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Abstract 

When people and other animals perform a movement that produces an unexpected outcome, they 
learn from the resulting error and retain a portion of this learning over time. Over many trials, individual 
events of learning accumulate into a motor memory. Understanding how these memories form and are 
retained over time, represents a fundamental question facing the neuroscience community. Curiously, 
for reaching movements of the arm, errors that occur solely during periods of movement cause changes 
to both the way we move and also the way we hold the arm still. Here, we explore the way the brain 
corrects for error after a single occurrence, how this response to error changes with experience, and 
finally, how these responses to error change the way we maintain stillness of the arm. 
 In Chapter 2, we consider the mechanisms that guide learning on the timescale of a single trial. 
How does the brain determine the patterns of muscle activity that will better compensate for future 
perturbations? Here we provide evidence that the brain uses its past corrections as a model for its 
future movement plans, and that this single trial learning may be dependent on the cerebellum. 

The response to learning does not remain fixed over time. Rather, over the course of many 
movements, the brain modifies the way it learns. In cases where similar perturbations were experienced 
in the past, it accelerates its rate of learning (savings). In cases where dissimilar perturbations were 
experienced in the past, it slows its rate of learning (anterograde interference). And sometimes, even 
after memories appear forgotten, they reemerge in the absence of error (spontaneous recovery). In 
principle, these changes could occur because the brain alters its ability to retain memory, or the amount 
it is willing to change when it experiences an error. In Chapter 3, we describe a new algorithm that can 
extract these behavioral parameters more accurately than earlier techniques. 
 With this tool in hand, we first show that savings (faster rate of re-learning) is caused by an 
increase in the brain’s sensitivity to error, specifically within fast motor learning processes. We also 
investigate if this may depend on a reward system inside the brain: the basal ganglia. Next, we show 
that reemergence of earlier memories (spontaneous recovery) is caused by the decay of fast learning 
processes. Finally, in Chapter 4, we show that anterograde interference (slowing of learning when a 
dissimilar perturbation is experienced) is caused by two different sources that operate on different 
timescales. The first is a lingering retention of the earlier, inappropriate memory. The second is a 
bonafide reduction in one’s ability to learn from new errors. 
 Changes in the way we learn from error not only affect the rate at which we acquire new 
memories, but also the total amount our brain is capable of learning. In Chapter 5, we demonstrate that 
when errors are highly variable, learning is less complete. Remarkably, changes in the total amount of 
learning appear to be accomplished through changes in error sensitivity, but not our ability to retain 
memory that was already acquired. These changes in the total extent of learning appear to be primarily 
dependent on implicit adaptation, or learning that is acquired in the absence of any cognitive strategies. 
 Lastly, in Chapter 6, we revisit our initial observation, that adaptation changes not only the way 
we move, but also the way we hold still. In a series of experiments in human and non-human primates, 
we report a surprising relationship between movement and posture: on a within-trial basis, the 
commands that hold the arm and finger at a target location depend in part on the mathematical 
integration of the commands that moved the limb to that location.  
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Chapter 1. Introduction 

Near the base of the skull sits a large structure known as the cerebellum. This relatively small neural 

volume houses nearly 50% of all of the neurons in the brain. While all of the roles of the cerebellum 

remain to be elucidated, it is clear that its crystalline circuitry is critical for the process of motor control 

and motor adaptation1–5. Motor control refers to the measurements and theories that describe the way 

the nervous system generates movements of the body. Motor adaptation refers to the process by which 

people and other animals adjust their motor system due to changes in their environment, or 

perturbations of their movements6. While these two disciplines are fatefully intertwined, they are often 

studied in separation. But as patients who suffer from disorders of the cerebellum know all too well, 

there can be no accurate movements without learning, and no learning without movement. 

 In Chapter 2, we begin with the smallest unit of motor adaptation: a single reaching movement. 

We explore mechanisms by which the brain uses its muscles to respond and then predict the occurrence 

of a perturbation. Next, we extrapolate outwards from the response to a single error, to the response 

that emerges after many repeated errors. We consider various hallmarks of learning that appear not 

only in the motor domain, but also in our cognition: savings7, anterograde interference8, spontaneous 

recovery8,9, and asymptotic performance10. Each of these phenomena share a common element – they 

all depend on the way we form and retain new memories. In Chapter 3, we develop and describe a new 

statistical tool that can extract various properties of memory formation. We demonstrate how this tool 

can be used to understand how learning rates increase (savings), how memories can unexpectedly 

reemerge (spontaneous recovery), and how some these processes might be damaged when the reward 

systems of our brain degrade. In Chapter 4, we use our statistical tool to understand why the rate of 

learning slows (anterograde interference) and how this slowing can be alleviated by the passage of time. 

At the heart of all of these phenomena is the concept of error sensitivity: the amount the brain 

learns from the experience of an error. In Chapters 3 and 4, we find that the plastic nature by which our 

experiences shape the acquisition of new memories is uniformly guided by error sensitivity. In Chapter 

5, we demonstrate that our sensitivity to error not only determines the rate at which we learn, but also 

the total extent to which our brain is capable of learning. Furthermore, we test how implicit and explicit 

components of memory11,12 contribute to our total capacity for adaptation. 

Along the way, we will find that the errors that we experience during a movement alter not only 

the way that we move, but also the way that we hold still. In Chapter 6, at the conclusion of this work, 
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we will explore a potential mechanism that might explain this curious interdependence, based not on 

our knowledge of the arm, but of the eye1,13. 

1.1 Learning from a single error 

Movements we make are often affected by unintended errors. The occurrence of a single movement 

error engages learning mechanisms in the brain that change our future behavior. While we do not know 

how different areas of the brain contribute to error-based adaptation, there is at least one structure 

that appears critical for this process: the cerebellum6. 

 The cerebellum is not only needed for our ability to learn14–16, but more generally, our ability to 

produce accurate movements. That is, while we can move without a cerebellum, these movements 

suffer from ataxias (discoordination) that result in action tremor and dysmetria17. Why does disruption 

of the cerebellum cause these deficits? 

 The short answer to this question is that we do not yet know. But there are many conceptual 

frameworks that describe what the cerebellum might contribute to motor control and learning. One of 

the primary theories regards the cerebellum as a forward model, or state predictor6. In this view the 

cerebellum receives an efference copy of ongoing motor commands and uses an internal model to 

predict the future sensory outcome18. Another idea is that the cerebellum may do the reverse – convert 

an intended sensory state into the commands necessary to move there. Or, perhaps, the cerebellum 

houses both these forward and inverse models19,20. 

 In any case, mismatch between the predicted sensory state of the body (potentially computed 

by the cerebellum) and the actual sensory state (measured in the periphery) yields a sensory prediction 

error6. The presence of these errors may teach the brain that its model of the plant and environment are 

incorrect and need to be adjusted. These adjustments to the cerebellum’s internal models might then 

result in motor adaptation14. 

 How might this occur at the neurophysiological level? The climbing fibers from the inferior olive 

which produce complex spikes and thus LTD at the Purkinje cell-parallel fiber synapse (Marr-Albus-Ito 

hypothesis) appear to respond to different types of prediction errors, that is any unexpected change in 

the body’s sensory state, even in the absence of movement21. In the case of associative learning, this 

LTD might modulate the strength or presence of reflexes that can be invoked in response to many types 

of sensory modalities21. In the case of voluntary movement, the consistent pairing of these unexpected 

sensory states (i.e., errors in the movement trajectory) with goal-directed movements, e.g., a saccadic 

eye movement22, would result in task-specific behavioral modifications that eliminate error.  
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 What form might this adaptation take? A longstanding theory posits that the motor corrections 

we produce online to correct for an error may serve as a teaching signal for the motor learning system23. 

In Chapter 2, we examine this possibility by recording the activity of several muscles during reaching 

movements of the arm. While we find ample evidence that learning responses resemble time-shifted 

copies of feedback responses to error24, we also should note that it is unlikely to be the case that the 

motor correction alone is responsible for learning. That is, movements like saccades or brisk reaches of 

the arm14 occur too quickly for the presence of a feedback response, yet there is still learning. Therefore, 

a more holistic view of the cerebellar learning system might be that the presence of sensory prediction 

errors is necessary for adaptation, but the presence of a motor correction could modify the learned 

response to these errors when it is available to the cerebellar circuit. A more abstract argument might 

be that even when movements are too brisk for online correction, the subsequent movement (e.g., 

corrective saccade) could serve as an appropriate corrective response, or that corrections are computed 

implicitly by the nervous system and used for learning even when movements are too brief to allow for 

their expression. 

 To evaluate each of these theories it will be extremely critical to record from and make sense of 

the output neurons of the cerebellum: the deep cerebellar nuclei. It may be the case, that the output of 

the cerebellum is not a prediction at all, but rather a motor correction. For example, activation of the 

interposed nucleus prematurely reduces the velocity of movements executed away from the body, but 

increases the velocity of movements executed towards the body. In other words, stimulation of the 

interposed nucleus produces a correction of velocity in extrinsic space. This result is consistent with a 

different interpretation of cerebellar architecture, one in which the output of the cerebellum is a 

corrective motor signal. In the saccadic example22,25, the cerebellar cortex may output its prediction for 

the motor commands it believes are necessary for a given sensory context (input from the granule cells) 

which is then compared with an efference copy of the ongoing motor response (encoded by mossy fiber 

input) at the level of the nucleus neurons, who then by way of a difference operator yield an estimate 

for the necessary motor correction prior to the arrival of sensory feedback. 

 

1.2 The evolution of the state-space model of learning 

In the field of motor control, mathematical models of learning have revolutionized our approach to 

understanding the dynamics of memory. Of these, the state-space model has emerged as a powerful 

and simple tool with which to interpret behavior and predict human performance. This model began 
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with the consideration of two fundamental components of adaptation: learning from error, and memory 

decay26. That is, when an individual is confronted with a perturbation, errors in their movement are 

transduced by the nervous system into updated plans for movement. At the heart of this process of 

error-based learning is the concept of error-sensitivity: the amount that the brain learns from the 

experience of an error. However, sensorimotor adaptation, like our declarative memories, is also subject 

to forgetting: decay that accumulates over time27. It is through the balancing of one’s error sensitivity 

and rate of forgetting that the nervous system regulates the rate at which it acquires new memories and 

also the total extent to which it is capable of adapting10,28. 

 As it is often said, “All models are wrong, but some are useful” – George Box. True to this idea, 

the state-space model of error-based learning has undergone several rounds of revision over the past 20 

years as it has been confronted with ever-expanding bodies of data and behavioral phenomena. These 

constant revisions represent the true power of this simplistic approach: it generates easily testable 

predictions about behavior that guide new experiments. Here we will detail various modifications to this 

model upon which our current work is built. 

 The constant updating of the state-space model has been driven by three ubiquitous memory-

related phenomena: savings, interference, and spontaneous recovery. Savings refers to an increase in 

the rate of learning that occurs when similar perturbations have been experienced in the past7,8,29–37. 

Interference comes in two forms, retrograde and anterograde. In retrograde interference, adaptation to 

perturbation A, a countermanding perturbation B, and then perturbation A shows an impairment in the 

ability to recall the original A memory due to exposure to B38–41. In anterograde interference, exposure 

to perturbation A directly impairs learning in B8,30,39,42. And finally, spontaneous recovery refers to a 

reemergence of prior memory in the absence of any associated cues8,9,33,43–46. 

 Whereas the original state-space model described adaptation using a single timescale of 

learning, in 2006 a new model was proposed that offered to explain each of these three hallmarks of 

adaptation: the two-state model of learning8. The two-state model posits that adaptation is composed 

of at least two different adaptive-processes that operate on different timescales. The first is a slow 

process of learning that exhibits a low sensitivity to error, but a robust ability to retain memory over 

time. This state is contrasted by the fast process of learning, which learns quickly from error but poorly 

retains its state over time. This model of adaptation was the first to provide a simple account of 

spontaneous recovery; here spontaneous recovery occurs when the fast and slow state counterbalance 

one another, and then the fast state is lost due to the passage of time or absence of error. In addition to 

this recovery, the two-state model also provided an account of savings and anterograde interference. 
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Since then, context-dependent models of adaptation have been proposed with additional states of 

learning, to account for the brain’s ability to simultaneously adapt to conflicting perturbations47,48. 

Furthermore, recent work has focused not only on the learning dynamics of these multiple adaptive 

states, but also their abilities to retain memories, focusing on differences between trial and time-based 

decay29. 

 While multi-rate models remain the best descriptors of spontaneous recovery, the idea that the 

two-state model alone describes savings and anterograde interference has come under considerable 

scrutiny. In terms of savings, it does not appear that multidimensional time-invariant processes alone 

can lead to the established patterns of learning upon re-exposure to a perturbation7,35,36,49. Instead, 

recent studies have suggested that savings is caused by a physical change to the error-based learning 

system: an increase in error sensitivity. Interestingly, changes in error sensitivity have recently been 

implicated in anterograde interference50 and other phenomena such as meta-learning7. 

 Therefore, it appears that both the original state-space model as well as the two-state model 

were incorrect in their assumption that one’s sensitivity to error is a fixed quantity: fixed across error 

size and time. We now know that each of these assumptions is untrue. First, error sensitivity is not 

constant across all error sizes, but declines as errors grow larger51,52. Second, even for a given error size, 

one’s sensitivity to error is not fixed over time but changes with experience. Many studies have 

elucidated various mechanisms and theories for how error sensitivity is modulated over time. Some 

have implicated the dopaminergic system in the alteration of learning rates through model-free or 

reinforcement-based learning mechanisms53,54. One particularly influential class of models relies on a 

Bayesian framework33,55–60; in the presence of motor noise that disrupts our movement plans, planning 

noise that disrupts the way we learn and select motor commands, and process noise that causes trial-

by-trial variations in external disturbances, the Kalman filter provides a normative framework for how 

one should modify their rate of learning over time. 

