-subject, epoch-by-epoch data
(Fig. 1B, top, gray traces). From this behavior, the algorithms
estimated model parameters. We used these estimates to pre-
dict time courses of behavior (Fig. 1B, top, blue and red lines)
and the underlying slow and fast states (Fig. 1B, bottom). The
EM and LMSE time courses corresponded to the expected
value of the behavior and hidden states under each algorithm’s
estimates of the model parameters (Eq. 12).

We found that the two algorithms provided similar fits to the
subject data (Fig. 1B, top). However, differences between the
algorithms emerged at the level of the fast and slow states of
learning. For some subjects (subject S9; Fig. 1B, bottom), EM
and LMSE agreed quite well. However, for other subjects, the
predictions made by LMSE and EM differed considerably
(subjects S2 and S1; Fig. 1B, bottom). In these cases, the LMSE
predictions often appeared to be unreasonable. For example, in
subject S2, LMSE predicted large initial biases in the hidden
states (subject S2; Fig. 1B, bottom). These large initial states
were accompanied by a near-zero error sensitivity in the slow
state of learning. This near-zero error sensitivity allowed
LMSE to use the slow state of learning as a bias, accounting for
the dynamics of subject S2’s behavior with the fast state alone.
LMSE predicted that five of the 20 subjects possessed such an
error-insensitive slow state. In contrast, the EM algorithm did
not yield any such aberrant estimates. In another example, for
subject S1, LMSE estimated a slow-state retention factor that
was �1 (subject S1; Fig. 1B, bottom). This led to a monoton-
ically increasing slow state of learning (solid red lines) that
never decayed. LMSE estimated that eight of the 20 subjects
possessed an unstable slow-state retention factor. Again, the
EM algorithm did not yield any such results.

Differences between EM and LMSE were further high-
lighted when the fits were averaged across subjects. That is,
whereas the average fits to the behavior were nearly identical
for EM and LMSE (Fig. 2A, top), the fast- and slow-state
predictions differed considerably between the two algorithms.
LMSE predicted larger contributions from the fast state than
EM and smaller contributions from the slow state. Relative to
LMSE, EM predicted a smaller slow-state retention factor
[paired t-test, t(19) � 3.6, P 	 0.01], a larger slow-state error
sensitivity [paired t-test, t(19) � 3.4, P 	 0.01], a smaller
fast-state error sensitivity [paired t-test, t(19) � 2.6, P 	 0.05],
and a smaller fast-state retention factor [paired t-test,
t(19) � 2.7, P 	 0.05]. That is, the two algorithms made
significantly different predictions regarding parameters of the
system.

The different EM and LMSE model parameters led to contrast-
ing levels of variance in the hidden state time courses; the LMSE
time courses had considerably higher variability across subjects
(compare sizes of error bars; Fig. 2A, bottom). This elevated
variability was largely driven by the outlying, likely errant, single-
subject fits we previously noted. The outlying fits also contributed
to greater variance in the model parameters; the across-subject
standard deviation of the LMSE estimates exceeded that of EM
for five of the six model parameters (all except for the fast-state
retention; Table 3).

These differences between the two algorithms produced a
dilemma. Depending on the choice of algorithm, we obtained
different descriptions of the fast and slow states of learning.
Which estimate was closer to the truth?

To answer this question, we computed AICc to determine
the evidence for the likelihood models maximized by EM and
LMSE. The critical difference between EM and LMSE is that
the likelihood function maximized by EM contains noise in
both the state update process and generation of a movement,
whereas the LMSE likelihood function considers noise only in
the measurement of behavior, not in the underlying learning or
moving processes (see APPENDIX 2: OVERVIEW OF THE LMSE ALGO-
RITHM).

We computed the differences in AICc across likelihood
models for each subject, resulting in a within-subject compar-
ison of EM vs. LMSE (Fig. 2C). We found that the AICc for
the model including state and motor noise (EM) was lower
(better) than that of the model excluding state and motor noise
(LMSE): paired t-test across subjects, t(19) � 3.4, P 	 0.01.
This suggested that despite having an additional parameter, the
learning process is better described by the stochastic system
considered by EM rather than the deterministic one assumed by
LMSE.

In summary, when we fit experimental data with each
algorithm, we found that EM’s estimates of the hidden states
diverged from LMSE. Unlike LMSE, EM did not exhibit
any aberrant fast- or slow-state predictions. EM also yielded
states that were more consistent across subjects; they had
smaller variances in the model parameters, leading to lower
variance in the hidden-state time courses across subjects.
LMSE uses a likelihood function that is blind to state and
motor noise. In contrast, EM’s likelihood function takes
these noise sources into account. The likelihood model
maximized by EM possessed a lower AICc than LMSE. This
implied that a stochastic model of learning and moving was
a better descriptor of the experimental data. Therefore,
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learning from error is likely a stochastic process, not a
deterministic one.

Fitting the two-state model to simulated data. To better
appreciate how well each algorithm could recover the hidden
states when learning and moving are noisy processes, we

performed simulations (Eq. 10) to produce realistic data sets
using parameters obtained from our experiment. Unlike the
behavior collected in the laboratory, the hidden states were
known in these simulated data sets, providing the opportunity
to assess how well EM and LMSE could uncover the hidden
states. Four paradigms were considered: abrupt perturbations
that included or excluded error clamp trials (paradigms 1 and
2; Fig. 3A), a paradigm with a gradual perturbation (paradigm
3; Fig. 3A), and a paradigm that demonstrated spontaneous
recovery and decay of motor memory due to set breaks (par-
adigm 4; Fig. 3A). These simulated paradigms included only a
single target, and the resulting data were analyzed trial by trial.

Figure 3B shows the noise-free time courses of the simulated
behavior (generated via Eq. 12) and the corresponding fast and
slow states. Presence of error produced rapid changes in the
fast state but more gradual changes in the slow state when the
perturbation was introduced abruptly (paradigm 1). Complete
loss of the fast state occurred after set breaks (paradigm 4).
Gradual introduction of the perturbation slowed the onset of
the fast state of learning (paradigm 3). Error clamp trials
produced rapid decay of the fast state but produced only small
changes in the slow state (paradigm 2). Occasionally, the two
states had opposite signs (washout trials; paradigm 2), which
led to spontaneous recovery in error clamp trials (paradigm 4).

Figure 3, C–E, shows typical time courses of the simulated
behavior and hidden states in the presence of noise (Eq. 10).
Similar to our human data, we found that both EM and LMSE
provided excellent fits to the simulated data (Fig. 3C). How-
ever, EM appeared to be more robust in uncovering the fast and
slow states. In some conditions (paradigms 1–3; Fig. 3, D and
E), LMSE produced estimates of the hidden states that di-
verged considerably from the truth. To compare each algo-
rithm’s accuracy in recovering the hidden states of learning, for
each paradigm (1,000 simulations for each of the four para-
digms), we computed the root mean squared error (RMSE)
between three pairs of values, the true values of the simulated
behavior, fast state, and slow state [y, xf, xs], and the predicted
time courses obtained from EM and LMSE. We observed that,
across paradigms, LMSE fit the simulated behavior better than
EM [parameter y, paired t-test, t(999) � 13.9, P 	 10�5; Fig.
4, top). This was expected, as the objective function of LMSE
minimizes the RMSE between the observed behavior and
model predicted behavior (see APPENDIX 2: OVERVIEW OF THE LMSE
ALGORITHM). With that said, LMSE offered only a modestly improved
fit over EM [�10% over EM, parameter y, 1-sample t-test, t(999) �
31.5, P 	 10�5; Fig. 4, bottom].

Whereas LMSE more closely tracked the observed data, EM
produced far more accurate estimates of the fast and slow states
(xf, xs; Fig. 4). In other words, LMSE was more prone to
predicting errant fast- and slow-state time courses (Fig. 3, D
and E). LMSE performed particularly poorly in paradigm 3,
producing fast- and slow-state estimates that had errors exceed-
ing those of EM by �275% [paradigm 3, 1-sample t-test,
t(999) � 25.0, P 	 10�5; Fig. 4, bottom]. LMSE also per-
formed poorly in paradigm 1, where it produced state estimates
that had errors exceeding those of EM by �75–125% [para-
digm 1, 1-sample t-test, t(999) � 14.1, P 	 10�5; Fig. 4,
bottom). Including error clamp trials in paradigm 2 improved
LMSE performance marginally (Fig. 4). Finally, LMSE (and
EM) performed best in paradigm 4, the paradigm that included
both error clamp trials and set breaks (Fig. 4). In this case, EM

Fig. 2. Comparison of parameter values uncovered by EM and LMSE as fitted to
experimental data. A: population behavior, represented by the average time course
across all 20 subjects. Top: the average behavior (black) is shown overlaid with the
average EM (blue) and average LMSE (red) fits. EM and LMSE had very similar
fits to the behavior. However, the algorithms’ predictions regarding the slow and
fast states diverged. Error bars indicate � 1 SE. B: model parameters. Bars indicate
the mean value across the subjects. Error bars indicate � 1 SE. C: we compared
the corrected Akaike Information Criterion (AIC) of 2 competing likelihood
models: one with state and motor noise, and one without state and motor noise.
AICc was lower for a model with state and motor noise for 14 of the 20 subjects
(black lines) and larger for 6 of the 20 subjects (gray lines). A paired t-test across
subjects indicated that a model with motor and state noise possessed a lower AICc
(that is, a better fit) than a model without these noise sources.
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was better than LMSE for the fast state [paradigm 4, 1-sample
t-test, t(999) � 11.8, P 	 10�5; Fig. 4, bottom], with no
difference in estimation of the slow state [paradigm 4, 1-sam-
ple t-test, t(999) � 0.9, P � 0.39; Fig. 4, bottom].

Overall, we found that LMSE performed substantially worse
than EM in uncovering the hidden states. Why did LMSE fit
the observed data well but was unable to robustly uncover the
hidden states? We observed three modes of failure by LMSE.

In the first mode, LMSE identified retention factors for the
slow state that were �1 (paradigm 1; Fig. 3D). Such retention
factors resulted in unstable behavior of the slow state. Relative
to EM, LMSE was significantly more prone to identifying
unstable slow-state retention factors. For paradigms 1 and 3,
LMSE identified unstable slow-state retention factors in 44.8
and 54% of the runs, respectively, whereas for EM this oc-
curred in 15.2 and 6.4% of simulations. The inclusion of error
clamp trials in paradigm 2 protected against this mode of
failure, lowering the number of runs affected by unstable
retention to 19.6% for LMSE and 1.3% for EM. Similarly,
paradigm 4 resulted in a very low frequency of error: 5.2 and
0.7% of simulations for LMSE and EM, respectively. This
mode of failure was also demonstrated by LMSE fits to eight
of the 20 subjects in our experiment (subject S1; Fig. 1B,
bottom).

In the second mode of failure, LMSE converged on a slow
state of learning that was insensitive to error and possessed
near complete retention, causing it to function as a behavioral
bias (paradigm 2; Fig. 3D). In this case, LMSE accounted for
the dynamics of the observed data by relying solely on the fast
state. These error-insensitive slow states of learning were also
observed in LMSE fits to five of the 20 subjects in our
experiment (subject S2; Fig. 1B, bottom).

In the final failure mode, LMSE predicted very large initial
slow and fast states with similar magnitude and opposite signs
(paradigm 3; Fig. 3, D and E). For paradigms 1– 4, LMSE
identified hidden fast or slow states that differed from the
true value (threshold of 10° or greater absolute error) in 8.1,
12.2, 25.8, and 2.5% of simulations, respectively. For EM,
this never occurred. This mode of failure appeared more
prevalent in simulation than in our behavioral data, with EM
and LMSE both predicting only one subject with an initial
state that exceeded 10°, or one-third of the eventual
perturbation.