 One debate that is central to our understanding of savings is whether faster rates of relearning 

are caused by a recall of previous actions61, or errors. In support of the latter possibility, Herzfeld and 

colleagues7 provided compelling evidence that sensitivity to error depends on the consistency of past 

errors. Errors that are experienced consistently and unlikely to change sign are followed by an increase 

in sensitivity. Errors that are volatile and likely to switch are followed by a decrease in sensitivity. More 

impressively, the nervous system can simultaneously increase sensitivity to certain consistent errors, 

while decreasing sensitivity to other inconsistent errors. 
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 This memory of errors model forms the basis of our work in Chapter 5, where we consider how 

the variance of a perturbation alters not only the rate of learning, but also the total extent of learning. In 

keeping with the general theme of constant improvement, we make a critical adjustment to the original 

memory of errors model: we add decay. That is, just as memories are formed and stabilized through a 

combination of learning and decay, so too might the maintenance of our sensitivity to error. The state-

space model of adaptation was designed to capture changes in behavior that occur due to implicit error-

based learning mechanisms. However, more recently, many studies have pointed out that motor 

memories are derived from both implicit and explicit (strategy-based) learning mechanisms12,62–66. In 

Chapter 5, we dissect these two processes to determine which contributes to improvements in 

asymptotic performance. We find evidence for the first time that implicit learning processes modify 

their response to error, and are not inflexible as other authors have suggested31,32,52,64,66–69. 

 

1.3 Fitting models to behavioral data 

Spontaneous recovery of prior memory has been observed in several contexts: saccade paradigms9,61, 

reach paradigms8,43,44, vestibular paradigms45, and classical conditioning paradigms46. This recovery 

appears consistent with a mathematical model of learning where experience of error engages two (or 

more) independent learning processes: a fast process that learns strongly from error but forgets rapidly, 

and a slow process that learns weakly from error but exhibits robust retention8,55. While the two-state 

model of adaptation provides an accurate account of spontaneous recovery, it fails to explain other 

equally ubiquitous phenomena, such as savings49. Rather, savings appears to be caused by a change in 

the underlying process of adaptation: an increase in error sensitivity7,35–37. 

 To understand how the process of adaptation changes over time, we often need to fit state-

space models to behavior at different periods of time. However, when our models posit that behavior is 

composed of numerous hidden states (like the two-state model) it is not a simple task to extract these 

hidden states from measured behavior in a robust manner, especially at the level of individual subjects. 

The most common technique of fitting state-space models to measured behavior is a form of nonlinear 

optimization called least-mean-square-error estimation (LMSE). This algorithm begins with a state-space 

model of learning, and then searches the model’s parameter space in order to minimize the sum of 

squared differences between the observed behavior and the model’s predictions. LMSE has been widely 

applied to analyze trial-by-trial changes of behavior during motor learning45,48,70–73. 
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 In Chapter 3, we demonstrate that the LMSE algorithm has an inherent problem: it maximizes a 

likelihood function that assumes all measured variability comes from the experimenter’s observation 

noise. In other words, every noisy data point we see is because of some electrical anomaly in our 

recording system that corrupts our measurement of participant behavior. Of course, this is simply not 

true. Motor behavior exhibits considerable variability both in the execution of movement, but also in the 

process of movement planning and error-based learning58,74–76. More accurately understanding the 

hidden processes that support adaptation requires a model fitting technique that accounts for these 

stochastic realities of motor learning and motor control. 

 Enter Expectation Maximization (EM)77,78: this statistical algorithm can be used to identify 

parameter sets that maximum the likelihood of observing participant behavior given a model of 

adaptation with any hypothesized noise structure. Yet despite the power of this technique, few have 

attempted to apply it to sensorimotor datasets74,79. The reason for its limited use may be due to 

constraints with earlier formulations of the algorithm: (1) there is no easy way to constrain the 

parameter search making it difficult to isolate desired subsets of parameters that may correspond to a 

desired model of learning (e.g., the two-state model) and (2) there are common experiment probes such 

as set breaks that make analytical specification of the algorithm’s update steps intractable. 

 In Chapter 3, we eliminate these limitations, by generalizing the M-step of the EM algorithm 

using a technique called generalized EM80. The beauty of this approach is that it can work for any model 

complexity. However, this comes at the cost of computational workload. We will demonstrate that the 

EM algorithm better identifies the parameters of two-state models in silico, and also provides more 

robust parameter estimation for individual participant datasets. 

 With that said, we expect over time that even EM, the frequentist’s approach to parameter 

estimation will yield to more robust Bayesian techniques58. The key idea therefore is that model fitting is 

not a trivial process that should be thrown together after careful collection of data: models we choose 

make assumptions about the participant that will ultimately shape one’s beliefs about their behavior. 

 With our GEM tool, we interrogate the motor learning systems during the expression of savings 

in Chapter 3. In both the saccadic system and the reach system, we find that similar mechanisms cause 

changes in adaptation rate: an adjustment to the error sensitivity of fast adapting processes. In addition, 

we point out scenarios where the two-state model can satisfactorily account for spontaneous recovery 

due to a decay in the fast state of learning, and other instances of recovery where a new framework 

may be required. 
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1.4 The neural integrator 

The study of error-based learning in the human psychophysics literature has been heavily influenced by 

the force field paradigm81. Here participants reach to a target location while holding a robotic arm that 

can apply forces to the arm to change reaching dynamics. The most common set of forces is a velocity-

dependent curl field, or one that applies forces perpendicular to the hand’s trajectory and proportional 

to its speed. In Chapter 2, we study the consequence of this type of perturbation on the timescale of a 

single trial. However, a puzzle exists without the learned response to this perturbation; even though the 

perturbation only occurs during movement of the limb, on the next trial, participants change the way 

they move their arm, but also the way they hold still82. Specifically, participants exert forces against the 

handle during periods of holding still that are entirely unnecessary to keep the hand within the target. 

 In principle, there are at least two possible explanations for these postural changes. The first is 

that they are caused by adaptation82, or more specifically, that the errors we experience during a 

movement mistakenly generalize to the way our brain updates its plan for holding still. The second is 

that the way we hold is determined in part by the way we move. To understand this idea, consider the 

common expression, d = r x t, or distance is equal to rate multiplied by time. If we know the velocity of 

an object and how long it was moving, we know where that object is in space without having to measure 

its position. Now, if we think about velocity like a reaching movement, and a position like a posture, it 

may be the case that we can calculate our postures from our movements. 

 Remarkably, this architecture is true of the oculomotor system. To move the eye, activity in the 

superior colliculus1 causes neurons in the reticular formation to burst83. These burst neurons drive a 

pulse of activity that moves the eye84 to the intended target. But to maintain gaze on the target, motor 

neurons for the eye must maintain a “step” of activity that counteracts elastic forces of the eye tissue 

that pull the eye back towards the center of the globe85. From where does this step of activity arise? 

Because the burst neurons of the reticular formation only fire during movement, there must be another 

set of premotor neurons that drive the motor neurons during gaze-holding. However, stimulation of the 

burst neurons thickens the plot. When burst neurons are stimulated transiently, the eye not only makes 

a saccade, but also has a sustained hold period long after the saccade has ended86. Why does 

stimulation of neurons that only care about moving also produce a period of hold still. 

 The answer to this question lies in integration. If the burst neurons encode the velocity of the 

eye movement, then a set of target neurons could integrate the velocity over time, yielding the step that 

maintains the eye still at the desired target. Could this integration be a property of the motorneurons 

themselves? This does not seem to be the case, as stimulation of the abducens nucleus produces only 
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movement of the eye, but no holding still87. The answer to this question was found elsewhere in the 

brainstem, in the prepositus nucleus13,88–90. Damage to these neurons produces a specific deficit in the 

ability to hold the eyes in gaze, but no effect on movement. And equally important, the prepositus was 

found to contain neurons which linearly encode the position of the eye, and maintain their activity 

during gaze holding long after reticular activity has ceased91. 

 In summary, the eye possesses an amazing property: integration. Neurons in the reticular 

formation produce phasic activity that moves the eye, which is also integrated in a separate region of 

the brainstem, the oculomotor integrator. The output of the integrator is a sustained position signal that 

holds the eye still on target after movement. It is also known that the performance of the integrator is 

maintained by the cerebellar flocculus92,93, as performance of the saccadic system is maintained by the 

cerebellar vermis22. Additionally, since these initial discoveries, a neural integrator has also been 

discovered for movements of the head94–96 within the interstitial nucleus of Cajal (INC). 

In Chapter 6, we ask if the reach system might also possess a neural integrator, thus potentially 

offering an explanation for why adaptation to our movements also changes the way that we hold still. 

We not only find compelling evidence for this possibility, but also the idea that the putative reach 

integrator is located in a subcortical area that remains unharmed after cortical stroke. Combined with 

the observations that inhibition of the motor cortex spares the ability to hold still97, transient 

stimulation of the brainstem in the decerebrate cat yields sustained changes in muscle tone98, and 

stimulation of the spinal cord in the frog produces equilibrium positions of the leg99, it seems possible 

that the putative reach integrator could be housed in the brainstem, spinal cord, or is distributed 

throughout both regions. 

 

1.5 Self-published content and references 

This thesis draws upon both published and unpublished work. Certain passages and figures of Chapter 2 

are derived from Albert and Shadmehr (2016)100. Certain passages and figures of Chapter 3 are derived 

from Albert and Shadmehr (2018)101. Certain passages and figures of Chapter 4 are derived from Lerner 

and Albert, et al. (2019)50. Certain passages and figures of Chapter 5 are derived from Albert et al. 

(2019)102. And certain passages and figures of Chapter 6 are derived from Albert et al. (2020)103. 
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1.6 Specific aims 

When we experience an error in the way we move, we change our movement on the next attempt. Here 

we address three primary question regarding the process of adaptation (1) how does the brain learn the 

correct motor response that should be used to prevent future sensory errors, (2) how does this process 

of learning change over time, and (3) how does this process of movement adaptation change the way 

that we hold our body still after movement. 

 In Chapter 2, we address this first aim by considering the feedback error learning hypothesis. By 

recording muscle activity during perturbed and error-free movements, we extract the commands the 

brain produces to correct for a movement online, and what it learns from the error on the next trial. We 

find that the learned response resembles a time-shifted and scaled copy of the feedback response to 

error, on a muscle-by-muscle basis. On trials where the feedback response to a perturbation is large for 

a given muscle, learned change in that muscle’s activity is also large on the next trial. Finally, we use 

transcranial direct current stimulation to determine the role of the cerebellum in single trial learning. 

 In Chapters 3-5 we address our second aim, moving from our investigation of single trial 

learning, to the way the learning process changes as errors are experienced time and time again. Our 

approach is model-based; we fit models to behavior in different environments to understand how the 

dynamics of learning (i.e., the model parameters) change over time. In Chapter 3, we start with the 

description a statistical algorithm that can better estimate the parameters of error-based learning 

models. With this tool in hand, we consider two hallmarks of adaptation, savings and spontaneous 

recovery, and interpret their origins from the standpoint of a two-state model of learning. For both 

movements of the eye and the arm, we find that error sensitivity modulation causes savings, without 

any changes to the process of forgetting. In addition, we describe preliminary evidence that savings 

might rely on the basal ganglia during adaptation to force fields. Finally, we also provide evidence that 

spontaneous recovery is caused by the loss of the fast adapting system. 

 In Chapter 4 we continue studying plasticity in the motor learning system, but this time in the 

context of anterograde interference. We expose participants to two opposing perturbation A and B, 

after some intervening break in time. We discover that there are two independent channels that impair 

performance during the second exposure: retention of the A memory, and a reduced sensitivity to error 

in B. While the former remains strong at 24 hours, the latter has almost entirely recovered. Therefore, 

we find that the brain changes its sensitivity to error to increase its learning rate (savings) and also 

decrease its learning rate (interference). 
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 In Chapter 5, we continue to study error sensitivity modulation, not in the context of learning 

rate, but in the context of the total extent of adaptation. We revisit earlier ideas that the saturation 

point of motor adaptation is caused by the balancing of learning and forgetting. In an environment 

where perturbations are variable, we show that the nervous system greatly decreases its total extent of 

motor adaptation, by changing its error sensitivity, but not its rate of forgetting. We demonstrate that 

memory of errors models can account for these observations, with the addition of a forgetting term 

which saturates error sensitivity over time. Finally, we also use various probes to interrogate whether 

these changes in adaptation extent are mediated by implicit or explicit learning processes. We find 

strong evidence for the modulation of implicit adaptation, and offer a new framework to consider why 

changes in implicit learning might have been overlooked in earlier studies. In addition, we show that 

changes in implicit adaptation are not specific to the presentation of stochastic stimuli, but also occur in 

the other hallmarks of learning: savings and interference. 

 In Chapter 6 we move on to our third and final aim: understanding how the process of reach 

adaptation is related to our ability to maintain stillness of the arm. Drawing parallels to the oculomotor 

system we propose that part of the muscle commands used to maintain a posture are obtained through 

the integration of movement commands. To argue for the plausibility of this integration hypothesis we 

consider the muscle activity of different reaching movements of the macaque. We then test the more 

critical predictions of the integration model: changes to the way we move change the way we hold. We 

investigate this possibility first for simple finger movements of the macaque, and then for the control of 

reaching in the human. We find that the commands for movement appear are integrated into the 

commands for holding still, even to the extent that our movement commands can trick our holding 

system to produce a holding posture outside of desired visual targets. Finally, we analyze these same 

principles in stroke patients and healthy age-matched controls, finding that the cortical lesions that 

damage the movement controller appear to spare the putative reach integrator. 
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Chapter 2. The neural feedback response to 
error as a teaching signal for the motor learning 
system 

When we experience an error during a movement, we update our motor commands to partially correct 
for this error on the next trial. How does experience of error produce the improvement in the 
subsequent motor commands? During the course of an erroneous reaching movement, proprioceptive 
and visual sensory pathways not only sense the error, but also engage feedback mechanisms, resulting 
in corrective motor responses that continue until the hand arrives at its goal. One possibility is that this 
feedback response is co-opted by the learning system and used as a template to improve performance 
on the next attempt. Here we used electromyography (EMG) to compare neural correlates of learning 
and feedback to test the hypothesis that the feedback response to error acts as a template for learning. 
We designed a task in which mixtures of error-clamp and force field perturbation trials were used to 
deconstruct EMG time-courses into error feedback and learning components. We observed that the 
error feedback response was composed of excitation of some muscles, and inhibition of others, 
producing a complex activation/deactivation pattern during the reach. Despite this complexity, across 
muscles the learning response was consistently a scaled version of the error feedback response, but 
shifted 125ms earlier in time. Across people, individuals who produced a greater feedback response to 
error, also learned more from error. This suggests that the feedback response to error serves as a 
teaching signal for the brain. Individuals who learn faster have a better teacher in their feedback control 
system. 
 

2.1 Introduction 

When we hold an object in our hand, the mass of the object alters the dynamics of our arm, changing 

the relationship between the motor commands sent from the brain to the muscles of the arm, and the 

resulting motion of the hand81. If the object is unfamiliar to us, our movement will exhibit errors, 

producing a sensation in our proprioceptive and visual organs. That is, the brain experiences errors in 

sensory coordinates. However, to improve performance, the brain must transform the sensory 

representation of error into better motor commands in muscle coordinates. How does the 

transformation from sensory coordinates of error to muscle coordinates of motor commands take 

place? That is, what signal serves as the teacher for the motor system? 

 Sensing error engages the proprioceptive and visual organs, but following a delay it also engages 

sensorimotor feedback pathways, producing reflexive and voluntary corrections that start as early as 

50ms into the reach, continuing until the hand arrives at its goal. These corrections represent a 

sensorimotor transformation that takes error in sensory coordinates and produces a feedback response 

in muscle coordinates. The feedback response is a sequence of motor commands that can, in principle, 
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act as a template, providing the brain with an example of how to partially compensate for the 

unexpected dynamics23,24,104–106. However, testing this hypothesis is difficult because on any given 

movement, the motor commands are a mixture of what the brain correctly predicted about the 

dynamics of the object, and what the feedback pathways added in response to the unexpected motion 

of the arm. To determine the relationship between error and the learning that resulted from error, one 

must dissociate the motor commands that reflect a process of prediction, from the motor commands 

that reflect a process of within-movement feedback correction. 

Here, we approached this problem by using an important tool: error-clamp trials27. An error-

clamp trial makes it possible to reliably guide the movement precisely along a reproducible trajectory. 

To measure the feedback response to error, we measured the motor commands sent to various muscles 

of the arm in an error-clamp trial, and then re-measured the commands when novel dynamics (a force 

field) introduced errors in the reaching movement. By comparing the time-course of signals in the 

perturbation trial to the preceding error-clamp trial, we obtained a proxy for the neural feedback 

response to error. Following the perturbation trial, we again introduced an error-clamp trial. The change 

in the motor commands that occurred from the first error-clamp to the second error-clamp was a proxy 

for the learning that has occurred following the experience of error. We found that the learned motor 

commands were a scaled version of the feedback generated commands, but shifted earlier in time. This 

suggested that the sensorimotor transformation that was provided by the feedback system, from 

sensory coordinates of error to muscle coordinates of action, acted as a teacher for the motor system, 

instructing it on how to improve its commands on the next movement. 

 

2.2 Materials and methods 

We recruited n=57 healthy, right-handed individuals to participate in our study (18–36 years of age, 31 

females). The study was approved by the Johns Hopkins University School of Medicine Institutional 

Review Board and all subjects signed a consent form. 

 

2.2.1 Experiment 

Participants performed a center-out reaching task while holding the handle of a planar robotic arm. 

Their forearm was supported by an arm rest that moved freely with the arm. Their arm was obscured 

from view by a horizontal screen, upon which a projector painted a cursor, serving as a proxy for hand 

position. 
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 At the onset of each trial the robot moved the hand to the start position, denoted by a circle 10 

mm in diameter, whose location within the workspace remained fixed for the duration of the 

experiment. Once the hand entered the boundary of the starting position, a random inter-trial-interval 

(ITI) elapsed, varying within the range 300–700ms. If the hand moved from the start position at any 

point during the ITI, the timer was reset. At the conclusion of the ITI a target circle appeared 10 cm from 

the starting position, at an angle of 90° relative to the starting position. The target was also 10 mm in 

diameter and its appearance was accompanied by a short tone. The subject was instructed to move 

their hand to the target. The desired reach time was 500ms, with a tolerance of ±50ms. Feedback 

regarding reach duration was provided after reach completion: the target turned red or blue if the 

movement duration was too short or too long, respectively. In addition, a tone accompanied the change 

in target color. For trials in which movement duration fell within the desired time interval, the target 

“exploded” in red and yellow concentric circles, a tone was played, and a point was added to a 

numerical score displayed at the bottom of the workspace. Subjects were instructed that the goal of the 

experiment was to score as many points as possible. 

 Our overall objective was to ask whether the feedback system that corrected for a perturbation 

during a movement produced a neural signal that became the teacher for the motor system, instructing 

it on how to predictively cancel the perturbation on the following trial. To test our hypothesis, we first 

measured the neuro-motor activity in a given muscle (EMG) during an unperturbed movement (termed 

error-clamp trial 1, EC1). On the next trial, we perturbed the reaching movement via a force field. The 

difference in EMG between the perturbed trial and the preceding error-clamp trial was our proxy for the 

feedback-generated response to the perturbation. On the next trial, with 50% probability the reach was 

in an error-clamp trial (EC2), or another perturbation trial. If a second perturbation trial occurred, the 

following trial was always an error-clamp trial. The difference in activity between EC2 and EC1 was our 

proxy for learning, indicating the change in neuro-motor activity due to experience of error in the 

preceding trial (or a pair of errors in the case of two consecutive perturbation trials).  

 The perturbations were standard velocity-dependent curl force fields that pushed the hand 

clockwise (CW) or counter-clockwise (CCW): f Bx= , where x  is the hand velocity vector, and B=[0, -

15; 15, 0] N.s/m or B=[0, 15; -15, 0] N.s/m. During an error-clamp trial, the hand path was confined to a 

straight trajectory between the start position and the target. To generate the error-clamp, the robotic 

arm produced compensatory forces perpendicular to the hand trajectory in accordance with a stiff 

spring (spring coefficient = 6000 N/m, viscosity = 250 N-s/m). 
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The experiment (Fig. 2.1A) began with a block of 120 null field trials (not shown in Fig. 2.1A). 

This was followed by two consecutive blocks (labeled blocks A and B) of 263 trials each (one block is 

shown in Fig. 2.1A). Blocks A and B began with 23 null field trials. Following this, one or two perturbation 

trials were sandwiched between pairs of error-clamp trials. Each type of perturbation (CW, CCW) and 

number of consecutive perturbations (one or two) was assayed 10 times, for a total of 40 triplet/quartet 

perturbations per block. The orientation and number of consecutive perturbations were pseudo-

randomly selected and counterbalanced so that subjects experienced an equal number of CW and CCW 

perturbations. In between each [error-clamp, perturbation, error-clamp] progression, either 2 or 3 null 

field trials were presented. The paradigm ensured that we could assess learning multiple times without 

accumulation of learning of either type of perturbation. 

 

2.2.2 Data Recording and Analysis 

We recorded the position of the hand, velocity of the hand, force exerted by the hand on the robotic 

arm, and force applied via the torque motors at 200 Hz. The movement onset for each reach was 

determined via a velocity threshold of 35 mm/s. Trials in which the movement began less than 200 ms 

after the target cue appeared were removed from the analysis (2.32% of trials). Electromyography 

(EMG) was used to assess activity of four muscles of the upper arm and trunk including the biceps, 

lateral head of the triceps, posterior deltoid, and pectoralis. We used EMG electrodes with a pre-amp at 

the recording head (Delsys Inc.), and sampled the resulting signal at 1000 Hz. 

 To determine an optimal position of recording for each muscle, the electrode position was 

varied until the largest dynamic range between resting state and contraction was detected. This region 

was marked for each muscle, the overlying skin for each targeted area was cleaned with isopropyl 

alcohol, and then Skin-Prep was applied to enhance adhesion of the electrode to the skin. Prior to 

application, the electrode was also cleaned with isopropyl alcohol, a double-sided adhesive skin 

interface was placed on the sensing apparatus, and an electrode preparation gel was applied to the 

electrode sensing bars. 

The EMG signal was band-pass filtered (10 – 250 Hz) using a 4th order Butterworth filter and full-

wave rectified. The filtered and rectified signal was smoothed by scaling the EMG amplitude at each 

time point by the root-mean-square of the signal in a 40 ms window centered at that time point. 

Following this pre-processing, we performed a within-subject, within-muscle normalization of each EMG 

trace by dividing the EMG amplitude at each time point by the average maximum EMG amplitude 

produced during the initial null trials of Blocks A and B (46 trials in total are included in this average). In 
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other words, following this normalization, the units of EMG activity for each muscle of a given subject 

were with respect to the average maximum value recorded in that muscle during an unperturbed 

reaching movement of the same subject. 

To compute the neural correlates of learning from error, we compared the EMG activity 

recorded in the error-clamp trial following the perturbation (EC2) to the error-clamp trial preceding the 

perturbation (EC1), for each triplet (or quartet) progression. This difference (EC2 - EC1) represents the 

trial-to-trial change in the EMG following experience of an error. If the intervening trial was a single 

perturbation, we termed this change as learning1. If the intervening trials were two perturbations, we 

termed this change as learning2. 

To compute the neural feedback response to error, we first focused on triplet progressions (a 

perturbation trial between two error-clamp trials) and compared the activity measured in the 

perturbation trial (P1) with the activity measured in the preceding error-clamp trial (P1 - EC1), and 

termed this difference feedback1 response. This difference represents how muscle activity was modified 

to counteract the perturbation during a perturbed movement, relative to an error-free reach. In quartet 

progressions (two perturbation trials between two error-clamp trials), we computed feedback responses 

in both the first and second perturbation trials. Importantly, for the feedback response to the second 

perturbation, we used EC2 from single trial perturbations to estimate the feedforward command 

produced by the brain after single trial learning, rather than EC1. 

Our hypothesis concerned the relationship between the time-courses of learning and feedback 

responses. Temporal shifts relating learning and feedback were computed within-subject via cross-

correlation. In all cases, 700 ms temporal fragments of the learning traces were cross-correlated with 

1100 ms fragments of the feedback response, beginning 200 ms prior to movement onset. The learning 

trace was padded with zeros at the end of the selected temporal fragment so that the learning and error 

fragments were of equal duration. The learning trace duration used for the cross-correlation was 

shortened relative to the error trace to reduce corruption of the cross-correlation from noise in the 

learning traces, which normally returned to baseline values at the conclusion of the reaching movement 

(i.e. 500 ms post-movement onset). The optimal shift relating learning and error was found by 

identifying the time shift associated with the maximum of the cross-correlogram. 

We asked at each movement of time into the reaching movement, how much the brain had 

learned from the feedback response. That is, we wished to answer whether there was greater learning 

from a specific part of the feedback signal (for example, its early part), or did the brain learn from the 

entire feedback signal. To answer this question, we first shifted each feedback response (independently 
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for each subject and muscle pair) by the optimal shift determined via cross-correlation. Next, we 

performed two separate analyses, one across-subject and one within-subject. In the former analysis, we 

looked at each muscle and field condition separately, and performed across-subject regressions of 

learning and feedback signals. Learning for a given muscle and field orientation was regressed onto the 

corresponding feedback response for that muscle and field orientation, independently at every time 

point. We identified time points for which these fits were statistically significant (p<0.05) and possessed 

positive slope, signifying that learning and feedback were positively correlated at that point in time, 

across subjects. To determine the level of correlation between learning and feedback responses within 

each muscle, we linearly regressed the learning response onto the feedback response over the interval 

[-100, 500] ms and considered the R2 value describing this regression, for CCW and CW fields separately. 

We next performed with-in subject regressions of learning and feedback signals at each time 

point. For these regressions, we collapsed across muscles and field orientations. As we had recorded 4 

muscles and 2 field orientations, each regression included a total of 8 feedback-learning data points. We 

considered both the within-subject R2 metric for this regression (which represents how much of the 

variation of the learning response is explained by the feedback response for that time point) as well as 

the slope of the regression (which represents the scaling factor relating feedback and learning). As a 

control condition, we quantified the baseline correlation between learning and feedback for each 

subject and each muscle from a data set in which the feedback response was randomly shifted with 

respect to the learning response. We drew these random shifts from a uniform distribution [0 – 400] ms, 

and shifted each of the 8 feedback responses independently. The within-subject regression analysis 

described above was performed on the randomly shifted subject data set, and repeated 200 times, each 

time resampling shifts from the uniform distribution. 

In terms of kinematic correlates of learning, we focused on the forces that subjects produced 

against the stiff spring that opposed lateral trajectory deviations during error-clamp trials. We compared 

this subject-produced force trace to the ideal force that would be required to compensate for the 

perturbation using standard procedures. In brief, the maximum tangential velocity attained during that 

trial was multiplied by the field magnitude in the preceding perturbation trial. Next, subject-produced 

force at each time point was normalized by this value and converted to a percentage. 

Finally, to determine how the relationship between feedback and learning might vary with 

temporal variation in the magnitude of the feedback response, we considered the fact that in some 

trials, a subject might produce a strong feedback response to the perturbation, whereas in other trials 

the same subject might produce a weak response. Did the variability in the feedback response 
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correspond to the variability in the learning response? To answer this question, for each subject, and 

each muscle, we separated the data into two classes that corresponded to high and low feedback gains. 

We will refer to these classes as the ‘large’ and ‘small’ feedback responses, respectively. To construct 

these two labels, we considered each muscle and each subject separately and focused on the feedback1 

EMG traces. For agonist muscle feedback responses, we computed the mean feedback1 response over 

the interval [150, 450] ms relative to movement start. This interval was selected because it best 

captured differences in the gain of early agonist activity. For antagonist muscle feedback responses, we 

selected a longer averaging window defined by the range [0, 600] ms. This wider interval was selected 

so as to include both early inhibition in antagonist responses during the perturbation as well as 

excitation that occurred near movement termination. A perturbation trial was labeled as high feedback 

response if its feedback1 EMG trace exceeded the median feedback1 response observed in that muscle 

and that subject over the appropriate time interval (similarly for the low feedback response label). We 

computed the mean feedback responses for these two labeled data sets, and then for each labeled 

feedback trace we computed the learning trace that immediately followed. In addition, we considered 

kinematic correlates of these responses, corresponding to the maximum perpendicular displacement 

during the perturbation (for feedback) and maximum error-clamp force production (for learning). We 

used t-tests to determine if there existed a difference between these kinematic parameters, and 

expressed their difference as ratios (high feedback trials / low feedback trials). 

 

2.3 Results 

We asked whether the feedback response that corrected for a perturbation during a reach produced a 

signal that acted as a teacher for the motor system, instructing it on how to predictively cancel the 

perturbation on the following trial. 