Unsurprisingly, these three modes of failure were accompa-
nied by larger error in the LMSE estimates of the model
parameters. To quantify each algorithm’s error in estimating
model parameters, we computed the absolute error for each
parameter across all paradigms (Fig. 5). We found that for all
parameters and in all paradigms, LMSE possessed a greater
absolute error than EM [bars labeled P1–P4, paired t-test,
t(999) � 6.0, P 	 10�5; Fig. 5]. EM also better estimated the
set break decay parameter in paradigm 4 than LMSE [errors of
4.99 � 0.25 and 7.67 � 0.43 for EM and LMSE, respectively,
paired t-test, t(999) � 13.2, P 	 10�5]. The inclusion of error
clamp trials and set breaks improved the performance of both
algorithms; with the exception of the initial fast and slow
states, both algorithms had the lowest error in paradigms 2 and
4. Although error clamp trials were also present in paradigm 3,
the gradual introduction of the perturbation hampered the
response of the fast state of learning (paradigm 3; Fig. 3),
which likely impaired the ability of each algorithm (LMSE
more than EM) to differentiate properties of the two learning
processes. The opposite was true for paradigm 4, where the
two set breaks, opposite perturbations, and error clamp trials
resulted in several “excitations” of the fast state (paradigm 4;
Fig. 3B). These excitations significantly improved the ability to
identify properties of the fast state, as evidenced by the mark-
edly reduced error in fast state retention and error sensitivity
(paradigm 4; Fig. 5) for both algorithms. Error clamp trials
appeared to have a similarly dramatic effect on estimation of
slow-state retention and error sensitivity (compare paradigm 1
with paradigm 2; Fig. 5).

In summary, in all paradigms, EM was more accurate in
uncovering the true parameters of the learning processes.
Differences in hidden-state recovery were driven by three
failure modes in the LMSE algorithm, two of which were also
prominent in LMSE fits to our human behavior data set.
Inclusion of set breaks and error clamp trials significantly
improved the ability of both EM and LMSE to uncover the
two-state model parameters.

A better tool for hypothesis testing. Sensorimotor tasks are
occasionally designed to test the effectiveness of an inter-
vention. Model fits provide a tool to ask whether the
intervention significantly affected learning parameters such
as error sensitivity or retention. Power analysis provides an
estimate of how many subjects may be needed to detect a

Table 3. Parameter standard deviation

Paradigm and Algorithm

Two-State Model Parameters

as af bs bf xs
�1� xf

�1� d

Paradigm 1 EM 0.0175 0.1878 0.0355 0.0669 1.5149 1.5345
Paradigm 1 LMSE 0.0330 0.2679 0.0472 0.0780 5.9684 6.5494
Paradigm 2 EM 0.0094 0.1667 0.0253 0.0549 1.5782 1.6078
Paradigm 2 LMSE 0.0225 0.2513 0.0409 0.0715 6.6765 7.4575
Paradigm 3 EM 0.0130 0.1966 0.0393 0.1042 1.5207 1.5892
Paradigm 3 LMSE 0.0368 0.2965 0.0601 0.2902 12.1512 12.6409
Paradigm 4 EM 0.0099 0.1057 0.0241 0.0300 1.3639 1.3469 6.2715
Paradigm 4 LMSE 0.0132 0.1521 0.0297 0.0354 3.8563 4.4528 10.0969
Human subjects EM 0.0127 0.3559 0.0616 0.1282 2.3391 2.7227
Human subjects LMSE 0.0339 0.3236 0.0942 0.2212 2.3771 4.5877

Here, we report the standard deviation of the two-state model parameter distributions shown in Fig. 5. For paradigm 4, we also provide the standard deviation
for the set break decay factor, although this is not shown in Fig. 5. Note that for all parameters in our simulated paradigms, the standard deviation of the LMSE
distribution exceeded that of EM in simulation. On the bottom 2 rows, we provide the standard deviation for each two-state model parameter across the 20
subjects that participated in our visuomotor rotation task.
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significant difference. The number of subjects needed to test
a hypothesis depends on the noise properties of the data. In
our experiment, EM parameter estimates had a lower vari-
ance than LMSE (evident by visual inspection of Fig. 2B;
see Table 3 for numerical details). This lower variability in

the parameter estimates has a practical implication; it should
improve the ability to test hypotheses.

To explore this question, we considered a within-subject
and a between-subject experimental design. A within-sub-
ject experiment is typical for the study of savings and

Fig. 3. Simulated paradigms and behavior. A: we simulated two-state models of learning in the context of 4 behavioral paradigms with abrupt and gradual
introduction of perturbations and with error clamp (EC) trials and set breaks. B: the expected value of the measured behavior (black), fast state (green),
and slow state (blue) of learning. These time courses correspond to two-state model parameters extracted from our subject population (Table 1). C: for
each of the 4 paradigms, behavior was simulated according to a two-state model of learning (see Eq. 10); 1,000 simulations were performed for each
paradigm. The two-state model parameters were fixed for each simulation, solely the seed for the random number generator varied from simulation to
simulation. Here, we provide an example of a behavioral trajectory for each of the 4 paradigms. We fit each trajectory using EM and LMSE. D: the true
slow state of learning along with EM and LMSE predictions. In the example simulations of paradigms 1–3, LMSE failed to capture the slow state of learning. In
paradigm 4, both LMSE and EM closely tracked the true slow state. E: the true fast state of learning along with EM and LMSE predictions. For paradigms 1–3, LMSE
predictions diverged from the true fast state trajectory. For paradigm 4, both EM and LMSE tracked the true fast-state time course.
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anterograde interference, where the same subjects are ex-
posed to similar or contrasting perturbations at two different
time points. Between-subject designs are common when
testing the effects of some intervention against a control
group, where the subjects in both conditions differ. Here, we
imagined that these interventions may cause changes in
learning rate, as is observed in savings paradigms (Herzfeld
et al. 2014b), and retention, as is observed in differing
reward environments (Galea et al. 2015).

We analyzed how many subjects would be required to
achieve a particular level of confidence in the ability to detect
differences in the learning parameter modified by the interven-
tion. To do this, we created experiments by sampling subjects
from a large pool. For our within-subject experiment, we
sampled the same subjects in two different environments. For
our between-subject experiment, we sampled subjects indepen-
dently in the two different environments. We performed t-tests
to see whether there was a difference in the EM and LMSE
learning parameters across the two simulated environments.

We used a paired t-test to test for within-subject changes and
a two-sample t-test to test for between-subject changes. These
simulated environments possessed the same trial structure
(paradigm 2) but differed in that subjects were simulated with
different sets of error sensitivities and retention factors. We
analyzed changes in each error sensitivity and retention factor
separately; i.e., in each of our simulated experiments, we
varied the distribution of a single learning parameter at a time.
We varied the number of subjects and determined the percent-
age of simulated experiments for which a statistically signifi-
cant (P 	 0.05) difference existed in the appropriate model
parameter. Finally, we determined the number of subjects that
would be required to detect a significant change in parameter
value for �85% of the experiment repetitions.

Figure 6, A and B, provides the results for our within-subject
and between-subject analyses, respectively. Unsurprisingly, we
found that a within-subject comparison required fewer subjects
than a between-subject comparison for both EM and LMSE. A
within-subject test is more powerful, as it accounts for be-

Fig. 4. Performance of EM and LMSE algorithms. For each paradigm, 1,000 simulations were performed with fixed two-state model parameters but a varying
seed for the random number generator, altering noise. EM and LMSE were used to fit a two-state model to the simulated behavior. The EM and LMSE parameters
were used to simulate noise-free time courses for behavior, slow state of learning, and fast state of learning. Next, we computed the root mean squared errors
(RMSEs) describing how well EM and LMSE recovered the hidden fast and slow states of learning and the overall behavior. Top: the RMSE for the behavioral
fit (y), slow-state fit (xs), and fast-state fit (xf) are shown. Bottom: a relative RMSE metric was computed to compare the RMSEs of EM and LMSE fits to the
same simulated behavior; the RMSE for the LMSE algorithm was divided by that of EM and multiplied by 100, and then a factor of 100 was subtracted to
compute a percent increase of LMSE RMSE over that of EM. All bars represent the mean RMSE across 1,000 simulations. Error bars represent 95% confidence
intervals. LMSE improved upon the RMSE of the behavior fit by �10% for all paradigms. However, EM was superior in uncovering the slow and fast states.
The largest difference was observed for paradigm 3, followed by paradigm 1, then paradigms 2 and 4.

Fig. 5. Parameter estimation errors. For each simulation, we computed the absolute value of the difference between each true parameter and the parameter values
predicted by EM and LMSE. All bars represent the mean absolute parameter error across all simulations. Error bars represent 95% confidence intervals. For all
parameters and paradigms, EM had lower estimation error than LMSE. P1–P4, paradigms 1–4, respectively.
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tween-subject variability, increasing the power of the statistical
comparison. For both the within-subject test and between-
subject test, we found that the number of subjects required to
achieve an 85% detection rate generally decreased as the effect
size (the magnitude of the parameter difference across the 2
environments) increased. This applied to both increases (solid
lines) and decreases (dashed lines) in each parameter. For all
effect sizes and parameters, EM required fewer subjects to
reach the threshold detection level. Specifically, EM required
�20–95 and 30–95% fewer subjects than LMSE for the
within-subject comparison and across-subject comparison,
respectively.

In summary, we found that, as compared with LMSE, EM
reduced the number of subjects that would be needed to detect
the effects of an intervention that altered error sensitivity or
retention.

Modeling higher levels of noise. Subjects performing senso-
rimotor learning tasks exhibit different levels of noise in their
motor behavior. Does the performance of either EM or LMSE
worsen in the presence of higher levels of noise? To answer
this question, we performed a sensitivity analysis by scaling
the state and motor noise variances to different levels (0.5, 2,
4, 6, 8, and 10 times the values reported in Table 1). At each
level, we simulated the performance of 1,000 subjects in
paradigm 2. We fit the simulated behavior with EM and LMSE
and computed the RMSEs for each algorithm’s estimates of
behavior and hidden states of learning.

As expected, LMSE always provided a closer fit to the
behavioral data (Fig. 7A). This result was expected, because
the objective function of LMSE minimizes the RMSE of the
observed behavior. However, for all levels of noise, EM better
isolated the hidden states of learning (Fig. 7, B and C). The
differences in the hidden-state RMSE were approximately
an order of magnitude larger than the difference in RMSE
for the observed behavior. Therefore, irrespective of the
noise level, it appeared that EM traded off small errors in
fitting the observed behavior for larger improvements in
uncovering the hidden fast and slow states. In summary, we
expect that our conclusions about the relative performance
of EM and LMSE would hold even at higher levels of state
and motor noise.

Different noises in the fast and slow adaptive processes. We
assumed that the fast and slow learning processes were affected
by state noises with equal magnitude. However, faster pro-
cesses that change more rapidly may also be accompanied by
higher levels of noise. In fact, a relationship between learning
rate and state variance would be expected from a Bayesian
interpretation of learning (Kording et al. 2007). In light of these
considerations, we reanalyzed our subject behavior with a
two-state model of learning with two separate variances for fast
and slow states of learning. In line with our intuition, we found
that the variance of the fast state (mean � SE, 2.74 � 0.58°

2
)

was greater [paired t-test, t(19) � 4.39, P 	 0.001] than that of
the slow state (mean � SE, 0.63 � 0.34°

2
).