 

2.3.1 Measuring trial-to-trial feedback responses to error and learning 

Our experiment employed triplet or quartet progressions of error-clamp, perturbation, error-clamp 

trials, as illustrated in Fig. 2.1A. The average hand paths for the error-clamp trials and perturbation trials 

are provided for a typical subject in Fig. 2.1B. The time-course of the perturbation-induced displacement 

perpendicular to the direction of motion is shown in Fig. 2.1C (at left). Following experience of this error, 

the nervous system altered the motor commands that it produced on the very next trial. To visualize this 

change, we compared the forces that were produced in the error-clamp trial preceding the 
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perturbation, to the forces that were produced in the error-clamp trial following the perturbation. The 

change in the motor commands produced a force pattern that was opposite in direction to that of the 

displacement (Fig. 2.1C, right). 

 

 
Figure 2.1. Measuring feedback and learning from EMG. A. Subjects performed a center out reaching 
task to a single target. Each block began with null field trials. Next, random clockwise (CW) and 
counterclockwise (CCW) velocity dependent curl field perturbations were applied to the arm. 
Perturbations were applied either once or twice in a row. Each perturbation or pair of perturbations was 
sandwiched by error-clamp trials. B. Reach trajectories in the error-clamp trials before and after the 
perturbation (EC1 and EC2). Error bars are ±1 SEM in 25 ms intervals. C. Kinematic correlates of error 
and learning from a single CW perturbation. Left: the time-course for the perpendicular hand 
displacement during CW perturbations. Right: the learned force production from the single error is 
shown (forces in EC2 - forces in EC1). Forces are normalized relative to the ideal force that would be 
produced for complete adaptation. D. Triceps EMG activity during error-clamp and perturbation trials. 
Left: triceps is active during the movement in EC1. As a result of the feedback response to the 
perturbation, triceps activity is suppressed early in the CW field, and enhanced near movement 
termination (P1, red). The brain changes the triceps activity for the subsequent error-clamp trial (EC2, 
blue). Right: the error feedback response in green (P1 - EC1). The learning response is the trial-to-trial 
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change in the motor command from EC1 to EC2 (purple, EC2 - EC1). Learning appears to be a time-
shifted copy of the feedback response. 
 
 By analyzing the temporal patterns of muscle activity in the error-clamp and perturbation 

conditions, we obtained neural correlates of feedback response to error, as well as trial-to-trial learning. 

Example traces of EMG activity in the triceps for a typical participant are shown in the left column of Fig. 

2.1D. In the error-clamp trial that preceded the perturbation (EC1), the triceps gradually increased its 

activity, peaking mid-movement at approximately 200ms. In the perturbation (red trace, left column of 

Fig. 2.1D, labeled P1), the triceps activity was inhibited relative to EC1 for the majority of the reach, but 

then demonstrated a sharp excitation as the movement was terminated. 

To compute the feedback response to error (green, right, Fig. 2.1D), we subtracted the EMG 

time-course in the error-clamp trial (EC1) from the EMG time-course in the perturbation trial (P1 - EC1). 

In this participant, the CW displacement produced a feedback response that included an early inhibition 

of triceps (green curve, right column, Fig. 2.1D), followed by a late excitation of the same muscle. To 

compute the learning response, we compared the trial-to-trial change in the EMG signal in the two 

error-clamp trials that sandwiched the perturbation trial, EC1 and EC2 (blue trace, left column, Fig. 

2.1D). This difference (EC2 - EC1) represents the trial-to-trial change in the motor command as a result 

of experiencing a single trial of error. We observed that the learning response (purple curve, right 

column, Fig. 2.1D) appeared to be a scaled version of the feedback response, but shifted earlier in time. 

 

2.3.2 The learning response is a time-shifted copy of the feedback response to error 

Group averaged kinematic and EMG traces for CW and CCW perturbations are shown in Fig. 2.2. The 

kinematic and force data are shown in Fig. 2.2A, where we have plotted the error induced by the first 

perturbation (error 1), and the resulting trial-to-trial change in force produced in the subsequent error-

clamp trial (learning1). In trials in which a second perturbation followed the first, the errors were smaller 

(Fig. 2.2A, error2 vs. error1, peak displacement, p<10-23 for both fields). Similarly, in trials in which a 

second perturbation followed the first, learning following two perturbations was larger (Fig. 2.2A, 

learning2 vs. learning1, peak force, p<10-8 for CW field, p<10-4 for CCW field).  

Fig. 2.2B illustrates the EMG measures of error feedback and learning responses. Perhaps the 

most striking feature of the data was the similarity between the two traces. We found that in general, 

the learning response appeared to be a shifted and scaled version of the error feedback response. This 

was best demonstrated by the EMG in the pectoralis, posterior deltoid, and triceps in their respective 

antagonist fields, where learning and error feedback traces exhibited initial inhibition followed by 
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excitation later in the movement (pectoralis for a CCW perturbation; posterior deltoid and triceps for a 

CW perturbation). Another clear example was presented by the bimodal excitatory pattern in the 

learning and feedback traces in the pectoralis for CW perturbations, where the second learning 

excitation peak occurred just prior to movement termination. 

For example, in the pectoralis muscle, the CW error feedback response was an excitation that 

peaked at around 200ms with respect to reach initiation, followed by a second, smaller peak at around 

600ms. Learning also possessed two peaks of excitation, peaking at around 50ms and again at around 

400ms. In the CCW perturbation, the error feedback response was an inhibition that peaked at around 

300ms and an excitation that peaked around 450ms. Learning was also an inhibition followed by an 

excitation, but its timing had peaks at around 0ms and 250ms. We had naively expected that only the 

early portion of the error feedback response might resemble the corresponding learning response. 

However, we found that the learning and error feedback responses appeared similar until the end of the 

reach (approximately 500ms), implying that both the short- and long-latency error feedback responses 

were combined and shifted earlier in time to become the learning response. 

To quantify the temporal shifts that related learning and error feedback, we computed their 

cross-correlation and found that the two traces were maximally correlated when the feedback response 

was shifted earlier in time by 123 ± 61ms (mean ± SD across all muscles and conditions) (Fig. 2.3). To 

combine the data across various muscles, for each perturbation we labeled each muscle as agonist or 

antagonist. For example, a CW perturbation produced an initial excitation in pectoralis and biceps, but 

inhibition in posterior deltoid and triceps. Therefore, pectoralis and biceps were agonists in responding 

to a CW perturbation. We found that the temporal shift from the feedback response to the learning 

response across muscles was larger when the muscle acted as an antagonist (137 ± 80ms), responding in 

the direction of the perturbation, as compared to when the muscle acted as an agonist (109 ± 78ms, 

p=0.042), responding in the direction opposite the perturbation. Similarly, the optimal shift was larger 

for learning2 (145 ± 75ms) than learning1 (101 ± 80ms, p < 10-3), indicating that additional perturbations 

not only induced additional learning, but also caused this learning to be expressed earlier in time. 

To better visualize the temporal relationship between learning and error feedback responses, 

we plotted the time-shifted error feedback response together with the learning response, for the larger 

amplitude learning2 traces (Fig. 2.4). The peaks and troughs in the error feedback response appeared to 

be consistent with the features of the learning response throughout the duration of the movement. In 

addition, across the various muscles and perturbation orientations, the scaling factor relating the 

magnitudes of the learning and error feedback response (reflected in the scaling factor relating the left 
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and right y-axes of Fig. 2.4) was consistent at approximately 25%, suggesting that about a quarter of the 

feedback response in all muscles became the learned response. 

 

 

Figure 2.2. Learning and error feedback responses for each muscle. The 0ms time point denotes 
movement start. Error-bars represent ±1 SEM. A. Kinematic correlates of learning and error. During 
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perturbation trials, subjects (n=57) experienced large perpendicular displacements, specific to the 
orientation of the force field (right axis). Displacement during the 2nd perturbation (Error 2, purple) was 
smaller than that for the 1st perturbation (Error 1, green) due to partial learned compensation for the 
force field. As a result of the experience of error, subjects produced lateral forces against the error-
clamp channel, in accordance with the field orientation (left axis). The net change in force production 
after the experience of 2 consecutive perturbations (Learning 2, blue) was larger in magnitude than 
single trial learning (Learning 1, red), due to the accumulation of 2 single trial learning events. B. EMG 
correlates of learning and error feedback responses. Learning and error feedback signals for 4 muscles 
of the upper arm and trunk are provided. Feedback responses (right axis) were in general much larger in 
magnitude than learning responses (left axis), as indicated by the 25% scaling factor relating the left and 
right axes for all muscles. The error feedback response for the 1st perturbation (Feedback 1, green) is 
nearly identical to the error feedback response for the 2nd perturbation (Feedback 2, purple). Note that 
the reference error-free reach for Feedback 1, is the EC1 trial before the perturbation. For Feedback 2, it 
is the EC2 trial after single perturbations, which accounts for single trial learning. The learning signals 
were computed as the change in muscle activity (EC2 - EC1) during the error-clamp reach before and 
after the perturbation(s). Learning from a single perturbation is shown in red and the accumulated 
learning from 2 consecutive perturbations is shown in blue. As would be expected, more is learned from 
2 perturbations than 1 perturbation. 

 

    

Figure 2.3. Temporal shifts relating learning and feedback responses. Within-subject cross-correlations 
were used to determine the time shifts for which the feedback responses and learning responses were 
maximally correlated. EMG time-courses of learning from a single perturbation and from two 
consecutive perturbations were cross-correlated with EMG time-courses of feedback responses to the 
1st perturbation. Positive values indicate that feedback responses lagged the learning response. Shifts 
were averaged across subjects and error-bars represent ±1 SEM. Each group of 4 bars represents a 
particular learning-feedback condition. Each bar in these groups represents a different muscle (left to 
right: biceps, triceps, posterior deltoid, and pectoralis). From left to right, the field orientations for each 
4-bar group are as follows: CW, CW, CCW, and CCW. From left to right, the number of perturbations 
experienced for each 4-bar group were as follows: 1, 2, 1, and 2. The right-most bars represent data 
collapsed across all perturbations and separated for muscles that were agonist (responded early to 
restore the trajectory) or antagonist. 
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Figure 2.4. Learning resembles time-shifted copies of the error feedback response. The accumulated 
EMG learning responses for 2 consecutive errors (purple, left axis) are compared to shifted feedback 
responses to the 1st perturbation (blue, right axis). The feedback responses were shifted independently 
for each muscle-field orientation-subject trio, in order to maximally align them with their corresponding 
learning responses, according to cross-correlation analysis of the learning-feedback time-courses. Clear 
correspondence between the learning time-course and the feedback time-course is illuminated in this 
shifted feedback space. Here 0ms, represents movement onset for the non-shifted learning error-clamp 
trials. The behavior for CW perturbations and CCW perturbations is shown in the left and right columns, 
respectively. Each figure displays a different muscle. Shaded error-bars represent ±1 SEM at each 
recorded time point. 
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2.3.3 Across subject variability in feedback response 

These results indicated that the neural feedback responses in each muscle may be a strong predictor of 

the learning response in that muscle. To better quantify this relationship, we focused on agonist muscles 

and asked if those subjects that demonstrated more agonist muscle activity during their feedback 

response also expressed more learning. For each subject we computed the mean activity in the learning 

and feedback responses of agonist muscles over the periods [-200 – 500] ms and [0 – 500] ms, 

respectively. We then asked whether subjects that had shown a greater learning response also 

produced a greater feedback response. Fig. 2.5A plots the magnitudes of the feedback response and 

learning response for each subject in each muscle. Fig. 2.5B, shows the same relationship, for the 

average feedback response and learning response. We found a statistically-significant, positive 

correlation between the sizes of the two responses across all muscles, indicating that subjects that had 

shown a larger feedback response were likely to also show a greater learning response. 

We performed a similar across-subject analysis but at a much finer temporal resolution to 

determine the length of the time period over which learning and feedback were positively correlated 

(i.e. how much of the learning response could be explained by feedback as a function of time in the 

movement). We first shifted each feedback response by the shift determined via cross-correlation, to 

optimally align them with the learning time-courses. Next, learning for a given muscle and field 

orientation was regressed onto the corresponding feedback response for that muscle and field 

orientation, independently at every time point (Fig. 2.5C). We found that both the agonist and 

antagonist muscles possessed significantly positive correlations between learning and feedback for the 

entirety of the movement period. Specifically, this correlation began approximately 100 ms prior to the 

error-clamped movement onset and saturated for the entirety of the movement period (500 ms on 

average), falling to baseline levels after the reach terminated. We linearly regressed the learning time-

course onto the feedback response (the aligned traces in Fig. 2.4) over this time interval [-100,500] ms, 

to determine the level of correlation between these signals (Fig. 2.5D). We found that the R2 values for 

these regressions were similar across muscles and field orientations, varying within the range [0.18 ± 

0.02, 0.31 ± 0.02], with a mean value of approximately 0.25. 
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Figure 2.5. Learning and error feedback responses across individuals. A. Feedback and learning 
responses in muscles that were agonists for a perturbation. The mean EMG learning response (from 2 
perturbations) for each subject was computed over the interval [-200 to 500] ms and regressed onto the 
mean feedback response [0 to 500] ms, for the 1st perturbation. B. The learning and feedback responses 
were averaged across muscles, producing a single measure of feedback and learning in each subject. C. 
Feedback responses (1st perturbation) were shifted for each muscle-field orientation-subject trio 
independently to achieve temporal alignment with corresponding learning traces (cumulative learning 
from 2 perturbations), according to cross-correlation analysis. After alignment, learning at each time 
point was regressed onto the feedback response, across subjects, for each individual time point, 
independently for each muscle and field orientation (total of 8 combinations). The raster plots at top 
mark time points for which this regression was statistically significant (p<0.05) and possessed positive 
slope (indicating a positive correlation). Each line that is oriented left to right shows a particular muscle 
in one of the field orientations. The continuous-time figure at bottom was constructed from these 8 
regression raster lines. At each time point, the number of significantly positive correlations (maximum of 
8) was counted. Time at 0ms refers to movement onset. The learning-feedback correlation appears to 
begin 100ms prior to movement onset, and saturates for the entirety of the movement, which ends on 
average at 500ms. D. We linearly regressed the learning response onto the feedback response over the 
time period [-100, 500] ms. This regression was performed for each muscle and field orientation 
separately. The R2 value of the regression is provided. The groups at left and right correspond to CCW 
and CW fields, respectively. Each bar represents a different muscle: from left to right: pectoralis, 
posterior deltoid, biceps, and triceps. 
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2.3.4 Within-subject variability in feedback response 

Our across-subject analyses indicated that learning and feedback were correlated during preparation 

and execution of the error-clamped reach. We next asked, if within-subject, the strength of the 

correlation between learning and feedback responses varied during movement duration. In other words, 

we quantified the extent to which the variability in the feedback response accounted for the variability 

in the learning response, as the movement progressed. To quantify this relationship, at each time point 

we used within-subject linear regression to compare the feedback responses across muscles and 

perturbation orientations with the corresponding learning responses. To generate a statistical 

comparison, we generated a null hypothesis by computing the correlation between the two signals 

when the time-shift was randomly sampled from a uniform distribution of [0-400] ms. We found that 

the variability in the feedback response, within a subject, accounted for a maximum of around 50% of 

the variability in the learning response, peaking slightly after movement onset (Fig. 2.6A). However, the 

correlation between learning and feedback remained significantly above control levels up until 

movement termination (around 0.5 seconds). Interestingly, the scaling factor describing the learning-

feedback regression remained relatively stable within the range 20 – 30% during the reaching 

movement, indicating that approximately 25% of the error feedback response became the learning 

response generated on the following trial (Fig. 2.6B). 

 

 

Figure 2.6. The error feedback response is predictive of the learning response within a subject. For A and 
B, 0sec refers to movement onset. A. The feedback response accounts for within-subject variation in the 
learning response during movement. Regressions were performed within-subject across the 8 muscle-
field orientation combinations (i.e. 8 points in each regression). Error feedback responses (1st 
perturbation) were shifted to achieve temporal alignment with learning responses (cumulative learning 
from 2 consecutive perturbations) according to their cross-correlation. At each time point, learning 
across the muscle-field orientation pairs was regressed onto the corresponding error feedback 
response. The R2 value for the linear regression is provided in the figure (red). The red shaded error bars 
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indicate ±1 SEM. To quantify the baseline random correlation inherent in these signals (black), the 
regressions were repeated, this time randomly shifting the feedback response. The random shifts were 
sampled from a uniform distribution (0ms to 400ms). The black shaded error bars indicate ±1 standard 
deviation across 200 repetitions of the analysis. Comparison of the red and black traces indicates that 
the feedback response encodes variability in the learning response up until movement termination at 
approximately 500ms. B. The slopes of the regressions described in Figure A are provided. This slope 
represents the scaling factor relating learning and feedback. It appears that approximately 25% of the 
feedback response magnitude was incorporated into the learning response at each point during the 
movement. 
 

The across- and within-subject results are thus far congruent with the hypothesis that error 

feedback signals are instructors of learning. We observed that feedback and learning signals possessed a 

‘scaled-and-shifted’ relationship; the feedback response appeared to be scaled down in magnitude, 

shifted earlier in time, and added to the feedforward motor plan to achieve the learning response. 

However, our experiment employed only a single perturbation magnitude, leaving one to question the 

generality of this proposed learning-feedback relationship. To address this question, we considered that 

on some trials, the subject would strongly resist the perturbation, whereas in other trials the same 

subject might only weakly resist the perturbation. For each subject and each muscle, we labeled the 

perturbation trials as large or small feedback response, based on the magnitude of the corresponding 

feedback1 response time-course. For a given subject and given muscle, the ‘large feedback’ trials were 

constructed from all perturbation trials in which the feedback1 response exceeded the median feedback 

response (see Methods). The ‘small feedback’ trials were labeled similarly, but for responses that fell 

below the median feedback1 response. As is implied by this description, we divided the trials for each 

subject based on their feedback responses, not learning responses. 

The two feedback responses are shown for agonist muscles in Figure 2.7 (left column). Labeling 

our data in this manner revealed that a perturbation produced feedback responses that were highly 

variable. The large feedback responses (red traces) possessed peak magnitudes in excess of twice the 

magnitude of the low feedback responses (black traces). For the trials used to label the two classes of 

triceps and posterior deltoid responses, there was no statistically significant difference in the maximum 

perpendicular displacement (p=0.703 and p=0.279, respectively). For the biceps and pectoralis, we 

found a significant difference between these maximal errors (p<10-5 and p<10-8, respectively) but their 

difference (7% for biceps, 8% for pectoralis) was too small to be adequately explained by the two-fold 

difference in the feedback response gains. To summarize, perturbation trials with nearly identical 

kinematics showed significant differences in the underlying patterns of feedback muscle activations. 
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Did these large differences in the feedback responses correspond to differences in the learning 

signals observed during the subsequent error-clamp trial? We computed the learning responses that 

were induced by the large and small feedback trials (Fig. 2.7, right column). Remarkably, the differences 

in the feedback gains were mirrored in the magnitudes of the learning time-courses. A perturbation that 

produced a large feedback response was followed by a large learning response, as shown by the red and 

black traces in Fig. 2.7. This result suggested that the agonist learning responses were highly sensitive to 

the gains of the feedback response. It did not appear that the size of the agonist learning responses was 

on average indicative of the force being produced during the channel trial (maximum peak force, p>0.05 

for all muscles). 

We next performed the same analysis for each muscle, in their respective antagonist field. The 

small and large antagonist feedback responses are shown in the left column of Figure 2.8. Our labeling 

method revealed two distinct differences between the high and low feedback responses. First, the early 

period of inhibition was attenuated in the large feedback responses (red traces) relative to the small 

feedback (black traces) responses. The second difference between the two feedback responses was 

characterized by enhanced late excitation of the large feedback response relative to the small feedback 

response. Again, as for the agonist responses, these differences were not reflective of some large 

difference in the underlying kinematics of the error. The only muscle for which we observed a 

statistically significant difference in the maximum perpendicular displacement was the triceps (p=0.019), 

but this difference (only 3%) was too small to be explained by the differences in feedback response 

gains.106 

Once again, these differences in feedback responses were paralleled in learning (right column, 

Fig. 2.8). Learning traces for the small feedback response (black traces) diverged from those pertaining 

to the large feedback response (red traces) for the entirety of the reach. This divergence obeyed the 

differences we observed in the corresponding feedback responses. We found that the learning time-

course resembled time-shifted and scaled replicas of the feedback response. One exception to this 

relationship was the activity of the triceps and posterior deltoid in the high feedback response, which 

lacked an early period of inhibition that would be expected from consideration of the corresponding 

feedback traces. We speculate that this inhibition was likely cancelled by co-contraction of agonist-

antagonist pairs, which based on previous accounts106 is often seen in the initial stages of force field 

learning. Indeed, in these two muscles, during the initial part of the reach, the excitation in the high 

feedback group’s learning response overlapped with excitation in agonist muscles (i.e. we observed co-
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contraction). Similar to the agonist learning responses, these differences in antagonist control signals did 

not correspond to differing levels of force production in the channel (p>0.05 for all muscles). 

 

Figure 2.7. Agonist learning magnitude correlates to the feedback response gain. Triplet trial 
progressions were classified into two equally-sized groups based on the magnitude of the feedback 
response of agonist muscles. Large and small feedback groups were constructed from individual 
responses that fell above and below the median response over the period [150, 450] ms. In the left 
column, the mean time-courses of the small feedback response group (black traces) are overlaid on the 
feedback responses for the large group (red traces). At right, the learning responses corresponding to 
the large (black traces) and small (red traces) feedback groups are shown. The difference in magnitude 
of the learning responses mirrored that of the corresponding feedback time-courses. Importantly, these 
classifications were made solely based on the feedback responses, not the resultant learning. Each 
figure indicates a different muscle: from top to bottom – pectoralis, posterior deltoid, biceps, and 
triceps. Movement onset is indicated by the 0ms time point. Errors bars indicate ±1 SEM. 
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Figure 2.8. Antagonist learning magnitude correlates to the feedback response gain. Triplet trial 
progressions were classified into two equally-sized groups based on the magnitude of the feedback 
response of antagonist muscles. Large and small feedback groups were constructed from individual 
responses that fell above and below the median response over the period [0, 600] ms. In the left 
column, the mean time-courses of the small feedback response group (black traces) are overlaid on the 
feedback responses for the large group (red traces). At right, the learning responses corresponding to 
the large (black traces) and small (red traces) feedback groups are shown. The difference between the 
feedback responses appeared to correlate with differences in the sign of the learning responses. 
Importantly, these classifications were made solely based on the feedback responses, not the resultant 
learning. Each figure indicates a different muscle: from top to bottom – pectoralis, posterior deltoid, 
biceps, and triceps. Movement onset is indicated by the 0ms time point. Errors bars indicate ±1 SEM. 
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In summary, for both agonist and antagonist muscles, despite constant perturbations, the 

occasion in which the feedback response was high often produced a learning response that was also 

large, suggesting a strong coupling between the feedback response and the learned response.  

 

2.3.5 Control studies 

An assumption critical to our analysis was that the EMG patterns in error-clamp trials represent the 

motor output in an error-free movement. To test for this, we compared the EMG traces in EC1 with EMG 

traces recorded during baseline reaching conditions in the null field in each muscle (Fig. 2.9A). We 

computed the mean EC1 signal across blocks 1 and 2 of the experiment and compared it to the mean 

null field EMG signal of the 23 trial null periods that commenced each block. Indeed, the EC1 signal (red 

curves, Fig. 2.9A) appeared indistinguishable from that recorded in the null field periods (black curves, 

Fig. 2.9A). This analysis also suggested that on average, learning from the CW or CCW perturbations was 

washed out during the intervening null trials between consecutive perturbation periods, another 

assumption critical to our analyses. 

 

Figure 2.9. Error-clamp trials provide accurate approximations to unperturbed movements. For A, B, and 
C, the 0sec or 0ms time points refer to movement onset. A. EMG during error-clamp trials before the 
perturbation is identical to null field EMG. The EMG activity of each muscle in the error-clamp trial 
preceding a movement (EC1, red) is contrasted with the EMG signal in the 46 null field trials that began 
blocks A and B (null, black, 23 trials at the start of each block). Each figure indicates a different muscle: 
top left – pectoralis, top right – triceps, bottom left – posterior deltoid, bottom right – biceps. B. 
Sufficient washout occurred between perturbations. We compared the EC1 activity after CW 
perturbations (red traces) to EC1 activity after CCW perturbations (black traces). We found that these 
activities were identical, indicating complete washout between consecutive perturbations. The layout of 
the figure is identical to A. C. The tangential kinematics of the error-clamp movements before and after 
the perturbation are identical. The tangential velocity in all of the error-clamp trials before the 
movement (EC1, black) was identical to that of the post-perturbation error-clamp (EC2, red). Errors bars 
indicate ±1 SEM. 
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Figure 2.10. The difference between consecutive feedback responses is largely due to single trial 
learning. The difference in the EMG activity in the perturbation trials (purple, Pert. 2 - Pert. 1) is 
compared to single trial learning (red, Learning 1) as measured as the EMG change from the pre-
perturbation error-clamp trial to the post-perturbation error-clamp trial. These signals should be similar, 
barring differences in the feedback responses for the 1st and 2nd perturbations. EMG activity in the CW 
and CCW fields is shown in the left and right columns, respectively. Each row of figures applies to a 
particular muscle. From top to bottom these muscles are as follows: pectoralis, posterior deltoid, biceps, 
and triceps. Here, 0ms refers to movement onset. Errors bars indicate ±1 SEM. 

 

To ensure that this apparent washout was not trivially caused by the cancellation of residual 

learning of the oppositely-oriented CW and CCW fields, we computed the mean EC1 signal 
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corresponding to trials that followed CCW perturbations and compared this to the mean EC1 signal of 

trials following CW perturbations (Fig. 2.9B). We found that these two groups of EC1 activities were 

identical, confirming that sufficient washout occurred between consecutive triplet/quartet progressions. 

 

Figure 2.11. Learning from one error is similar to learning from the next error. The EMG learning signal 
induced by the 1st perturbation (red, ‘learning from 1st perturbation’) is compared to the learning 
induced by the 2nd perturbation (blue, ‘learning from 2nd perturbation’). For the 1st perturbation, 
learning was calculated by subtracting the pre-perturbation error-clamp EMG signal from the post-
perturbation error-clamp EMG signal. For the 2nd perturbation, learning was calculated by subtracting 
the post-perturbation error-clamp EMG signal after a single perturbation from the post-perturbation 
error-clamp EMG signal after two consecutive perturbations. EMG activities in the CW and CCW fields 
are shown in the left and right columns, respectively. Each row of figures applies to a particular muscle. 
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From top to bottom these muscles are as follows: pectoralis, posterior deltoid, biceps, and triceps. Here, 
0ms refers to movement onset. Errors bars indicate ±1 SEM. 
 

To measure the learning response, we compared the EMG in EC2 with the EMG in EC1. This 

comparison requires that the kinematics of the two movements be identical. To check for this, we 

compared the tangential component of the reach in the two error-clamp trials (Fig. 2.9B), and found the 

two to be indistinguishable. 

We wanted to determine if some simple linear transformation existed between the learning 

EMG signals and the learned force profiles. We found a weak, but significant (p = 0.0186) positive 

correlation between the magnitude of early agonist EMG activity (mean across the 4 muscles) over the 

period [-100 – 200] ms and learned force production (Fig. 2.2A, left). This offered some evidence that 

larger EMG learning corresponded to larger learned forces. However, force production truly relates to 

changes in the net torque about a joint and therefore is determined by the balance between agonist and 

antagonist muscle activities; we found no significant (p = 0.125) correlation between antagonist muscle 

activity and force production, during this early period of the reach. 

To determine the robustness of our estimate for the learning response, we considered an 

alternative approach by comparing the difference in the EMG recorded in the P2 and P1 trials. That is, 

P2 - P1 should resemble learning from a single error, provided that the feedback responses during the 

first and second perturbation trials are the same. Fortunately, the feedback1 and feedback2 responses 

of Fig. 2.2B are rather similar, though not identical. Therefore, we compared the P2 - P1 EMG signal with 

the learning1 signal, across subjects (Fig. 2.10). We confirmed that P2 - P1 resembled our estimate of 

the learning response (despite the fact that the measures relied on different comparisons). However, 

their correspondence was not exact, reflecting differences in feedback1 and feedback2. For example, 

the accentuated peak and trough in the CW biceps perturbation response difference (1st column, 3rd row 

of Fig. 2.10) corresponded precisely to a slight temporal shift relating the feedback1 and feedback2 

responses of Fig. 2.2B (also 1st column, 3rd row).  