Fig. 6. Power analysis. We simulated within-subject and between-subject experiments to determine the number of subjects that would be required to detect a
change in learning parameters. We created a pool of 1000 simulated subjects by sampling two-state model parameters from a multivariate normal distribution.
We created different distributions by scaling a single learning parameter for each of the 1,000 subjects. We simulated behavior in paradigm 2 and fit the data
with EM and LMSE. We then sampled subjects to perform hypothesis testing. For within-subject tests, we sampled the same subjects from different parameter
levels. For between-subject tests, we sampled subjects independently from different parameter levels. For each test, we performed a paired t-test (within-subject
analysis) or two-sample t-test (between-subject analysis) to determine whether EM or LMSE detected a statistically significant difference in the learning
parameter. We repeated this process for different random samples of our subject population (10,000 for each test). Finally, we determined the minimum number
of subjects that would be required for each algorithm to detect a significant difference for 85% of our samples. Here, we show the number of subjects required
to reach an 85% detection rate for both EM (black) and LMSE (gray) as a function of the magnitude of the true parameter difference for each test (the effect
size). We performed tests for both increases (solid lines with filled circles) and decreases (dashed lines with filled squares) in two-state model parameters. The
results for the within-subject analysis and between-subject analysis are shown in A and B, respectively. We report only results for which 	500 subjects were
required to reach the 85% detection rate. For LMSE, �500 subjects were required for 5 different parameter-effect size pairs in the between-subject analysis. For
EM, this occurred only once.
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We next asked whether a model with separate variances
for the slow and fast states was more likely to explain the
data than a model with only one variance. To ask this
question, we computed the AICc for each subject for these
two models. A within-subject paired t-test across models did
not reveal a significant difference in the AICc for a model
with a single state noise or separate state noises for the slow
and fast state [paired t-test, t(19) � 0.39, P � 0.703]. This

result indicates that in our experimental data, a model with
two separate variances for the fast and slow states was not
justified.

Despite this, we performed a sensitivity analysis to de-
termine how well EM and LMSE would identify the fast and
slow states of learning if each process was affected by
different levels of state noise. In this analysis, we fixed the
cumulative level of slow- and fast-state variance (i.e., we
fixed the sum of the slow- and fast-state variances) and
changed the fraction of the total state noise variance attrib-
uted to either the fast and slow state. We analyzed levels of
25, 37.5, 50 (i.e., equal contribution from the fast and slow
state), 62.5, and 75%. At each level, we simulated the
behavior of 1,000 subjects performing paradigm 2. We fit
the simulated behavior with EM and LMSE and computed
the RMSEs for each algorithm’s estimates of behavior and
hidden states of learning, as in Fig. 4. Regardless of the
noise level tested, EM had greater error in the fitting of the
measured behavior (Fig. 7D), but it remained superior to
LMSE in the identification of the slow and fast states (Fig.
7, E and F). Therefore, we expect that the superior perfor-
mance of EM would generalize to systems with different
levels of variance in the fast and slow states.

Other sources of noise. We assumed that noise from all
processes that contribute to learning from error could be
combined into a cumulative state noise by adding the variances
of each noise source together. However, there exist sources of
noise that violate this assumption. Consider, for example, noise
involved in the learner’s observation of error. To correctly
incorporate this source of noise, we could modify Eq. 6 by
adding an observation noise that adds to the true error. In this
model, the observation noise would be multiplied by error
sensitivity, and therefore the state update noise in Eq. 6 would
also depend on error sensitivity. We considered this more
complete model by simulating Eq. 6 with an added observation
noise term. We performed 1,000 simulations of this model for
paradigm 2 and attempted to recover the variances of the three
different noise sources using EM. Unfortunately, we found that
our algorithm was unable to estimate the variance of observa-
tion noise. For �80% of simulations, EM’s estimate of the
observation noise variance converged to either an upper or
lower bound of the parameter space, far from the true value we
used in simulation. That is, our algorithm had no power to
estimate this variance separately from the independent state
and motor noises.

This limitation was caused by the multiplication of obser-
vation noise by error sensitivity. Because of this multiplication,
the variance contributed by the observation noise is multiplied
by the square of error sensitivity, and was therefore exceed-
ingly small relative to the independent state noise variance.
Therefore, while a more accurate model of learning might
include this observation noise, we currently cannot estimate its
magnitude using our algorithm.

Changing the dynamics of the fast and slow adaptive
processes. Motor learning in different effectors (e.g., eye, arm,
etc.) and paradigms (e.g., force field adaptation, visuomotor
adaptation, etc.) occurs at different rates. Would the accuracy
of EM or LMSE estimates of the hidden processes vary with
the underlying learning and forgetting rates of the subject
population? To investigate this question, we performed sensi-
tivity analyses for four parameters: slow retention, fast reten-

Fig. 7. Sensitivity analysis for state and motor noise. A–C: we scaled the state
and motor noise variances by 0.5, 2, 4, 6, 8, and 10 times the values reported
in Table 1 (measured from our subject population). At each noise level, we
performed 1,000 simulations of paradigm 2. We fit the simulated reaching
behavior with EM and LMSE, generated EM and LMSE estimates of the
behavior, fast, and slow states of learning, and finally computed the RMSE
between the true time courses and model fits. The RMSEs for the behavior,
slow, and fast state are shown in A, B, and C, respectively. Solid lines indicate
the mean RMSE across all 1,000 simulations at each noise level. The shaded
error bars indicate 95% confidence intervals around the mean. D–F: we
performed another analysis where we allowed the slow and fast processes to
have different variances. We fixed the overall level of state noise (sum of the
fast- and slow-state variances) and performed a sensitivity analysis where we
assigned different fractions of the overall state noise differentially to the slow
and fast states. We tested levels where the slow (or fast) state had 25, 37.5, 50,
62.5, and 75% of the overall variance. For each level, we simulated 1,000
simulations of paradigm 2. We fit the simulated behavior using EM and LMSE
and computed RMSEs for the behavior, slow process, and fast process, as in
A, B, and C, respectively. The RMSEs for the behavior, slow, and fast state are
shown in D, E, and F, respectively. Solid lines indicate the mean RMSE across
all 1,000 simulations at each noise level. The shaded error bars indicate 95%
confidence intervals around the mean.

1380 ESTIMATING FAST AND SLOW PROCESSES OF MOTOR LEARNING

J Neurophysiol • doi:10.1152/jn.00197.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (162.129.251.017) on April 18, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



tion, slow error sensitivity, and fast error sensitivity. We varied
each of these parameters in turn across the ranges used for our
power analysis. For each parameter level, we performed 1,000
simulations of our two-state model (Eq. 10) for paradigm 2.
We fit the simulated behavior with EM and LMSE and com-
puted the RMSEs for each algorithm’s estimates of behavior
and hidden states of learning, as in Fig. 4. As expected, LMSE
continued to better fit the observed data in all simulations (Fig.
8, top). However, in every case, EM was more accurate in
uncovering the fast and slow states (Fig. 8, middle and bottom).
This difference in hidden-state RMSE was an order of magni-
tude larger than that of the observed behavior RMSE. There-
fore, we expect that our conclusions about EM and LMSE
would generalize to environments where learning exhibited
dynamics different from those explored within our primary
analysis.

Changing the bounds on the parameter space. Both algo-
rithms were constrained to search an identical parameter space
(Table 2). Despite this, we found that LMSE frequently exhib-
ited modes of failure in the identification of two-state model
parameters. One of these modes of failure involved the iden-
tification of slow-state retention factors whose magnitude ex-
ceeded 1. Retention factors in this range can lead to unstable
behavior of the slow state of learning. We doubt that a
biological system would exhibit this unstable behavior. Could
the LMSE algorithm be rescued by modifying the parameter
space to prevent the identification of these unstable retention
factors? To answer this question, we reanalyzed our primary
simulations for paradigms 1–4 (Figs. 3, 4, and 5) by refitting
the EM and LMSE algorithm in a parameter space whose upper
bound for the slow- and fast-state retention factor was equal to
1. We fit each simulated behavior with EM and LMSE and

Fig. 8. Sensitivity analysis for the dynamics of the fast and slow states. We performed sensitivity analyses to determine how well EM and LMSE could isolate
the fast and slow states of learning for two-state model parameters that differed from those observed for our visuomotor rotation subject population (Table 1).
We analyzed one parameter at a time, fixing the remaining two-state model parameters to the values reported in Table 1. For each analysis, we scaled the two-state
model parameter to several different values, corresponding to the effect sizes used in our power analysis in Fig. 6. At each parameter level, we performed 1,000
simulations of paradigm 2. We fit the simulated reaching behavior with EM and LMSE, generated EM and LMSE estimates of the behavior, fast, and slow states
of learning, and finally computed the RMSE between the true time courses and model fits. The top, middle, and bottom rows, show the RMSE for the behavior,
slow state, and fast state fits, respectively. The shaded error bars indicate 95% confidence intervals. The parameters investigated are as follows: the fast-state
retention factor (A), the slow-state retention factor (B), the fast-state error sensitivity (C), and the slow-state error sensitivity (D). For each analysis, EM identified
slow and fast states of learning with lower RMSE than LMSE. These results indicate that the relative difference between EM and LMSE performance would
generalize to other dynamics of learning.
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computed the RMSEs for each algorithm’s estimates of behav-
ior and hidden states of learning (Fig. 9).

We found that restricting the parameter space had very little
effect on the performance of EM (compare RMSE for the EM
algorithm in Figs. 4 and 9). This is to be expected, considering
that EM did not identify many solutions with unstable retention
factors for any of the four paradigms. In contrast, the perfor-
mance of LMSE improved in terms of identifying the fast and
slow states, specifically for paradigms 1, 2, and 3 (compare
RMSE for the LMSE algorithm in Figs. 4 and 9). This was also
expected, considering that LMSE predicted many behaviors
with a slow-state retention factor that exceeded 1. However,
despite the improvement in LMSE identification of the
hidden processes in paradigms 1–3, LMSE error exceeded
that of the EM algorithm (paradigms 1, 2, and 3; xs, xf; Fig.
9). Therefore, restrictions on the parameter space that elim-
inated unstable behavior of the slow state of learning im-
proved but did not rescue the performance of LMSE relative
to the EM algorithm.

Trial-by-trial analysis of behavior. Prior to fitting our state-
space model to our behavioral data, we averaged single-subject
behavior across eight-trial epochs, where each of the eight
targets in our rotation task was visited once. We chose an
epoch-based time scale for the analysis of subject behavior to
minimize the effects of generalization on trial-based learning
(see Epoch vs. trial-by-trial analysis of behavior). However, an
epoch-based time scale of motor behavior exhibits different
dynamics from a trial-biased timescale; more is learned and
forgotten in an epoch of eight trials, and the variance in
trial-by-trial behavior differs from that of epoch-by-epoch
behavior. Therefore, the retention factors, error sensitivities,
and noise variances that describe single-subject data for our

epoch-based analysis will differ from those of a trial-based
analysis.