Thus far we have analyzed learning from a single perturbation as well as cumulative learning 

from two perturbations. If the ‘scale-and-shift’ relationship between feedback and learning is a general 

learning rule, we should observe this phenomenon for the learning response from the 2nd perturbation 

experienced in quartet trial progressions. Given that the corresponding feedback responses were nearly 

identical during the 1st and 2nd perturbations (Fig. 2.2) we would predict that the single trial learning 

time-courses induced by these perturbations should be quite similar. To compute the learning that 

occurred solely due to experience of the 2nd perturbation we considered the difference EC2 (quartet) - 
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EC2 (triplet). This difference represents the learning that takes place in the feedforward command after 

the experience of P2. In Fig. 2.11 we have plotted our estimate of learning from the second perturbation 

in the quartets alongside our estimate of learning from the perturbation in the triplets. The two possess 

an extremely close resemblance. Thus, this analysis provided further evidence that supports our working 

hypothesis concerning the relationship between learning and feedback. 

Finally, we wanted to ensure that the relationship between learning and feedback established 

by our analysis of high and low feedback trials (Figs. 2.7 and 2.8) was not trivially the result of some 

process that varied systematically during the progression of the experiment. For example, perhaps 

subjects became less sensitive and responsive to the triplet trial progressions due to the uncertain 

nature (i.e. frequency and orientation) of the force field perturbations. If such a phenomenon was 

responsible for the feedback response variability, we would expect that there would be some trend in 

which trials corresponded to the large and small feedback triplet trial progressions. However, we found 

no such trend in the trial orderings (Figure 2.12). The large and small feedback groups were constructed 

of trials that were sampled approximately uniformly across the experiment for both agonist and 

antagonist muscles. This finding suggests that the observed changes in feedback response gains was the 

result of random within-subject fluctuations in the gain of the neural feedback controller, rather than a 

systematic modulation due to passage of time. 

 

 

Figure 2.12. The feedback response gain varied randomly with the progression of the experiment. 
Triplet trial progressions were classified into two equally-sized groups based on the magnitude of the 
feedback response, for agonists and antagonists separately. Large (red) and small (black) feedback 
groups were constructed from individual responses that fell above and below the median response over 
a critical time window (agonists: 150 – 450ms; antagonists: 0 – 600ms). Here we show the probability of 
any particular triplet belonging to the large or small feedback group. The top and bottom rows show 
agonist and antagonist responses, respectively. Each figure indicates a different muscle: from left to 
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right – pectoralis, posterior deltoid, biceps, and triceps. No clear relationship between the triplet 
number and its assignment (large or small) existed for any of the muscle responses. Errors bars indicate 
±1 SEM. 
 

2.3.6 The effect of cerebellar stimulation on learning and feedback responses 

It is well known that the cerebellum is a critical site that supports motor adaptation. In the context of 

force field adaptation, stimulation of the cerebellar cortex appears to modify the amount of learning 

that takes place over a sequence of many trials4. Can we observe the cerebellar influence on adaptation 

after only a single trial? To answer this question, our experiment consisted of two phases. In the first 

phase, participants performed reaching movements in the absence of any stimulation. In the second 

phase of the experiment, we stimulated the cerebellum (2 mA, 25 min.), ipsilateral to the dominant arm 

(3 cm lateral to the inion) using two 5 x 5 cm saline-soaked sponges (Phoresor II device). Participants 

were divided into 3 groups: a sham stimulation group, a cathodal stimulation group, and an anodal 

stimulation group. 

 

 

Figure 2.13. Cerebellar stimulation alters the amount of learning. A. The lateral displacement of the arm 
during the first perturbation (left) and second perturbation (right) is shown. Note the slight increase in 
error corresponding to cathodal stimulation. B. The amount of learning from one perturbation (left) or 
two consecutive perturbations (right) is shown. Note that anodal and cathodal stimulation appear to 
have a bidirectional effect on the magnitude of learning. 
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As before, perturbations were randomly encountered, either once, or twice in a row. Fig. 2.13 

shows the feedback response to error (Fig. 2.13A) and the total amount of learning (Fig. 2.13B) that 

resulted from either one perturbation, or two perturbations. We do not provide the EMG analogues of 

these traces, as we did not have enough power to identify specific differences in muscle activity. 

Nevertheless, cathodal stimulation appeared to have a small effect on the feedback response to the 

error, slightly increasing the maximum error experienced on force field trials (Fig. 2.13A). Furthermore, a 

bidirectional effect of stimulation on the amount of learning was also observed. Cathodal stimulation 

appeared to decrease the amount of learning that resulted from either one or two perturbations, 

whereas anodal stimulation appeared to increase the amount of learning (Fig. 2.13B). These findings are 

consistent with the idea that modulation of the cerebellum alters the experience of learning from a 

single error. In terms of the multiple timescales of motor memory, this is most consistent with a role of 

the cerebellum in the fast timescale of adaptation, though it does not preclude the possibility of 

cerebellar involvement with slower timescales of memory8. 

 

2.4 Discussion 

When we experience an error during a movement, the result is a sensory mismatch between the 

intended movement and the actual movement. This error is encoded in sensory coordinates. However, 

to improve our motor commands, the brain must transform the sensory representation of error to a 

motor representation of commands in muscle space. Our study sheds light on this process. 

During a reaching movement, the sensory encoding of error engages spinal and supra-spinal 

neural circuits that, following a delay, produce motor commands, partially correcting for the error. The 

motor response to the mismatched sensory feedback is termed an error feedback response23. With 

practice, the gain of the sensory feedback response to error can be increased, resulting in more vigorous 

corrections to the repeatedly experienced errors107. However, because of inherent delays in sensory 

feedback, the error feedback response alone cannot fully compensate for the errors. To solve this 

problem, theory has suggested that the feedback response may serve as a teaching signal for the brain, 

resulting in changes in the motor commands that are produced in a “feedforward” way23. 
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2.4.1 The feedback response to error is incorporated into the motor plan for the next 

movement 

In support of this hypothesis, several studies have demonstrated that on a trial-to-trial basis, aspects of 

the feedback response to error appear to be incorporated into the learned response24,104–106. Specifically, 

these studies demonstrated that as the brain learns to compensate for an externally imposed 

perturbation, the early feedforward component of muscle activity during a reach grows to resemble the 

feedback-related muscle activity. 

In these previous studies, the distinction between feedback and learning responses was made 

largely on the basis of timing of the response features, rather than separately isolating each component 

for the entirety of the movement trace. Here, we approached the problem by using error-clamp trials 

that sandwiched perturbation trials. This technique allowed us to more precisely examine the temporal 

relationship between learning and feedback, isolating the time-course of each response during the 

entire movement. We found that the error feedback response was a complex temporal pattern of 

activation/deactivation of each muscle, and included short- and long-latency feedback components that 

corrected for the perturbation and brought the hand to the target. Following experience of a single 

error, motor commands changed on the following trial. Similar to the feedback response, the learning 

response possessed complex temporal dynamics specific to each muscle, which persisted during the 

entirety of the movement. Remarkably, the time-course of the learning response appeared to be tightly 

correlated to the feedback response. In fact, the learning response included essentially all components 

of the feedback response, scaled by roughly 25% in magnitude (after 2 perturbations), and shifted 

approximately 125ms earlier in time. Considering that voluntary feedback corrections can be expected 

at around 150ms after the initiation of movement108, or perhaps as early as 130ms in velocity-

dependent curl fields24, this shift appears to account for the delays in the salient voluntary correction 

component of the feedback response. It is not at this point clear if the magnitude of this shift is an 

invariant feature of the nervous system, or is drawn from the relative timing of the feedback controller’s 

output and the onset of the movement. 

One might have predicted that in the initial stages of training (e.g. after the experience of 1 or 2 

errors), only earlier portions of the feedback response are learned. However, it appeared that the 

entirety of the feedback response affects the learning response (Figs. 2.5C and 2.6A); the fraction of the 

feedback response that transferred into the learned response was invariant throughout the trajectory of 

the movement (~25%, Fig. 2.6B). The consistency in the scaling factor, both across muscles (Fig. 2.4), and 

time (Fig. 2.6B), suggests that there exists some set point of error feedback sensitivity in muscle space. 
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We speculate that this set point may be intimately related to regulation of error sensitivity7 during 

motor learning. The amount learned from the experience of error may be in part modulated by the 

extent to which the feedback response is a reliable corrective signal, based on the task history and 

environment. 

The motor commands produced by the sensory feedback system served as a template for the 

motor learning process, becoming the motor commands that were used to predictively compensate for 

the novel dynamics on the subsequent attempt. To determine the generality of this claim, we sorted our 

data within-subject based on the magnitude of the feedback responses. We found that for both agonists 

and antagonists, when the feedback response was large, so was the learning response (Figs. 2.7 and 8), 

suggesting that the trial-to-trial variability in the gain of the feedback system strongly affected the trial-

to-trial variability in learning.  

Our result calls for a re-evaluation of a previous claim that the nervous system produces 

nonspecific learning responses to single errors109,110. These authors found that single trial perturbations 

with differing dynamics did not induce different kinematic correlates of learning. To reconcile our results 

with these prior findings, we speculate that the feedback system produced nonspecific, or saturated 

responses to the perturbations used in these studies, which would result in identical learning responses 

according to the ‘scale-and-shift’ hypothesis. We also note that kinematic similarity does not imply that 

the control signals in muscle space were identical; rather sophisticated differences might be present at 

the neuro-motor level, without corresponding distinct behavioral correlates, as is the case in Figures 2.7 

and 2.8. 

Previous investigators have observed co-contraction of agonist-antagonist pairs of muscles 

during force field adaptation, which increases the stiffness of the arm and likely stabilizes it against an 

unpredicted perturbation104–106,111. We speculate that in our task, occasional co-contraction during the 

error-clamp trial following the perturbation may have resulted in the cancellation of learned antagonist 

inhibition (e.g. absence of initial inhibition in triceps and posterior deltoid in Fig. 2.8) thus partially 

masking the learning instructed by the error feedback signal. However, on the whole, given that the 

mean antagonist learning and feedback responses demonstrated clear decreases in muscle activity 

relative to an error-free reach (Figs. 2.2 and 2.4), rather than co-activation across agonist-antagonist 

pairs, we suspect that our task’s perturbation infrequency might have partially disengaged this neural 

impedance controller. This relative absence of co-contraction may also explain a difference between our 

results and a general learning rule posed by Franklin et al. (2008)24 where the authors found that 

antagonists increased their activity in response to error, in addition to their agonist counterparts. We 
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should note that apart from this difference, our proposed ‘scale-and-shift’ relationship between learning 

and feedback is quite similar to a computational architecture proposed by these authors. 

 

2.4.2 On the causality between feedback responses and subsequent learning 

Our results describe a correlation, and not a causal relationship. However, an earlier work provides 

some evidence for the idea that the feedback response is causally related to the learning response. 

Haith et al. (2011)112 asked subjects to reach in a force field but not produce the voluntary corrective 

response associated with bringing the hand back to the target. They did this by having people reach to a 

line during perturbation trials (rather than to a point). They found that the learned response, measured 

via the forces that subjects produced in error-clamp point-to-point reaching trials, was significantly 

smaller as compared to when the perturbation trials were point-to-point. This result is consistent with 

our ‘scale-and-shift’ error feedback teaching hypothesis, as the absence of late voluntary corrections in 

the reach to a line movement would negatively influence the learning response late in the point-to-point 

movement. 

We observed that people who produced a larger feedback response to error also learned more 

from the error that they had experienced at the level of muscle control signals (Figs. 2.5). This predicts 

that individuals who have reflexes that produce a stronger response to a given perturbation are likely to 

be able to adapt faster to that perturbation. Therefore, some of the between subject differences in rates 

of adaptation in force fields75 may be due to between subject differences in their ability to correct for 

sensory prediction errors using reflexive and voluntary feedback pathways. However, because feedback 

response to error is in itself an adaptive process that benefits from experience105,113,114, we do not know 

whether people who learn more do so because of inherently better feedback control, or because they 

are able to better tune their feedback control system to the range of perturbations. 

Scaled and shifted feedback responses are not the sole progenitors of motor learning. More 

likely, feedback instruction is one of many mechanisms in a potpourri of neural motor learning/control 

strategies. For example, there exist motor learning paradigms where feedback corrections are not 

required; sensory prediction errors are sufficient to drive motor learning14. An example of this is saccade 

adaptation, where visual error detected at completion of the movement is sufficient for modulation of 

saccadic gain115. However, Wallman and Fuchs (1998)115 found that even in saccade adaptation, if 

subjects are allowed to correct their saccades with a second saccade that responds to the error, the rate 

of learning is faster than if this motor correction was not allowed. Therefore, the act of generating a 

corrective motor response appears to enhance the process of learning. 
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In summary, our results demonstrate that the transformation from sensory representation of 

error to motor representation of commands produced by the feedback system serves as a teacher for 

the motor learning system. The patterns of muscle activity that compose the feedback response to error 

are shifted earlier in time to become the learned response. Individuals who have well-tuned feedback 

systems that produce a larger feedback response to error, have access to a better teacher, resulting in 

more learning from a given error.
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Chapter 3. Estimating properties of the fast and 
slow adaptive processes during sensorimotor 
adaptation 

Experience of a prediction error recruits multiple motor learning processes: some that learn strongly 
from error but have weak retention, some that learn weakly from error but exhibit strong retention. 
These processes are not generally observable, but are inferred from their collective influence on 
behavior. Is there a robust way to uncover the hidden processes? A standard approach is to consider a 
state-space model where the hidden states change following experience of error, and then fit the model 
to the measured data by minimizing the squared error between measurement and model prediction. 
We found that this least-squares algorithm (LMSE) often yielded unrealistic predictions about the 
hidden states, possibly due to its neglect of the stochastic nature of error-based learning. We found that 
behavioral data during adaptation was better explained by a system in which both error-based learning 
and movement production were stochastic processes. To uncover the hidden states of learning, we 
developed a generalized Expectation Maximization (EM) algorithm. In simulation, we found that while 
LMSE tracked the measured data marginally better than EM, EM was far more accurate in unmasking 
the timecourses and properties of the hidden states of learning. In a power analysis designed to 
measure the effect of an intervention on sensorimotor learning, EM significantly reduced the number of 
subjects that were required for effective hypothesis testing. In summary, we developed a new approach 
for analysis of data in sensorimotor experiments. The new algorithm improved the ability to uncover the 
multiple processes that contribute to learning from error. 
 

3.1 Introduction 

When people and other animals perform a movement that produces an unexpected outcome, they 

learn from the resulting error and retain a portion of this learning over time. Analysis of behavior in 

numerous contexts, including saccade paradigms9,61, reach paradigms8,43,44, vestibular paradigms45, and 

classical conditioning paradigms46, has revealed an interesting behavioral property termed spontaneous 

recovery: following learning, washout, and then passage of time, behavior spontaneously reverts back to 

the previously learned state. That is, washout does not return memory to its baseline condition, but 

appears to engage a process that masks the previously acquired memory. With passage of time, this 

mask appears to lift, resulting in re-expression of the learned behavior. 

 Spontaneous recovery is consistent with a mathematical model of learning where experience of 

error engages two (or more) independent learning processes: a fast process that learns strongly from 

error but forgets rapidly, and a slow process that learns weakly from error but exhibits robust 

retention8,55. It is possible that the putative learning processes represent interactions between distinct 

neural systems such as the cerebellum, the motor cortex, and the parietal cortex4,47,116. The learning 
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processes may also be represented in behavior as explicit and implicit processes72, body versus world 

estimation33, temporally-labile versus temporally-stabile processes29, a memory of errors4,30, and 

preparation-time dependent processes32. In all of these approaches, experience of error engages 

multiple hidden processes that act in parallel, each responding to error with their own characteristic 

learning and retention properties, and then combining their outputs to jointly influence behavior.  

An example of a neural system that might implement such a learning model is the cerebellum 

and its principal cells, Purkinje cells (P-cells). Following experience of a visual error, some P-cells prefer 

that error25,117 and experience a strong modulation of their complex spikes. Experience of a complex 

spike in a P-cell produces plasticity among some of the synapses, resulting in a reduction in the simple 

spikes that the P-cell produces on the subsequent trial118. This resembles a learning process that adapts 

strongly from error. Interestingly, these neurons also exhibit rapid forgetting; displaying little or no 

retention (in terms of change in their simple spikes) after 10 seconds of time has passed since 

experience of error118. Other P-cells do not prefer that same error; for them, that error produces 

suppression of their complex spikes below baseline, resulting in a weak potentiation of their simple 

spiking rate. This resembles a learning process that adapts weakly from error. With repeated trials, the 

experience of these errors produces two timescales of change in the simple spikes: fast change in the P-

cells that prefer the error, slow change in the P-cells that do not prefer the error118. Therefore, one 

potential neural mechanism for the multiple learning processes may be in the cerebellum, where the 

various P-cells learn differently from a given error based on their preference for the direction of that 

error.  

Here, our aim was to build a mathematical tool that could, in principle, extract the hidden 

processes from observed behavior. A common tool currently used for analysis of behavioral data in 

motor learning is a form of nonlinear optimization called least-mean-square-error estimation (LMSE). 

This algorithm begins with a state-space model of learning, and then searches the model’s parameter 

space in order to minimize the sum of squared differences between the observed behavior and the 

model’s predictions. LMSE has been widely applied to analyze trial-by-trial changes of behavior during 

motor learning45,70–72. However, we found that when we applied LMSE to behavioral data collected 

during a typical adaptation experiment, the algorithm fit the measured data well, but for many subjects, 

it yielded unrealistic predictions about the properties of the underlying hidden processes. We 

speculated that this problem was due to a fundamental limitation of LMSE: in the context of error-based 

learning where the errors we make are influenced by the movements we generate, the LMSE algorithm 
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is equivalent to a maximum likelihood estimator for a system that is ignorant of the stochastic nature of 

learning and moving. 

We therefore wondered if an algorithm that considered both of these sources of stochasticity, 

noise in the system that learned from error, and noise in the system that produced the motor output, 

could improve our ability to estimate the hidden processes. We derived a canonical form of the two-

state model that cast the learner in a framework where both learning from error, and the production of 

a movement, were stochastic processes74,76. In this framework there was uncertainty in both the 

evolution of hidden states and the observation of movement55. 

To estimate parameters of this more general model of learning, we considered a maximum 

likelihood approach that was first applied to sensorimotor learning by Cheng and Sabes74, called 

expectation maximization (EM). Unfortunately, it is difficult to constrain EM to enforce traditional two-

state dynamics. In addition, previous descriptions of the algorithm assumed time-invariant state-space 

transitions79. In contrast, a typical motor control experiment relies on behavioral probes such as error-

clamp trials27 and set breaks. The latter type of probe can make the state-space transitions time-

dependent. 

Here, we illustrate how a generalized EM algorithm can be used to estimate the hidden 

processes that may underlie a learning problem, even when constraints are applied to the model 

parameters, error-clamp trials are included in the experimental paradigm, and the generative model of 

learning varies in time due to the occurrence of set breaks. The result is a new mathematical toolbox.  

We demonstrate that EM fits observed human reaching behavior similarly to LMSE, but uses an 

underlying parameter set whose likelihood is more likely to explain the observed behavior. To further 

evaluate EM, we consider several simulated sensorimotor learning paradigms. Unlike behavioral data 

measured in the laboratory, the fast and slow learning processes were explicitly known in the simulated 

data sets, allowing us to objectively quantify performance of EM.  

Our work has two main results: 1) behavior during sensorimotor learning is better represented 

by a generative model in which both the generation of movement and learning from error are stochastic 

processes, and 2) in such a system, EM significantly improves the ability to uncover the hidden states of 

learning. The resulting algorithm has the practical implication of reducing the number of subjects that 

are needed for statistical testing of hypotheses.  

 



58 
 

3.2 Materials and methods 

Our goal was to produce a mathematical toolbox that could robustly estimate the properties of a two-

state learning process from data collected in a typical adaptation experiment. We employed a statistical 

algorithm known as EM. EM is an iterative parameter estimation technique that can be used for system 

identification in the presence of latent variables. As its name suggests, EM is composed of two separate 

steps. In the expectation step (E-step), a Kalman filter is used to provide the best estimate of the hidden 

states under the current estimate of the model parameters. In the maximization step (M-step), 

maximum-likelihood estimation is used to identify a set of model parameters that maximizes an 

objective function known as the expected complete log-likelihood function. The E- and M-steps together 

are guaranteed to identify model parameters that improve the likelihood of observing the measured 

data. The E- and the M-steps are iterated until the likelihood of observing the measured data converges. 

Current application of EM in the sensorimotor literature is limited to linear time-invariant (LTI) 

systems74 where the generative model assumes no constraints on the dynamics of the hidden learning 

proceses. In this case, the E- and M-steps can be performed analytically via closed-form equations. 

Although closed-form equations simplify one’s search for the optimal parameter set, performing this 

analytical formulation makes it difficult to enforce the conventional properties of a two-state model 

(e.g., the fast process forgets more rapidly than the slow process). In addition, closed-form expressions 

for the M-step of the algorithm cannot always be derived for complicated likelihood functions, as is the 

case when set breaks are included in the generative model. To rectify these issues, we considered a 

more general form of the EM algorithm, aptly named generalized EM77. Our version of this algorithm is 

similar to previous descriptions of EM in the sensorimotor literature, differing only in the 

implementation of the M-step. In our algorithm, numerical techniques are used to search for the 

maximum value attained by the expected complete log-likelihood function within a constrained 

parameter space. Our implementation is described in Appendix 1. 

To assess the performance of our approach, we tested EM against a different technique for 

fitting state-space models to behavioral data, LMSE. LMSE is a technique in which one identifies model 

parameters that minimize the mean-squared-error between the measured behavior and the model 

predicted behavior. In an error-based learning model, where movement result in errors that teach the 

motor learning system, LMSE is identical to a maximum likelihood estimator for a model that assumes 

that motor learning and movement production are deterministic processes, with uncertainty only arising 

in our measurement of the behavior of the subject, and is described in detail in Appendix 2. 
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We applied our EM and LMSE algorithms to data recorded from human subjects performing a 

visuomotor rotation task. Additionally, we simulated various paradigms and generated data sets in 

which the fast and slow states were known. Using these data, we asked how accurately EM and LMSE 

could uncover the true states. Finally, we used EM and LMSE to perform a power analysis, estimating 

how many subjects were needed in order to robustly test effectiveness of an intervention that modified 

error sensitivity and retention in a simulated population. 

 

3.2.1 State-space model of learning 

Here we derive a two-state model of learning. Our model possesses the same canonical form as 

previous models in the literature, but differs in a fundamental way: we mathematically formalize the 

inclusion of error-clamp trials and set breaks. This modification yields a more complicated time-varying 

form of the state-space equations, but also makes our approach compatible with general sensorimotor 

adaptation paradigms. 

A learner is presented with a sequence of trials where she is instructed to make a movement 

towards a target. On trial n she is presented with the target 
( )n

g . To achieve this target, she produces a 

movement 
( )n

u , and observes the consequences of her action ( )n
h . The consequence of her action (Eq. 

3.1) is determined by her movement as well as any external perturbation to her movement, denoted by 

( )n
r . 

 
( ) ( ) ( )n n n

h u r= +  (3.1) 

The learner adjusts her movement toward the target according to her estimate of the perturbation ( )ˆ n
r . 

The movement she produces is altered by motor execution noise 
( )n
u , which has a normal distribution 

with mean 0 and variance 2
u . We have:  

 
( ) ( ) ( ) ( )ˆn n n n

uu g r = − +  (3.2) 

In a two-state model, we assume that the learner estimates the perturbation via two independent 

states, referred to as the slow and fast states of learning. The values of the two states on trial n are 

represented by the vector ( ) ( ) ( )nn n
s f

T

x x =
 

x where sx  and fx
 
are the scalar-valued slow and fast 

states. The learner’s estimate of the perturbation is related to these states according to:   

 
( ) ( )ˆ n nTr = c x  (3.3) 
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Here  1 1
T

=c , meaning that the learner’s estimate is equal to the sum of the fast and slow states. 

 Over time, the learner adjusts her estimate of the perturbation according to the errors she 

experiences. Error, denoted by 
( )n

e , is the difference between the observed outcome of the movement, 

and the target: 

 
( ) ( ) ( )

( ) ( ) ( )

= −

= − +

n n n

n n nT
u

e h g

r c x
 (3.4) 

Note that this error could be further manipulated by the experimenter. In some cases, the experimenter 

can add additional noise to the observed movement to increase feedback uncertainty56. One could also 

explicitly attempt to account for uncertainty in visual or proprioceptive transduction of error. We 

remark on these sources of noise further below. 

A common experimental manipulation is the occurrence of an error-clamp trial27. On these trials 

the learner is presented with an error that is independent of the movement she performed. Therefore, 

the error experienced by the learner can take different functional forms depending on the trial type 

according to: 

 ( )
( ) ( ) ( )

( )

 − +
= 


, not an error-clamp trial

, error-clamp trial

n n nT
n u

n
c

r
e

e

c x
 (3.5) 

Here, the variable 
( )n
ce  takes the value of the error imposed on trial n. 

Two separate processes determine how the learner’s estimate of the perturbation changes from 

one trial to the next: learning and forgetting. Together, learning and forgetting are captured by the state 

update equation. 

 
( ) ( ) ( ) ( )1n n n n

xA e
+

= + +x x b   (3.6) 

The forgetting process is controlled by the matrix A  which encodes the rate at which states decay in 

the absence of error due to the passage of time. If we assume that each state evolves independently, we 

can represent A  as a diagonal matrix of the form 
0

0
s

f

a
A

a

 
=  
 

. Here sa and fa  are retention factors 

for the slow and fast states, respectively. 

The learning process is controlled by the vector b  which encodes the learning rates of the fast 

and slow states. The parameter b  is a 2 x 1 vector of the form 
T

s fb b  b = , where sb and fb  are 
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the error sensitivities of the slow and fast states, respectively. These error sensitivities determine the 

rate at which each state learns from error. 

The entire process of updating the learner’s estimate of the perturbation, like the process of 

generating a movement, is affected by noise, represented by x . This noise source represents the 

combined effect of many sources of noise that accumulate in afferent pathways involved in learning 

from error. These include, but are not limited to, noise in the proprioceptive and visual transduction of 

error, noise in an error stimulus itself, noise in the synaptic mechanisms that contribute to learning from 

a given error, etc. We will refer to the collection of these processes as state update noise, and assume 

that it is distributed according to a multivariate normal distribution with mean  0 0
T

 and variance-

covariance matrix Q . In accordance with our assumption that the two states evolve independently, we 

require that their covariance be equal to zero, implying that Q  is a 2 x 2 diagonal matrix. To simplify the 

model we assumed that the fast and slow state update variances were equal, yielding a variance-

covariance matrix of the form

2

2

0

0

x

x

Q




 
=  
  

, where 2
x  represents the cumulative state update 

variance described above. In a set of control analyses, we also considered a model of learning where the 

fast and slow states had different noise variances (see Different noises in the fast and slow adaptive 

processes). 

Eq. (3.6) treats the errors experienced in error-clamp and non-error-clamp trials the same. That 

is, we assume that the learner does not differentiate from an error that was produced by her own 

behavior, and an error that was presented to her in an error-clamp trial. The validity of this assumption 

is currently under debate. Although blocks of error-clamp trials have been used extensively in the 

literature to assess decay properties of motor memory, two recent reports have found evidence that in 

some cases, error-clamp blocks appear to contain contextual cues that can affect the process of 

learning10,119. In contrast, another report has found evidence that learning in error-clamp trials remains 

consistent with learning in non-error-clamp trials120, or that differences in learning become evident only 

after long passages of time away from the task121. Given that this question remains unanswered, here 

we chose the simplest model wherein all errors were treated equally. 

We do not directly observe the states of the fast and slow processes. Instead, we measure the 

movement of the subject on each trial. In many experiments, to normalize across different targets that 
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may be presented to the subject, it is useful to define the subject’s movement relative to the target 

location,
( )n

y . 