We performed a set of control analyses to confirm that these
differences in the trial-by-trial data would not lead to changes
in the identification accuracy of EM or LMSE. We reanalyzed
our experimental data on a trial-by-trial basis with two differ-
ent models of generalization. Because we did not measure the
generalization function of each subject, we considered two
extreme cases, one where subjects fully generalized learning
from one target to all other targets (full-generalization model)
and another where subjects had no generalization of learning
from one target to other targets (no-generalization model). For
the full-generalization model, we applied Eq. 10 to our trial-
by-trial subject behavior as if the same target was visited on
each trial. For the no-generalization model, we extended the
dimensionality of our state to include a fast and slow state for
each target (a total of 16 states, 2 hidden states for each of the
8 targets). For a given trial, only the fast and slow states for that
target experienced error-based learning consistent with the case
of no generalization, but all states experienced trial-by-trial
forgetting. The full details of this model are described in
APPENDIX 3: MULTIPLE TARGET STATE-SPACE MODEL OF LEARNING.

The trial-by-trial analysis yielded strikingly similar results to
our epoch-by-epoch analysis. As before (Fig. 2A), EM and
LMSE provided similar fits of the measured data for both the
full- and no-generalization models (Fig. 10A, top and bottom,
respectively). As in the epoch-by-epoch predictions in Fig. 2A,
for both trial-by-trial models, EM estimated larger contribu-
tions from the slow state, and LMSE estimated larger contri-
butions from the fast state (Fig. 10B). The differences in these
trajectories were driven by different estimates of the two-state
model parameters (not shown in figure). As with our epoch-
by-epoch model parameters (Fig. 2B), in our full-generaliza-

Fig. 9. Comparison of EM and LMSE in a restricted parameter space. In our primary analysis, we found a preference for LMSE to assign slow retention factors
that exceed 1, which led to unstable behavior of the predicted slow process. We asked whether LMSE could be rescued by modifying the parameter search space
to prevent the identification of these unstable retention factors. To answer this question, we reanalyzed our simulations for paradigms 1–4 (see Figs. 3, 4, and
5) by refitting the EM and LMSE algorithm in a parameter space whose upper bounds for the slow and fast state retention factors were equal to 1. We used the
EM and LMSE parameters to simulate noise-free time courses for behavior, slow state of learning, and fast state of learning. Next, we computed the RMSEs
describing how well EM and LMSE recovered the hidden fast and slow states of learning and the overall behavior for the same simulations depicted in Fig. 4.
Top, the RMSE for the behavioral fit (y), slow-state fit (xs), and fast-state fit (xf) are shown. Bottom: we computed the % difference between the RMSEs for EM
and LMSE. Positive values indicate a larger RMSE for the LMSE algorithm. Error bars represent 95% confidence intervals. We found that restricting the upper
bound on the slow- and fast-state retention factors improved the RMSE of the LMSE fits to the hidden states (compare Fig. 4 with Fig. 9) but did not completely
rescue LMSE predictions; still, EM more accurately identified the true slow and fast states of learning.
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tion model, EM estimated a smaller slow-state retention factor
than LMSE [paired t-test, t(19) � 3.20, P � 0.0047] and a
larger slow-state error sensitivity [paired t-test, t(19) � 3.65,
P � 0.0017]. For the no-generalization model, these trends
were not statistically significant. As before, the variance of the
LMSE parameter estimates exceeded those of EM for all
retention factors and error sensitivities of the no-generalization
model and all parameters except for the fast-state retention
factor of the full-generalization model. These increased vari-
ances were caused by errant LMSE slow- and fast-state pre-
dictions that resembled the failure modes noted in Fig. 1B for
the epoch-by-epoch analysis. For eight and seven of the 20
subjects (no-generalization and full-generalization, respec-
tively), LMSE estimated unstable retention factors that ex-
ceeded 1. For three and six of the 20 subjects (no-generaliza-
tion and full-generalization, respectively), LMSE estimates of
slow-state error sensitivity tended toward zero, yielding slow
states of learning that were largely insensitive to error.

We repeated our AICc analysis on the likelihood models fit
by EM and LMSE. Recall that the LMSE model excludes state
and motor noise and, therefore, possesses fewer parameters
than EM. We found the same result as before (Fig. 2C); the
likelihood used by EM possessed a lower AICc than the
likelihood model used by LMSE [paired t-test for full gener-
alization, t(19) � 2.83, P � 0.011, paired t-test for no gener-
alization, t(19) � 3.81, P � 0.001; Fig. 10C]. Therefore, trial-
by-trial analyses of our data assuming either complete gener-
alization or no generalization of learning both suggested that a
model that includes state and motor noise in the process of

error-based learning was more likely to explain measured
behavior.

Finally, although in our primary analysis we did not perform
any averaging of our simulated data sets, these simulations
were indirectly affected by our epoch-based analysis of subject
behavior because we used these parameter sets as a basis for
the simulated data. For this reason, we used the trial-by-trial
parameters (Fig. 10B) to perform a set of control simulations.
We replicated our epoch-by-epoch analysis by simulating par-
adigm 2 (a total of 1,000 times with our no-generalization and
full-generalization state-space models). We found that al-
though LMSE fit the observed reaching behavior more closely
(y; Fig. 10D), improving on EM by �5%, EM vastly outper-
formed LMSE in the identification of the hidden slow and fast
states by �50–300% (xs and xf; Fig. 10D).

In summary, in both the epoch-by-epoch and trial-by-trial data,
EM and LMSE identified different slow- and fast-state trajecto-
ries. The likelihood model maximized by EM was more likely to
explain both the epoch-by-epoch and trial-by-trial behavior. That
is, in all cases the evidence pointed to a learning model that was
stochastic in its adaptation to error. In simulation, EM was
superior to LMSE in the identification of the slow and fast states
when the parameter set was taken from trial-by-trial subject
behavior as well as from epoch-by-epoch subject behavior.

DISCUSSION

State-space models were first applied to data in adaptation
experiments following the observation that experience of a
single error produced robust trial-by-trial changes in behavior
(Scheidt et al. 2001; Thoroughman and Shadmehr 2000). This

Fig. 10. Comparison of EM and LMSE on a trial-by-trial analysis of the data. We collected the behavior of n � 20 subjects in a visuomotor rotation task. We
fit the two-state model to the trial-by-trial data recorded for individual subjects using EM and LMSE. We considered two trial-by-trial models that differed in
terms of generalization. Top: the full-generalization model consisted of a single fast and slow state whose learning was completely generalized across targets.
Bottom the no-generalization model consisted of separate fast and slow states for each of the 8 targets, whose learning did not generalize across targets. A:
population behavior. We computed the average trial-to-trial behavior of the subject population. The average behavior (black) is shown overlaid with the average
EM (blue) and average LMSE (red) fits. EM and LMSE had very similar fits to the behavior. B: predicted fast and slow states. For both the full and
no-generalization models, EM estimated larger contributions from the slow state of learning and smaller contributions from the fast state of learning. Error bars
indicate � 1 SE. Here, the average time courses across the 8 fast states and 8 slow states are shown for the no-generalization model. C: we compared the corrected AIC
of 2 competing likelihood models: one with state and motor noise and one without these noise sources. AICc was lower (better) for a model with state and motor noise.
Here, we provide the mean difference in AICc for both models (state and motor noise likelihood – no state and motor noise likelihood). D: we used the trial-by-trial
parameters to perform a set of control simulations. We simulated paradigm 2 a total of 1,000 times and fit each simulated data set with EM and LMSE. Whereas LMSE
fit the observed reaching behavior more closely (y), EM vastly outperformed LMSE in the identification of the hidden slow and fast states (xs and xf).
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provided the possibility to assay learning not only in typical
scenarios where perturbations were sustained but also in sce-
narios where the perturbations were random (Donchin et al.
2003; Srimal et al. 2008). The initial models assumed a single
state; however, the observation of spontaneous recovery during
saccade adaptation in monkeys (Kojima et al. 2004) suggested
that experience of error engaged multiple learning processes.
Smith et al. (2006) modified the state-space equations by
proposing that the putative learning processes included a fast
process that learned strongly from error but forgot rapidly and
a slow process that learned weakly from error but exhibited
robust retention. Unfortunately, the task of identifying these
processes was difficult because there was typically no direct
way to measure them. Rather, their state had to be inferred
from their collective influence on behavior. Here, we ap-
proached this estimation problem in the context of data mea-
sured in typical motor learning studies and designed an algo-
rithm to uncover the hidden processes.

Design of a new algorithm. Previous attempts to estimate
fast and slow processes of learning had predominantly relied
on least-squares techniques (Colagiorgio et al. 2015; Galea et
al. 2015; McDougle et al. 2015; Trewartha et al. 2014).
However, to our knowledge, robustness of the least-squares
technique was not tested and compared with alternative algo-
rithms. Here, we used LMSE to fit a two-state model to
behavioral data collected in a reach-adaptation task. We found
that although LMSE fit the observed behavior well, for a subset
of subjects it appeared to misidentify properties of the hidden
processes; for these subjects, LMSE estimated parameters that
produced physically unrealistic trajectories of the fast and slow
states. We hypothesized that LMSE occasionally yielded ab-
errant results because it incorrectly attributed any noise in the
measured behavior to the measurement itself rather than the
underlying learning process. In other words, LMSE was igno-
rant of any randomness in the state update process, which is
affected by both state noise and motor noise (due to the process
of error-based learning). To rectify this problem with LMSE,
we developed a new algorithm based on EM.

Unlike LMSE, the EM algorithm is compatible with systems
where both learning from error and generating a movement
have independent noise sources. We developed a two-state
model that represented the random processes involved in learn-
ing from error and production of movements. For such a
system, our EM algorithm used a different and in some sense
more complete likelihood model than LMSE.

EM has received limited application in the sensorimotor
literature (Cheng and Sabes 2006). We speculate that this is
because of two reasons. 1) Previous applications of the algo-
rithm were restricted to experiments that could be described by
time-invariant state-space models. That is, in previous descrip-
tions of EM, one could not use the algorithm with modern
sensorimotor experiments that include behavioral probes such
as error clamp trials (Scheidt et al. 2000) and set breaks, the
second of which causes time-dependent changes to the state-
space equations. Rather than using a closed-form solution
(Cheng and Sabes 2006), here we used a numerical approach,
allowing us to fit models to data that included error clamp trials
and set breaks. 2) Previous implementations could not specify
bounds on the model parameters and constrain relationships
between model parameters. Here, we solved this problem by
implementing a generalized EM algorithm that maximized the

expected complete log-likelihood function numerically within
a constrained parameter space.

Evaluating the new algorithm. We performed a visuomotor
rotation experiment and fit the measured data with EM and
found that parameters estimated by the algorithm differed from
those of LMSE. EM appeared to eliminate the aberrant single-
subject fits observed for the LMSE algorithm. Additionally, EM
parameters had lower variability across subjects, leading to re-
duced variance in the corresponding fast and slow state time
courses. We computed the AICc for models that included (EM) or
ignored (LMSE) noise in the process of motor learning. We found
that the model with motor and state noise was more likely to
explain the measured data in our experiment than one where noise
was attributed externally to the measurement of subject behavior.
Therefore, we were able to make two conclusions: 1) experimen-
tal data suggested that equations that include noise in the learning
process and moving process are a better descriptor of behavioral
data than those that omit these noise sources; and 2) EM, but not
LMSE, is the appropriate algorithm to uncover parameters of a
stochastic learning system.

To determine how well EM would perform over LMSE on a
data set with state and motor noise, we performed simulations
where the true trajectories of the hidden states were known. We
tested EM and LMSE on simulated data generated in four learning
paradigms across a variety of noise conditions and parameter
values. Although in all cases EM performed slightly worse than
LMSE in fitting the observed data, it consistently outperformed
LMSE in the identification of the hidden states. Specifically, EM
predicted hidden-state time courses that were more closely
matched to the true states and identified model parameters that
were more tightly distributed about the true values. For these
reasons, we expect the EM toolbox to provide a more robust
method of fitting state-space models to single-subject behavioral
data.

In comparison with LMSE, EM identified learning parame-
ters that had significantly reduced variance. For this reason, in
simulated power analyses of typical experiments, we found
that the use of EM significantly reduced the number of subjects
needed to statistically make within-subject and between-sub-
ject comparisons. Therefore, it appears that the new algorithm
might allow for a more robust method of hypothesis testing.

Limitations of the algorithm. Our model assumed that two
sources of noise, a state noise and a motor noise, affected the
processes of learning and movement production, respectively.
Other authors have also considered state noise in models of
learning (Cheng and Sabes 2006; Tanaka et al. 2012). However,
at present, we do not have a complete understanding of the
properties of such noise. With that said, here, we found evidence
that a model with state noise was more likely to explain human
behavior during a visuomotor rotation task. To show this, we
repeated our analysis in Fig. 2C for the comparison of a model
with both state and motor noise and a separate model with only
motor noise. For our subject population, the corrected AIC for the
model with both noise sources was lower (better) than that with
only a motor noise source [paired t-test, t(19) � 2.549, P 	 0.05].
Furthermore, the differentiation between state and motor noise is
more harmonious with a Bayesian interpretation of motor learning
(Kording et al. 2007; Wei and Körding 2010). Additionally, the
existence of state noise is also consistent with autocorrelations that
arise between successive movements that can accumulate due to
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variability in planning a movement that is independent of vari-
ability in performing the movement itself (van Beers et al. 2013).

The manner in which we described state and motor noise
was not entirely accurate. For example, we assumed that the
variance of motor noise was signal independent. Although this
assumption seems reasonable for visuomotor rotation learning
where each movement has the same amplitude, for motor
effectors like the eye, a better model of learning might account
for scaling of noise with the amplitude of movement. Account-
ing for this signal dependency would require fundamental
modifications to the E- and M-steps of our EM toolbox.

A useful modification to our model would be the inclusion of
time-varying error sensitivity (Herzfeld et al. 2014b). Such a
modification could be incorporated by adding an additional
parameter that determines the rate at which error sensitivity
changes over time. Along these lines, the processes of learning
and retention may possess nonlinearities not accounted for by
our model. These modifications to the model would require
derivation of a different expected complete log-likelihood
function and an extended Kalman filter (for nonlinear systems),
and therefore, fundamental modifications to our EM toolbox
would be required to fit such nonlinear behavior.

Another extension could be the inclusion of more than two
states of learning. Preliminary evidence suggests that slow
learning states can be subdivided into two component pro-
cesses (yielding a total of 3 hidden states) with differing levels
of susceptibility to temporal decay (Brennan and Smith 2016;
Inoue et al. 2015). Such a model of learning would be directly
compatible with our EM approach with the addition of a
retention factor, error sensitivity, and initial state.

Different model fits could be obtained by changing the
restrictions on the parameter space we searched for both
algorithms during the fitting process. In some cases, the exper-
imenter can fix the initial states to zero to improve fits.
However, the goal of our work was to identify an algorithm
that could perform robustly for any perturbation sequence
independent of the subject’s initial states and independent of
the modeler’s knowledge of the subject’s initial states. For this
reason we did not attempt to improve EM and LMSE perfor-
mance by fixing the initial states, as this constraint cannot be
applied in general circumstances.

The form of the model can lead to correlations within the
estimated parameters. For example, consider washout of learn-
ing. The rate of washout is determined by both forgetting and
learning from error. Fast washout of learning can be explained by
high error sensitivity and low retention factor. For this reason and
others, there is a tendency to predict that these parameters are
correlated. We quantified correlations within parameters esti-
mated by EM and LMSE. For EM, there were two pairs of model
variables with appreciable correlation (absolute value of correla-
tion coefficient � 0.4), and for LMSE there were three. The two
pairs shared by both algorithms were slow-state retention/slow-
state error sensitivity (EM, r � �0.455; LMSE, r � �0.628) and
fast-state retention/slow-state error sensitivity (EM, r � �0.412;
LMSE, r � �0.682). The third pair exclusive to LMSE was
fast-state retention/slow-state retention (LMSE, r � 0.536).
Therefore, both algorithms were affected by correlated parameter
estimates, and the magnitude of these correlations appeared
smaller for the EM algorithm.

There are alternative approaches to uncovering hidden be-
havioral states. EM can be thought of as a frequentist’s ap-

proach to mathematical estimation. It identifies the parameter
set with the most likely solution to the problem. However, EM
assumes a flat prior distribution over the parameters; in other
words, the algorithm currently does not allow the modeler to
use prior information regarding the probability distributions of
the parameters of the learning system. These considerations
can be accounted for within the context of Bayesian ap-
proaches to estimation. To our knowledge, this Bayesian
framework has not been applied to two-state models of adap-
tation; Bayesian techniques represent an exciting avenue that
may further improve upon the robustness of the EM approach
we pursued here.

Relationship between mathematical hidden states and neu-
ral substrates of learning. Why might it be useful to mathe-
matically identify the hidden processes that underlie learning?
In terms of behavior, various studies have posited that the fast
and slow time scales of learning map onto dissociable compo-
nents of a movement: during saccades, the early component of
the movement exhibits properties that resemble influence of the
slow process, whereas the later component of the same move-
ment exhibits influence of the fast process (Chen-Harris et al.
2008). During reaching, fast processes appear to mirror more
temporally labile components of memory, and slower pro-
cesses appear more temporally stable (Ethier et al. 2008;
Hadjiosif and Smith 2015; Kording et al. 2007; Smith et al.
2006). Fast processes may relate to explicit or cognitive types
of motor learning, where slower processes are supported by
implicit, unconscious motor learning mechanisms (McDougle
et al. 2015; Taylor et al. 2014). Fast states of learning may
require larger amounts of preparation time to be expressed than
slow states of learning, which are present in behavior executed
at low reaction times (Haith et al. 2015).

In terms of neural substrates of learning, some authors have
found that the neural basis of the fast process may depend on the
cerebellum, as evidenced by the observation that noninvasive
cerebellar stimulation can modulate learning from error (Galea et
al. 2011; Herzfeld et al. 2014a) and damage to the cerebellum can
spare slow processes (Xu-Wilson et al. 2009). For example,
people with cerebellar damage maintain the ability to modulate
error sensitivity of the slow process (Hanajima et al. 2015).
Imaging results suggest that for arm movements, both fast and
slow adaptive processes may depend on the cerebellum (Kim et
al. 2015) as well as regions of the cerebral cortex.

At the neuronal level, the existence of different time scales
of memory may be present within the architecture of the
cerebellum. A recent study found that the basic computational
unit in the cerebellum may be microclusters of P cells that
share a common preference for error (Herzfeld et al. 2015).
Anatomic studies show that a given error is transmitted to the
cerebellum via complex spikes that engage different microclus-
ters of P cells placed in disparate regions of the cerebellum
(Fujita and Sugihara 2013). This raises the possibility that a
single error produces plasticity in multiple regions of the
cerebellum, engaging distinct neural elements that can com-
bine their outputs in service of adaptation (Shadmehr 2017).
Indeed, P cells in the flocculus exhibit a preference for error
direction (Yang and Lisberger 2014). When a visual error is in
the preferred direction of a P cell, that cell produces complex
spikes, which in turn results in depression of simple spikes on
the subsequent trial. If the temporal distance between the two
trials is large, these changes fade away, akin to a process of
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forgetting. In contrast, that same visual error is in the anti-
preferred direction of another group of P cells, resulting in
reduction of complex spikes below baseline, which produces
small potentiation of the simple spikes on the subsequent trial.
These two groups of P cells exhibit different sensitivities to the
same error and exhibit forgetting with passage of time, two
elements that appear quite similar to mathematical two-state
models inferred from behavior. That is, the neural basis of mul-
tiple time scales of memory may be in part associated with the
diversity of error preferences in the P cells of the cerebellum.

Comparison of mathematical estimation of the hidden states
of learning with these probes provides an opportunity to
identify the neural substrates that mediate the multiple time
scales of motor memory.

APPENDICES

This article contains four appendices. The first appendix con-
tains a mathematical description of our EM algorithm. Our form
of the EM algorithm applies a different maximization step from
previous descriptions in the sensorimotor literature (Cheng and
Sabes 2006). Our numerical implementation of the M-step would
best classify our algorithm as a generalized EM algorithm. First,
we provide a qualitative overview of EM and generalized EM. We
then derive the equations required to apply EM to our two-state
model. The toolbox that implements the generalized EM algo-
rithm, along with supporting documentation, is available at http://
shadmehrlab.org/tools. The second appendix provides a descrip-
tion of the least-squares (LMSE) algorithm. We discuss the
general structure of LMSE and provide the equations we used for
the algorithm. The third and final appendix discusses an extended
model of learning where multiple targets are presented to the
subject.

APPENDIX 1: MATHEMATICAL DESCRIPTION OF THE
GENERALIZED EM ALGORITHM

Given a state-space model of behavior (Eq. 10), we ask how the
parameters of the model can be estimated from a set of measured
behavioral data. Suppose that our paradigm consists of N trials. The
experimental design of our paradigm specifies the sequence of targets
[�g�1

N � g�1�,g�2�,· · ·,g�N�], error clamp trials, and perturbations [�r�1
N �

r�1�,r�2�,· · ·,r�N�]. During the experiment, we record the subject’s motor

outputs [�u�1
N � u�1�,u�2�,· · ·,u�N�], which, along with �g�1

N, allows us to
compute the subject’s motor action on each trial relative to the target
�y�1

N � y�1�,y�2�,· · ·,y�N�. We provide a description of these variables in
the context of three common sensorimotor learning paradigms (force-
field adaptation, visuomotor adaptation, and saccade adaptation) in
Table A1.

Our goal is to determine the parameter set (	 � �as,af,
bs,bf,�x

2,�u
2,d�) that best explains the measured data. Note that the d

parameter is relevant only for paradigms that include set breaks. A
standard approach to parameter estimation is maximum likelihood
estimation (MLE). MLE identifies the parameter set that maxi-
mizes the likelihood of observing the measured data, given a model
parameter set. We will refer to this likelihood as the incomplete
likelihood function. It is incomplete, as it does not include all the
random variables of our system; i.e., it omits the hidden states of
learning. Please note that other sources may refer to the incomplete
likelihood function as the marginal likelihood function. Stated

mathematically, MLE identifies the parameter set 	̂ according to

	̂ � argmax
	

L��y�1
N�	�. We provide a derivation of the incomplete

likelihood for our two-state model in The incomplete likelihood
function. Although many MLE problems can be solved by maxi-
mizing this function directly, for systems described by our two-
state model (Eq. 10), this maximization has no closed-form solu-
tion and can also be difficult to solve numerically.

Another approach to the MLE problem is an algorithm known as EM.
Instead of finding the maximum likelihood estimator in one step by
maximizing the incomplete likelihood function, EM iteratively increases
the incomplete likelihood function by maximizing a different objective
function known as the expected complete log-likelihood function. We
will derive this function shortly. Central to EM is the complete likelihood
function described by Lc � L��x�1

N,�y�1
N�	�. We will later show that this

complete likelihood is the product of several exponential terms. There-
fore, it is simpler to work with the natural logarithm of the complete
likelihood lc, where lc � loge�L��x�1

N,�y�1
N�	��.

As its name suggests, EM is composed of an expectation (E-step)
and a maximization (M-step) step. The algorithm begins by guessing
an initial parameter set (	0) and then performs the E-step and M-step
in order in an iterative fashion. During the E-step, we consider the
conditional expectation of the complete log-likelihood function,
E�lc��y�1

N,	t�, where 	t is the estimate of the parameter set obtained
from the M-step of the previous EM iteration. We will refer to this
expectation as the expected complete log-likelihood function. We will
later show that a functional form of the expected complete log-

Table A1. Interpretation of model variables for common learning paradigms

Model
Variable

Sensorimotor Learning Paradigm

Force-field adaptation Visuomotor adaptation Saccade adaptation

y(n) The adaptation index describing the
force profile

Heading angle of the reach relative to the
target

The saccadic end point relative to the
cued target

r(n) A value (typically 0 or 1) encoding
the presence or absence of the
force field. It can be standardized
to some force field magnitude
level and then take fractional
values.

An external rotation to the cursor around
the starting position of the reaching
movement

A displacement of the target position
presented after the subject executes
her primary saccade

ec
�n� Error clamp trials in force-field

tasks apply a stiff spring to
eliminate error between subject
forces and robot force; should
take the value 0

The value of the clamped angular error
between feedback of the subject’s hand
position and the target position, which,
during no feedback trials, can take the
value 0 (Kitago et al. 2013).

The value of the clamped angular
error between the final target
position and the end point of the
subject’s primary saccade.

Our derivation of the two-state model used general language that could apply across different sensorimotor learning modalities. Here, we provide a description
of some key parameters in the context of force-field adaptation, visuomotor rotation, and saccade adaptation to assist the general reader.
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likelihood function can be derived using the Kalman filter, concluding
the E-step of the EM algorithm.

In the M-step, we compute an updated parameter set that maxi-
mizes the expected complete log-likelihood function according to
	t�1 � argmax

	

E�lc��y�1
N,	t�. Critically (see Wu 1983), iteration of the

E- and M-steps guarantees that the incomplete likelihood function
increases with each update to the model parameters: L��y�1

N�	t�1� 


L��y�1
N�	t�. The E-step and M-step are iterated until the incomplete

likelihood function converges to a stationary point.
Previous descriptions of the EM algorithm (Ghahramani and

Hinton 1996; Cheng and Sabes 2006) have outlined the E-step and
M-step for linear time-invariant dynamic systems similarly, albeit
not identically, to the form of Eq. 10. The previous implementa-
tions of EM assumed state equations that were time invariant,
representing experiments that had neither set breaks nor error
clamp (Scheidt et al. 2000) trials. Under these assumptions, there
existed closed-form solutions for the M-step. However, the intro-
duction of set breaks in Eq. 10 introduces time-varying nonlineari-
ties to the two-state model that make the closed-form specification
of the M-step difficult, if not impossible. Furthermore, our restric-
tions to the fast- and slow-state dynamics (i.e., the constraints
relating the fast and slow retention factors and error sensitivities)
complicate our ability to identify a closed-form expression for a
parameter set that globally solves the M-step. In such cases, a more
general form of the EM algorithm known as generalized EM is
useful (Dempster et al. 1977). In generalized EM, rather than
maximizing the expected complete log-likelihood function during
the M-step, one selects 	t�1 such that

E�loge�L��x�1
N, �y�1

N�	t�1����y�1
N, 	t�


 E�loge�L��x�1
N, �y�1

N�	t����y�1
N, 	t�

In words, to increase the incomplete likelihood function using EM,
it is sufficient to identify a parameter set that simply increases the
expected complete log-likelihood over the value associated with the
parameter set attained on the previous EM iteration.

In our generalized EM algorithm, we select an invariant parameter
space. We numerically search this parameter space during each
M-step of the algorithm to maximize the expected complete log-
likelihood function. This maximization ensures that we satisfy the
condition of the generalized EM algorithm above. That is, by identi-
fying the maximal value of the expected complete log-likelihood
function in a parameter space that does not change from one iteration
to the next, we guarantee that the updated parameter set is better than (or
at least as good as) the previous parameter set, which is also contained in
the same parameter space. This is a generalized EM algorithm in that it
does not globally maximize the expected complete log-likelihood func-
tion. Although more computationally intensive than the standard EM
algorithm, our generalized EM algorithm has the benefits of allowing the
modeler to specify hard parameter bounds as well as functional con-
straints on the relationship between model parameters. Therefore, when

using our algorithm, the modeler can restrict the parameter space to
obtain only physically relevant solutions and appropriate two-state model
dynamics. In the following section, we describe the mathematics that
define our generalized EM algorithm.

Expectation step. The E-step requires derivation of the expected
complete log-likelihood function. Note that the complete likelihood
function can be factored given the Markov form of Eq. 10 (Shadmehr
and Mussa-Ivaldi 2012). This factorization allows the complete like-
lihood function to be expressed as the following product:

Lc � �
n�1

N

L�y�n��x�n�, 	��� 
n�1

N�1

L�x�n�1��x�n�, y�n�, 	��L�x�1��.

(A1.1)

Eq. A1.1 expresses the complete likelihood function in terms of three
types of probability density functions. Our goal is to find general expres-
sions for the likelihood functions on the right-hand side of Eq. A1.1. We
can obtain the first likelihood L�y�n��x�n�,	� directly from the observation
equation of Eq. 10. This likelihood is the probability density function of
a normal, random variable, which is provided below:

L�y�n��x�n�, 	� � N�cTx�n�, �u
2�. (A1.2)

The second likelihood on the right-hand side of Eq. A1.1 can be
obtained from the state update equation of Eq. 10 and is the proba-
bility density function for a multivariate normal random variable
described by

L�x�n�1��x�n�, y�n�, 	� � N�A�n�x�n� � b�n�e�n�, Q�n��
(A1.3)

To fully specify the complete likelihood of Eq. A1.1, we must also
obtain an expression for L�x�1��, the probability density function for
the initial state. We will assume that the initial state of the learner is
itself a normal random variable:

L�x�1�� � N�x�1, �
V1�. (A1.4)

The mean of the normal random variable x�1 can be represented as
x�1 � �xs

�1� xf
�1� �T, which introduces two additional parameters to our

state-space model, xs
�1� and xf

�1�, the mean initial values of the slow and
fast states, respectively. We will assume that we can represent the

variance-covariance matrix V�1 in the diagonal form V�1 � ��1
2 0

0 �1
2�,

which introduces the parameter �1
2, the variance of the initial states.

Our full parameter set that we seek to identify now consists of 10
variables, i.e., 	 � �as,af,bs,bf,�x

2,�u
2,d,xs

�1�,xf
�1�,�1

2�. Substitution of Eqs.
A1.2 to A1.4 into Eq. A1.1 yields the following expression for the
complete likelihood function:

LC � 
n�1

N

�2��u
2��1⁄2exp��

1

2�u
2�y�n� � cTx�n��2�

� 
n�1

N�1

�2���1�Q�n���1⁄2exp��
1

2
�x�n�1� � A�n�x�n� � e�n� f�n��TQ�n��1�x�n�1� � A�n�x�n� � e�n� f�n���

� �2���1��
V1��1⁄2exp��

1

2
�x�1� � x�1�T�

V1
�1�x�1� � x�1��

(A1.5)

Due the various products of exponential functions in Eq. A1.5, it is
simpler to consider the natural logarithm of the likelihood function,

which we will refer to as lc. Taking the natural logarithm of both sides
of Eq. A1.5 yields the following form for lc.
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lc � �
1

2�u
2 �

n�1

N

�y�n� � cTx�n��2

�
1

2 �
n�1

N�1

�x�n�1� � A�n�x�n� � b�n�e�n��TQ�n��1�x�n�1� � A�n�x�n� � b�n�e�n��

�
1

2
�x�1� � x�1�T�

V1
�1�x�1� � x�1� �

1

2
loge���

V1�� �
N

2
loge��u

2� �
3N

2
loge�2�� �

1

2 �
n�1

N�1

loge��Q�n���.

(A1.6)

We proceed with the E-step by deriving an expression for
E�lc��y�1

N,	t�. This conditional expectation yields the expected com-
plete log-likelihood function that we analyze in the M-step. To
conserve space, we will represent the conditioned terms in the expec-

tation using a · · · symbol. We can easily obtain E�lc�· · ·� by expand-
ing the quadratic terms in Eq. A1.6 and then taking the conditional
expectation. Doing so yields the following intermediate form of the
expected complete log-likelihood function:

E�lc� · · ·� � �
1

2�u
2 �

n�1

N

y�n�2 � cTE�x�n�x�n�T� · · ·�c � 2y�n�cTE�x�n�� · · ·�

�
1

2 �
n�1

N�1�
E�x�n�1�TQ�n��1x�n�1�� · · ·� � E�x�n�1�TQ�n��1A�n�x�n�� · · ·� � E�x�n�1�T� · · ·�Q�n��1b�n�e�n�

�E�x�n�TA�n�TQ�n��1x�n�1�� · · ·� � E�x�n�TA�n�TQ�n��1A�n�x�n�� · · ·�
�E�x�n�T� · · ·�A�n�TQ�n��1b�n�e�n� � e�n�b�n�TQ�n��1E�x�n�1�� · · ·�
�e�n�b�n�TQ�n��1A�n�E�x�n�� · · ·� � e�n�b�n�TQ�n��1b�n�e�n�

� (A1.7)

�
1

2
�E�x�1�T�V1

�1x�1�� · · ·� � E�x�1�T� · · ·��
V1

�1x�1 � x�1
T�
V1

�1E�x�1�� · · ·� � x�1
T�
V1

�1x�1�

�
1

2
loge��

V1� �
N

2
loge��u

2� �
3N

2
loge�2�� �

1

2 �
n�1

N�1

loge��Q�n��� .

As we can see from the above equation, the expected value operator
affects only terms within Eq. A1.7 that are functions of the hidden states.
Our final step is to derive an alternative form for the expectation terms in
Eq. A1.7 that are quadratic functions of the unknown states. We note the
following identity, which applies to any pair of multivariate random
variables x and y and some matrix A of appropriate dimension.

E�xTAy� � E�x�TAE�y� � tr�Acov�y, x��.

Here tr�· · ·� is the trace operator. This identity allows us to
express the quadratic terms of Eq. A1.7 as a function of linear state
expectations and covariances, which we can compute using the
Kalman filter. Applying this identity to Eq. A1.7 yields our final
expression for the expected complete log-likelihood function:

E�lc� � �
1

2�u
2 �

n�1

N

y�n�2 � cT�Vn�N � x̂ n�Nx̂ n�NT�c � 2y�n�cTx̂ n�N

�
1

2 �
n�1

N�1�
x̂ n�1�NT

Q�n��1x̂ n�1�N � tr�Q�n��1Vn�1�N� � x̂ n�1�NT
Q�n��1A�n�x̂ n�N � tr�Q�n��1A�n�Vn�1,n�NT�

� x̂ n�1�NT
Q�n��1b�n�e�n� � x̂ n�NT

A�n�TQ�n��1x̂ n�1�N � tr�A�n�TQ�n��1Vn�1,n�N�
� x̂ n�NT

A�n�TQ�n��1A�n�x̂ n�N � tr�A�n�TQ�n��1A�n�Vn�N� � x̂ n�NT
A�n�TQ�n��1b�n�e�n�

�e�n�b�n�TQ�n��1x̂ n�1�N � e�n�b�n�TQ�n��1A�n�x̂ n�N � e�n�b�n�TQ�n��1b�n�e�n�
� (A1.8)

�
1

2
�x̂ 1�NT�

V1
�1x̂ 1�N � tr��

V1
�1V1�N� � x̂ 1�NT�

V1
�1x�1 � x�1

T�
V1

�1x̂ 1�N � x�1
T�
V1

�1x�1�

�
1

2
loge���

V1�� �
N

2
loge��u

2� �
3N

2
loge�2�� �

1

2 �
n�1

N�1

loge��Q�n���.

Eq. A1.8 is the culminating result of the E-step. Note that the
following shorthand notations have been applied in Eq. A1.8.

x̂ n�N � E�x�n���y�1
N, 	t�

Vn�N � var�x�n���y�1
N, 	t�

Vn�1,n�N � cov�x�n�1�, x�n���y�1
N, 	t�

. (A1.9)

The shorthand quantities x̂ n|N, Vn|N, and Vn�1,n|N can be computed using
a smoothed Kalman filter (Ghahramani and Hinton 1996). To summarize the
Kalman smoother equations, we begin by evaluating the following posteriors
that are computed using a forward pass of the standard Kalman filter:

x̂ n�n � E�x�n���y�1
n, 	t�

Vn�n � var�x�n���y�1
n, 	t�

. (A1.10)
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The terms x̂ n|n and V n|n are our posterior state estimate and variance
covariance matrix on the nth trial, given our current parameter
estimate and all of our observations up to the nth trial. Note that this
expectation and variance are similar but not equivalent to the desired
x̂ n|N and V n|N, which we will refer to as our smoothed Kalman
estimates. These smoothed Kalman estimates are the expectation and
variance of the state on the nth trial, given all the observations we
have made. To first compute x̂ n|n and V n|n, we must calculate the
Kalman gain k�n� according to

k�n� � �cTV n�n�1c � �u
2��1V n�n�1c . (1.11)

To compute the Kalman gain, we require the prior estimate for the
variance-covariance matrix, denoted as V n|n�1. Using the Kalman
gain, we can compute x̂ n|n and V n|n according to the following
equations:

x̂ n�n � x̂ n�n�1 � k�n��y�n� � cTx̂ n�n�1� (A1.12)

and

V n�n � � � k�n�cT�V n�n�1. (A1.13)

Next, we forward project these posteriors to obtain the prior
estimates for the next trial:

x̂ n�1�n � A�n�x̂ n�n � b�n�e�n� (A1.14)

and

V n�1�n � A�n�V n�nA�n�T � Q�n�. (A1.15)

The forward Kalman filter proceeds by recursively iterating Eqs.
A1.11 to A1.15 a total of N times to compute x̂ 1|1,x̂2|2,· · ·,x̂ N|N as well
as V1|1,V2|2,· · ·,VN|N. The prior states and covariances will also be
required for smoothing. We initialize this recursion with the priors x̂1|0

and V1|0. Here, these priors are taken as the parameter estimates for x�1

and V�1 obtained on the previous iteration of the algorithm. That is, the
prior expectation and variance are computed from the values of xs

�1�,
xf

�1�, and �1
2 that were obtained from the M-step of the previous EM

iteration.
To obtain the expectations and covariances required for EM (Eq.

A1.9), we will now perform Kalman smoothing. The Kalman
smoother uses backward recursions to compute the means and vari-
ances of the probability distributions described in Eq. A1.9. In other
words, after obtaining the posterior state and variance-covariance
matrix for all N time steps, we can recursively smooth our previous
estimates. Our current implementation has been described previously
(Cheng and Sabes 2006; Ghahramani and Hinton 1996). We note that
the smoothed Kalman estimates on the final time step, N, were already
computed in the final step of the forward Kalman filter. Therefore,
computation of the quantities in Eq. A1.9 begins with time step N – 1.
First we compute the helper variable J(n), which functions similarly to
a Kalman gain:

J�n� � V n�nA�n�T�V n�1�n��1. (A1.16)

With the computation of J(n), we can now compute Vn|N, our
smoothed variance-covariance matrix:

V n�N � V n�n � J�n��V n�1�N � V n�1�n�J�n�T. (A1.17)

We also need to compute our smoothed state estimates:

x̂ n�N � x̂ n�n � J�n��x̂ n�1�N � x̂ n�1�n� . (A1.18)

Recursion of Eqs. A1.16 to A1.18 computes x̂1|N,x̂2|N,· · ·,x̂ N�1|N and
V1|N,V2|N,· · ·,VN�1|N. To complete the E-step, we also require a
smoothed estimate for the covariance of consecutive states denoted by
Vn�1,n|N. We can obtain this covariance using the following equation:

V n�1,n�N � V n�1�NJ�n� . (A1.19)

Note that V2,1|N,V3,2|N,· · ·,VN,N�1|N does not need to be computed in
a recursive process and can be calculated after recursion of Eqs. A1.16
to A1.18.

Maximization step. In the M-step of the EM algorithm, the goal
is to maximize the expected complete log-likelihood function that is
derived in the E-step. For our two-state model, there exists no
closed-form expression that globally maximizes the expected com-
plete log-likelihood function. Therefore, we used a generalized M-
step that numerically maximizes the expected complete log-likelihood
function (Eqn A1.8) in a constrained parameter space. We maintained
the same parameter space for each iteration of our generalized EM
algorithm. As we described in the introduction to this appendix,
maintaining this invariant parameter space is sufficient to guarantee
convergence of the EM algorithm.

To perform our numerical maximization, we used fmincon in
MATLAB R2016a. Because fmincon performs constrained mini-
mization, we converted our maximization problem to a minimiza-
tion problem by minimizing the negated expected complete log-
likelihood in Eq. A1.8, with respect to the two-state model param-
eter set 	 � �as,af,bs,bf,�x

2,�u
2,d,xs

�1�,xf
�1�,�1

2�. We constrained the
parameter space for this numerical optimization in two ways. First,
we specified lower and upper bounds for all the model parameters
according to Eq. A1.20:

as,min � as � as,max af ,min � af � af ,max

bs,min � bs � bs,max bf ,min � bf � bf ,max

�x,min
2 � �x

2 � �x,max
2 �u,min

2 � �u
2 � �u,max

2

xs,min
(1) � xs

(1) � xs,min
(1) xf ,min

(1) � xf
(1) � xf ,max

(1)

�1,min
2 � �1

2 � �1,max
2 dmin � d � dmax.

(A1.20)

The numerical values for the upper and lower bounds that specify
Eq. A1.20 are provided in Table 2. We used identical bounds for our
least-squares algorithm, as described in APPENDIX 2: OVERVIEW OF THE
LMSE ALGORITHM. The second way we constrained our parameter space
is by enforcing conventional two-state model dynamics. Recall that
the fast and slow states have the following properties; the fast state
learns rapidly but also forgets rapidly. The slow state learns slowly but
forgets slowly. To enforce these state dynamics, one can specify the
following parameter constraints:

as � af � �a

bf � bs � �b

�a, �b 
 0

. (A1.21)

As defined in Eq. A1.21, the slow state will have a greater retention
factor than the fast state, and the fast state will have greater error
sensitivity than the slow state. For Eq. A1.21, we used the value 0.001
for 
a and 
b. To summarize the generalized M-step, we numerically
maximized Eq. A1.8 using fmincon in a parameter space that is
constrained by Eqs. A1.20 and A1.21.

Note that the selection of the upper and lower bounds in Table 2
will be specific to modeler preferences and the features of the
behavioral data. In the current work, we selected upper bounds on the
initial states that were equal in magnitude to the size of the perturba-
tion. We felt that this was a logical bound, as it represents the
maximum value that could be attained by the slow or fast state at any
point during the adaptation time course in the absence of noise. For
our retention factors, we specified an upper bound of 1.1. We selected
this bound to be greater than 1 to demonstrate that the LMSE
algorithm tended to identify unstable properties in the slow state of
learning. In Changing the bounds on the parameter space, we detail
a control analysis where we changed this upper bound to 1 to prevent
the identification of unstable fast and slow retention factors. For our
error sensitivities, we specified a lower and upper bound of 0 and 1 to
prevent “negative” learning or unstable learning, respectively. Finally,
for all the variances of our noise terms (state, motor, and initial state),
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we specified an upper bound of 10°
2
. This parameter will be specific

to the range and units of the behavioral data. Here, we selected this
value to greatly exceed the variance of the residuals for the state-space
model fit to any of our subject behaviors.

Algorithm summary. Here, we offer a practical summary of the
algorithm. The algorithm begins by specifying an initial guess for 	0,
which is the initial value for the model parameters that will seed the
algorithm.

1. Use the current parameter estimate 	t to compute the posteriors
x̂ 1|1,x̂ 2|2,· · ·,x̂ N|N and V1|1,V2|2,· · ·,VN|N as well as the priors
x̂ 2|1,x̂ 3|2,· · ·,x̂ N|N�1 and V2|1,V3|2,· · ·,VN|N�1 by recursively ap-
plying Eqs. A1.11 to A1.15. These forward recursions are seeded

using the current parameter estimates x̂ 1|0 � x�1 and V1|0 � V�1.
2. Use the posterior and prior estimates from step 1 to compute

the smoothed conditional expectations and variances
x̂ 1|N,x̂ 2|N,· · ·,x̂ N�1|N and V1|N,V2|N,· · ·,VN�1|N by recursively ap-
plying Eqs. A1.16 to A1.18 backward in time. Compute the
conditional covariances V2,1|N,V3,2|N,· · ·,VN,N�1|N by applying Eq.
A1.19.

3. Numerically maximize (e.g., fmincon in MATLAB) the ex-
pected complete log-likelihood function (Eq. A1.8) with respect
to the model parameters subject to desired bounds (Eq. A1.20)
and linear constraints (Eq. A1.21). The maximizing model pa-
rameters now become the parameter estimates for the current
EM iteration.

4. Return to step 1 and start the next EM iteration using the updated
model parameters computed in step 3 to perform the state
estimation. Stop when the incomplete likelihood function has
converged.

The incomplete likelihood function. The EM algorithm itera-
tively locates local extrema of the incomplete (marginal) likelihood
function. This function can be evaluated at the conclusion of each
iteration of the algorithm to track convergence. Here, we provide a
brief derivation of the form of the incomplete likelihood function L
��y�1

N�	�. First, by successive application of the definition of condi-
tional likelihood, we can factor the incomplete likelihood function as
follows:

L�y�1�, y�2�, · · · , y�N��	� � L�y�1��	� 
n�2

N

L�y�n��	, �y�1
n�1� .

(A1.22)

This factored incomplete likelihood reveals a direct relationship
between the complete likelihood and the Kalman filter; L�y�n��	,
�y�1

n�1� is a normal, random variable with a mean and variance that can
be computed from the priors obtained using the forward Kalman filter:

E�y�n��	, �y�1
n�1� � E�cTx�n� � �u

�n��	, �y�1
n�1� � cTx̂ n�n�1

var�y�n��	, �y�1
n�1� � var�cTx�n� � �u

�n��	, �y�1
n�1�

� cTV n�n�1c � �u
2. (A1.23)

Therefore, the incomplete likelihood function can be expressed as
follows:

L�y�1�, y�2�, · · · , y�N��	� � 
n�1

N

N�cTx̂ n�n�1, cTV n�n�1c � �u
2�.

(1.24)

Given that Eq. A1.24 is a product of exponentials, we consider the
natural logarithm:

loge�L��y�1
N�	�� � �

1

2 �
n�1

N 1

��n��y�n� � ��n��2

�
1

2 �
n�1

N

loge���n�� �
N

2
loge�2��

where ��n� � cTx̂ n�n�1

��n� � cTV n�n�1c � �u
2. (A1.25)

In summary, to compute the incomplete log-likelihood associated
with a given set of model parameters, we use Eqs. A1.11 to A1.15 to
compute the prior hidden state expectations and variances and subse-
quently apply Eq. A1.25.

Convergence. Here, we discuss issues related to the convergence
of the generalized EM algorithm. In a constrained parameter space,
we can expect our implementation of the generalized EM algorithm to
converge to either a stationary point or a boundary of the constrained
parameter space (Nettleton 1999). As with any EM algorithm, we are
not guaranteed that this stationary point is the desired global maxi-
mum of the incomplete log-likelihood function. The stationary point
reached by an EM algorithm is determined by its initial conditions
(i.e., the starting parameter guess). Therefore, it is imperative to
perform the EM algorithm using different initial conditions. Here, for
each set of data, we used 5 or 10 initial conditions (for simulated and
behavioral data, respectively) in an attempt to identify the parameter
set that resulted in the greatest incomplete log-likelihood. We found
that using 50 different initial conditions for the algorithm did not
meaningfully affect our results, and therefore, we chose a smaller
number of initial conditions to make the computation time for our
study more tractable.

For each initial condition, we performed a fixed number of EM
iterations. We found that the number of iterations required to achieve
convergence scaled with the size of the data set. In virtually all cases,
we found that 100 iterations of the EM algorithm were more than
sufficient to achieve convergence of the incomplete log-likelihood
function. The only exception was for our trial-by-trial control analy-
sis, where we used 200 iterations, due to the greater number of trials
and slower convergence rate. Although we used a fixed number of
iterations in this study, the modeler could set a convergence criterion
that terminates the algorithm once the change in log-likelihood from
one EM iteration to the next fell below some threshold.

APPENDIX 2: OVERVIEW OF THE LMSE ALGORITHM

The current standard technique used for fitting state-space models
to motor learning data is one that selects the model parameters that
minimize the squared error between measured variables and model
predictions. Here, we offer a brief description of one form of this
algorithm, the least mean squared error (LMSE) technique, which
generalizes to other least-squares techniques implemented within the
literature. To use LMSE, we imagine a noise-free state-space analog
of Eq. 10. We previously described this system in Eq. 18 but
reproduce it again below:

x�n�1� � A�n�x�n� � b�n�e�n�

y�n� � cTx�n� . (A2.1)

This noise-free system is equivalent to the expected value of the
states and observed behaviors predicted by our general two-state
model of Eq. 10. To be clear, e(n) refers to the model prediction for the
error in our noise-free system (i.e., the expected value of the error in
Eq. 10 given our model parameters), not the errors actually measured
during the experiment (with the exception of error-clamp trials where
the expected value of the error is equal to the error imposed on that
trial).

Note that Eq. A2.1 describes a deterministic system; specification
of the parameter set 	LMSE � �as,af,bs,bf,xs

�1�,xf
�1�,d� determines entirely

the progression of the slow and fast states for a given sequence of
perturbations, error clamp trials, and set breaks. The LMSE algorithm
simply searches this seven-dimensional parameter space to identify
the parameter set that satisfies the following optimization:

	LMSE � arg min
	

� 1

N �
n�1

N

�y�n� � ŷ�n��2� . (A2.2)
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Here, y(n) is the measurement on trial n and ŷ �n� the model
prediction, which is computed from the output of Eq. A2.1. The
argument of the argmin function of Eq. A2.2 is the mean squared error
between the observation and model prediction for a given parameter
set. For all LMSE fits in this study, we used the MATLAB function
fmincon to identify the least-squares solutions. For each LMSE fit, the
algorithm was seeded at 50 points scattered across the parameter
space to better ensure the identification of the minimum mean squared
error within the search space. The parameter space used for the LMSE
algorithm was identical to that of the EM algorithm and is reported in
Table 2.

The least-squares algorithm can also be thought of as a maximum
likelihood estimator under certain conditions. For our two-state
model, the least-squares algorithm maximizes the likelihood of a
system where any randomness in the measured behavior is attributed
to the measurement process itself (i.e., it is external to the underlying
motor learning process). For this system, we assume that the actual
motor action generated by the subject ytrue

(n) differs from the observed
behavior y(n) due to some non-zero Gaussian measurement noise:

x�n�1� � A�n�x�n� � b�n�e�n�

ytrue
(n) � cTx(n)

y(n) � ytrue
(n) � �measure

(n) �measure
(n) 	 N(0, �m

2 )
where

e(n) � �r(n) � ytrue
(n) , not an error-clamp trial

ec
(n), error-clamp trial

(A2.3)

Here, �m
2 represents the variance of our measurement. Note for the

EM algorithm, we did not include this term and assumed that there
was no measurement noise in our system [i.e., y(n) � ytrue

(n) ]. To
reiterate, Eq. A2.3 describes a system where the underlying learning
process is deterministic. The only noise in our model is that in the
experimental measurement of the behavior, which does not affect the
true behavior of the learner.

To prove that the MLE for this system satisfies the least-squares
optimization in Eq. A2.2, we must compute its incomplete likelihood
function. For this, we consider the factored form of the incomplete
likelihood function of Eq. A1.22. To specify this form, we must
compute the conditional means and variances described in Eq. A1.23.
Critically, for our system in Eq. A2.3, the measured behavior of the
subject is corrupted by a measurement noise that is independent on
every trial. Therefore, all of the measured behaviors are independently
distributed and Eq. A1.23 simplifies to E�y�n��	,�y�1

n�1] � E
�y�n��	� and var�y�n��	,�y�1

n�1] � var�y�n��	� � �m
2 . Applying these con-

ditional means and variances to Eq. A1.25 yields the following form
of the incomplete log-likelihood:

loge�L��y�1
N�	�� � �

1

2�m
2 �

n�1

N

�y�n� � E�y(n)|	��2 �
N

2
loge��m

2 �

�
N

2
loge(2�) (A2.4)

Note that E[y(n)|	] in Eq. A2.4 is also equal to ŷ�n� in the objective
function for LMSE (Eq. A2.2). Furthermore, note that maximization
of Eq. A2.4 implies minimization of the quantity�n�1

N �y�n� � E
�y�n��	��2. This is the same quantity minimized by the LMSE algorithm
in Eq. A2.2. Therefore, the parameter set that solves our least-squares
algorithm also maximizes the likelihood of a system without state and
motor noise.

APPENDIX 3: MULTIPLE TARGET STATE-SPACE MODEL OF
LEARNING

In the state-space model outlined in METHODS, we assume that
the learner possesses a single slow and fast state that are consis-

tently engaged in the learning process on each trial. This model is
most compatible with data sets where the same movement target is
provided to the subject on each trial. Here, we consider a more
complicated paradigm where the learner is presented with a se-
quence of trials where she is instructed to make a movement
toward a target that can change from one trial to the next. We
assume that the number of targets is finite, and equal to G. Note
that for our visuomotor rotation paradigm, G � 8. We will now
provide the necessary modifications to the equations described in
METHODS for this multiple target model.

As for the single target case, the learner adjusts her movement
toward each target according to her estimate of the perturbation. As
before, this estimate depends on the state of a slow and fast adaptive
process. The learner has a separate fast and slow state for each target,
all of which are included in the state vector x�n���2Gx1 �

�s1
�n� · · · sG

�n� f1
�n� · · · fG

�n� �T. Here, sk is the slow state for target k
and fk is the fast state for target k. The learner’s estimate of the
perturbation depends on this state vector according to the following
equation:

r̂�n� � cTx�n�

where c � �2Gx1 � �c1
�n� · · · cG

�n� c1
�n� · · · cG

�n� �T

and ck
�n� � �1, target k is presented on trial n

0, otherwise.
(A3.1)

Eq. A3.1 formalizes the selection of the appropriate fast and slow
states for the current target. On each trial it will contain two entries
that are equal to one (all others are zero). In this way, the estimate of
the perturbation is the sum of the fast and slow states that correspond
to the target presented on trial n.

The evolution of the fast and slow states from one trial to the next
depends both on forgetting and error-based learning according to Eq.
A3.2:

x�n�1� � Ax�n� � C�n�be�n� � C�n��learn
�n� � �base

�n� . (A3.2)

In the no-generalization model analysis described in RESULTS, we
constrained the parameters of our modified state update equation, with
the following four assumptions. Of course, any of these restrictions
could be relaxed to allow for a more general model. First, the fast
states of learning all exhibit the same forgetting properties, as do
the slow states (i.e., they have the same slow and fast retention
factors). Second, all fast states of learning learn at the same rate,
as do the slow states (i.e., they have the same slow and fast error
sensitivities). Third, there is no generalization of learning across
targets. Therefore, the error experienced on trial n only engages the
fast and slow processes that correspond to the target presented on
trial n. Finally, all states experience a baseline level of state noise
on each trial. The fast and slow states engaged in the learning
process experience amplified noise on that trial.

To enforce all these rules, we made the following constraints on the
parameters in Eq. A3.2. To enforce that each state forgets from one
trial to the next, with no difference in forgetting across targets, we
represented A as a 2G by 2G diagonal matrix of the form
A�� 2Gx2G � diag�as,· · ·,as,af,· · ·,af�. To enforce that all slow states
and all fast states learn at the same rate, we used a common error
sensitivity vector b��2x1 � �bs bf �T.

To account for generalization, we introduced the selector matrix
C(n). Suppose that target k is visited on trial n. For our no-general-
ization model, the selector matrix causes only the slow and fast states
corresponding to target k to learn on trial n. In this case, the selector
matrix is a 2G � 2 matrix of the following form:

C�n� � �2Gx2 � �c1
�n� · · · cG

�n� 0 · · · 0

0 · · · 0 c1
�n� · · · cG

�n� �T

.
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It is critical to note that this selector matrix could be used to encode
generalization of learning across targets. In the case of generalization,
the modeler could replace the zero elements in matrix C to cause a
single error to differentially affect the update of each state.

Finally, to enforce our rule concerning the variance of the state
update process, we separated state noise into two terms in Eq. A3.2:
a baseline state noise that affects the evolution of each state on every
trial �base

�n� and an additional noise source that affects only the states
that experienced learning on a particular trial �learn

�n� (i.e., the states for
the target presented on trial n). To enforce the latter property, we
multiplied the learning noise by the selector matrix. Given the dimen-
sions of our system, our baseline and learning noises had the follow-

ing form; the baseline noise �base
�n� ��2Gx1 was unbiased with mean

�0 · · · 0 �T and covariance matrix B��2Gx2G � �base
2 2Gx2G, where

�base
2 represents a common baseline variance for all states. The

learning noise �learn
�n� was unbiased with mean [0 0]T and variance-

covariance matrix L � �learn
2 2x2, where �learn

2 represents the state
update variance associated with learning.

We can account for set breaks with the decay factor introduced in
our model described in Eq. 10. With the introduction of set breaks, our
two-state model can now be represented as the following system of
state-space equations that account for both error clamp trials, set
breaks, and multiple targets:

x�n�1� � A�n�x�n� � b�n�e�n� � �x
�n� �x

�n� 	 N��0 · · · 0 �T, Q�n��
y�n� � cTx�n� � �u

�n� �u
�n� 	 N�0, �u

2�

A�n� ��A no set break

Ad�1 set break
Q�n� ��C�n�L C�n�T � B no set break

Ad�C�n�LC�n�T � B�AdT
set break

b�n� � �C�n�b no set break

AdC�n�b set break
e�n� � �r�n� � y�n� not an error clamp trial

ec
�n� error clamp trial

. (A3.3)
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