 

( ) ( ) ( )

( ) ( )− 

= −

=

n n n

n nT
u

y g u

c x
 (3.7) 

Substitution of the motor action in Eq. (3.7) into our expression for error in Eq. (3.5) yields the following 

simplification: 

 
( )

( ) ( )

( )

 −
= 


, not an error-clamp trial

, error-clamp trial

n n
n

n
c

r y
e

e
 (3.8) 

Finally, we account for set breaks in our generative model of learning, noting that set breaks 

result in significant forgetting of previously learned behavior9. Therefore, we imagined that set breaks 

could be modeled as additional decay that elapses after the conclusion of the trial preceding a set break: 

 

( ) ( ) ( ) ( ) ( ) ( )  ( )

( )

+  = + +
 

  
 =  
   = 
 
 
 

1
0 0 ,

0
trial n is followed by a set break

0
where

1 0
trial n is not followed by a set break

0 1

n n n n n n
x

T
x

d
sd

d
n f

D A e N Q

a
A

a
D

x x b  

 (3.9)   

The parameter d in Eq. (3.9) is a decay factor that parametrizes elapsed time between trials in order to 

account for additional forgetting of the fast and slow states122 across a set break. A value of 0d =  

means that a set break results in no further forgetting beyond that which accompanies an experimental 

inter-trial-interval (ITI). A positive value of d indicates that a set break results in more forgetting than an 

experimental ITI. Here we assumed that all set breaks are an equal length of time, though Eq. (3.9) could 

be easily modified to allow for set breaks of variable length by replacing d by the product of d with the 

ratio of the duration of a set break to the average ITI.  

The form of Eq. (3.9) assumes that the rate of decay of the fast and slow states follows the 

retention properties that are observed trial-by-trial in the absence of set breaks. Our two-state model 

can now be represented as the following system of state-space equations that account for both error-

clamp trials and set breaks: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )   ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )

 

+

+

= + +

= +

 
= = 
  

 −
= =


1

1

2

0 0 ,

0,

no set break  no set break

set break set break

 no set break  not an error-clamp trial

set break         

T

n n n n n n n n
x x

n n n nT
u u

n n

d d d

n n
n n

d n
c

T

u

A e N Q

y N

QA
A Q

A A QA

r y
e

A e

x x b

c x

b
b

b

 





     error-clamp trial

 (3.10)   

In Eq. (3.10), the ‘no set break’ condition indicates that trial n is not followed by a set break. The ‘set 

break’ condition indicates that trial n is followed by a set break. The ‘not an error-clamp trial’ condition 

indicates that trial n was not an error-clamp trial. The ‘error-clamp trial’ condition indicates that trial n 

was an error-clamp trial. Note that the sign of the motor noise in Eq. (3.10) was flipped; as this noise is 

Gaussian with mean zero, changing its sign describes an equivalent system. 

 

3.2.2 Experimental procedure 

We recruited n=20 healthy right-handed subjects (ages 17 – 59, 8 males) to perform a visuomotor 

adaptation study. All subjects signed a consent form approved by the Johns Hopkins University School of 

Medicine Institutional Review Board before participating in the experiment. 

Subjects were seated in a chair and held the handle of a planar robotic manipulandum. The arm 

of the subject was obscured from view, and the position of the hand was represented by a white cursor 

projected onto the screen situated directly on top of the hand. The x and y positions of the 

manipulandum (i.e., the subject’s hand) were recorded at 200 Hz from optical encoders at a resolution 

of better than 0.1mm using custom C++ code. Subjects were instructed to move their hand from a 

starting circle through a target circle (radius = 1cm). The target circle was presented in one of 8 positions 

in the workspace, at a displacement of 10 cm. On some trials, the subject was provided no visual 

feedback of the cursor. We term these trials “no-feedback trials”. Apart from these no-feedback trials, 

subjects had continual visual feedback of their hand position during the outward reach.  Our experiment 

employed a single perturbation condition.  The perturbation was a 30° CCW rotation to the cursor 

position, about the starting position. The subject was awarded a point each time the cursor passed 

through the target within 190-290 ms following movement onset. Subjects were instructed to obtain as 

many points as possible during the experiment.  
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An epoch consisted of 8 trials, one to each of the 8 targets around the circle, chosen in a random 

sequence. The task began with a baseline period of 30 epochs where subjects reached without any 

perturbation (Fig. 3.1A). We interspersed 3 epochs of no-feedback trials within this baseline period, to 

familiarize subjects with this condition. The baseline period was followed by a block of 30 perturbation 

epochs. After the perturbation period, visual feedback was removed for 15 epochs. After this no-

feedback period, feedback was reinstated and the perturbation was removed (washout trials) for 30 

epochs. 

Our analysis focused on the hand endpoint error, which was taken as the angular displacement 

of the hand from the target when the subject’s hand displacement exceeded the 10 cm target 

displacement.  

 

3.2.3 Epoch vs. trial-by-trial analysis of behavior 

The two-state model described in Eq. (3.10) is readily applied to trial-by-trial data where only a single 

target is presented during the experiment. However, in our visuomotor rotation task, as in many 

experiments, the paradigm consisted of multiple targets. In paradigms with multiple targets, the 

learning process should be represented with different states for each target, that is, separate fast and 

slow states of learning for each target in the workspace. This expansion of the hidden state 

dimensionality is further complicated by generalization of learning across targets. That is, the error 

experienced when the subject moves towards one target generalizes to other targets in the workspace, 

resulting in differential amounts of learning across the workspace123. 

 In our task, we did not directly probe this generalization function. Therefore, we attempted to 

minimize the effect of generalization on the learning process by averaging behavior across the 8 

trials/targets visited in each epoch of the experiment. In this case, while the same target may not be 

visited from one trial to the next, the same set of targets is visited from one epoch to the next, reducing 

the effect of generalization on the recorded epoch-by-epoch behavior. Unless otherwise noted, all 

analysis of subject behavior in our visuomotor rotation task is based on application of the two-state 

model in Eq. (3.10) to epoch-by-epoch behavior. 

 However, we also considered two-state model fits to the raw trial-by-trial data. In order to apply 

our two-state model to the trial-by-trial data, we first had to decide how best to deal with 

generalization. We considered two extreme cases, (1) where learning generalized completely from one 

target to all other targets and (2) where there was no-generalization of learning to any other targets. We 

will refer to these trial-by-trial models as our full-generalization and no-generalization models, 
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respectively. In the full-generalization model, we assumed that the learner used a single fast and slow 

state to account for the perturbation for all targets as in Eq. (3.10). The fast and slow states were 

ignorant of the target location and fully generalized learning that occurred from one target to all other 

targets. Therefore, in the full-generalization model we applied Eq. (3.10) to the trial-by-trial data as if 

the same target had been visited on each trial. 

 In the no-generalization trial-by-trial model, learning from one target did not generalize to other 

targets. This trial-by-trial model had 16 states, one fast and one slow state for each of the 8 targets. All 

fast/slow states experienced forgetting on every trial according to a common fast/slow retention factor. 

However, if target k was visited on trial n, then only the fast and slow states associated with target k 

learned from the error experienced on that trial (all fast/slow states had a common fast/slow error 

sensitivity). Furthermore, all fast and slow states were subject to a non-zero state noise on each trial. In 

Appendix 4 we provide a complete description of this model and show how it can be extended to 

account for generalization that might extend beyond the width of a single target.  

 To summarize, the majority of our analysis of behavioral data averaged in epochs of 8 trials 

where all 8 targets are visited once in the epoch. In a set of control analyses (see Trial-by-trial analysis of 

behavior) we considered two trial-by-trial models that covered the extremes of generalization: one 

where learning generalized completely across targets and one where learning did not generalize at all 

across targets. For the simulations (see Simulating realistic data), we never performed averaging of the 

simulated behavior. 

 

3.2.4 Simulating realistic behavior 

To test our algorithm, we simulated realistic data using the two-state system described in Eq. (3.10). We 

simulated four paradigms (Fig. 3.3, top row) commonly encountered in the literature. These paradigms 

differed with respect to the inclusion or exclusion of error-clamp trials, set breaks, as well as the manner 

in which the perturbation was introduced (i.e., abruptly versus gradually).  

All paradigms began with a baseline period in which the learner was simulated for many trials in 

the absence of any external perturbation to her movements. In Paradigm 1 (Fig. 3.3, Paradigm 1) this 

perturbation was followed by an abrupt introduction of a perturbation. We used a 30° perturbation to 

match our visuomotor rotation task. In Paradigm 2 (Fig. 3.3, Paradigm 2) we built upon Paradigm 1 by 

adding a prolonged error-clamp period that followed the perturbation, where error was completely 

eliminated. This type of intervention is a common way to isolate and measure retention of learned 

behavior. Paradigm 2 concluded with a washout period that allowed the simulated learner to return to 
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baseline behavior. Paradigm 2 closely resembled our visuomotor task, considering that the simulated 

error-clamps trials produced qualitatively similar behavior to that demonstrated by our subjects during 

no-feedback trials. In Paradigm 3, we simulated a learner in a gradual perturbation environment, 

followed again by an error-clamp period. In Paradigm 4 we built upon the other paradigms by adding set 

breaks. In this simulated experiment we followed a trial structure that is known to promote 

spontaneous recovery of behavior8,9,72. After being exposed to a positive 30° perturbation, the sign of 

the perturbation is abruptly switched until the learner expresses approximately baseline behavior. Then 

a block of error-clamp trials is provided to test for spontaneous recovery (Fig. 3.3, Paradigm 4). 

 

sa  fa  sb  fb  2
x  

(degrees2) 

2
u  

(degrees2) 

( )1
sx  

(degrees) 

( )1
fx  

(degrees) 

2
1  

(degrees2) 

d 

0.985 0.556 0.097 0.213 1.694 1.037 0 0 0 8 

Table 3.1. Two-state model parameters. This table provides the model parameters used for the 
simulated experiments in our primary analyses. We selected these parameters specifically to match the 
dynamics of learning observed in our experimental data (Fig. 3.1). To do this, we fit epoch-by-epoch 
single subject behavior with EM and LMSE. For the retention factors and error sensitivities, we 
computed the average parameter value across all 20 subjects, and both the EM and LMSE fits. We 
assumed both the initial slow and fast states were equal to 0, to represent a naïve learner. For the initial 
state variance, we used a value of 0, indicating that each simulated fast and slow state truly began at the 
value zero for all simulations. For the state and motor noise, we used the mean variances predicted by 
the EM algorithm, as LMSE does not separately measure these noise terms. Finally, note that the 
parameter d only applies for simulation of Paradigm 4 which included set breaks. 
 

 For each paradigm we simulated subject behavior 1000 times using fixed model parameter 

values. On each run we varied the seed for the random number generator, which resulted in different 

learning profiles due to motor and state noise. To simulate realistic data sets, we selected retention 

factors and error sensitivities that matched parameters estimated from our experimental data: we fit 

each subject’s reaching behavior using EM and LMSE (described below) and used the mean parameter 

values across subjects and algorithms for the simulated retention factors and error sensitivities. For the 

state and motor noise variances, we selected the mean values obtained using the EM algorithm, as 

LMSE does not provide an estimate of these two noise sources. The complete parameter set is reported 

in Table 3.1. Three additional parameters appear in Table 3.1 that were not discussed in our derivation 

of the two-state model. These parameters are related to the initial state of the learner (see Appendix 1). 

We modeled the initial fast and slow states of the learner as normally distributed random variables with 
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mean 
( )1
sx , 

( )1
fx , respectively, and common variance 2

1 . For our simulations, we considered a naïve 

learner who had an initial slow and fast state equal to zero. 

 

3.2.5 Fitting EM and LMST to data 

We fit our measured data collected in the visuomotor rotation experiment, and the simulated data, in 

an identical manner. Both the EM and LMSE algorithms were given the observed motor actions, y. Each 

algorithm then used its objective function to identify an estimate of the model parameters. This process 

is described in Appendix 1 for EM and Appendix 2 for LMSE. 

To obtain the model parameters, both algorithms were treated identically: they were 

numerically constrained to search an identical parameter space using the function fmincon in MATLAB 

R2016a. Our constrained parameter space was defined by upper and lower bounds, as well as linear 

inequality constraints relating some of the parameters. The upper and lower bounds for each parameter 

are provided in Table 3.2. Linear inequality constraints were specified to enforce traditional two-state 

model dynamics according to: 

 
0.001

0.001

s f

f s

a a

b b

 +

 +
 (3.11) 

The first of these inequalities requires that the slow state be retained more strongly trial-by-trial than 

the fast state. The second of these inequalities requires that the fast state learn more rapidly from error 

than the slow state. 

 

sa  fa  sb  fb  2
x  

(degrees2) 

2
u  

(degrees2) 

( )1
sx  

(degrees) 

( )1
fx  

(degrees) 

2
1  

(degrees2) 

d 

[0,1.1] [0,1.1] [0,1] [0,1] [10-7,10] [10-7,10] [-30,30] [-30,30] [10-7,10] [10-6,30] 

Table 3.2. Upper and lower bounds for two-state model parameters. When fitting our behavioral data 
and simulated data, EM and LMSE searched the same bounded parameter space. Here we provide the 
upper and lower bounds used for each model fit. 
 

 EM is an iterative algorithm that attempts to increase the value of the likelihood function from 

one iteration to the next (see Appendix 1). For each EM fit, we performed 100 iterations of the 

algorithm. The EM algorithm is sensitive to the initial conditions used to initialize the first iteration (see 
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Appendix 1). For each simulation, we started the EM algorithm from 5 different initial guesses. For our 

experimental data, we used 10 different initial guesses for each subject. These initial guesses were 

randomly sampled from the constrained parameter space. We selected the parameter set with the 

greatest likelihood at the conclusion of the 100th iteration of the algorithm. Numerical implementation 

of the LMSE algorithm can also require different initial guesses for proper convergence of the fmincon 

algorithm. For LMSE, we seeded the fmincon search using 50 different starting parameter sets, to better 

ensure the identification of minimal squared error within the constrained parameter space. As for the 

EM algorithm, these initial starting parameter sets were also sampled randomly. 

 

3.2.6 Measuring performance of the algorithms 

We assessed how well EM and LMSE recovered the properties of the fast and slow states of learning in 

our simulated experiments, where the hidden states were explicitly known. After obtaining the 

parameter sets for EM and LMSE, we asked how well they predicted the time courses of the fast and 

slow states. To do this, we used each parameter set to simulate noise-free behavior. The noise-free 

version of our two-state model was obtained by removing the noise terms from Eq. (3.10): 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

+
= +

=

1n n n n n

n nT

A e

y

x x b

c x
 (3.12) 

This noise-free system is equivalent to the expected value of the hidden states and observed behavior at 

any point in time. We compared the noise-free time courses of the slow state, fast state, and overall 

behavior, predicted by EM and LMSE, to the actual time courses for each simulation. To determine how 

well the EM and LMSE time courses matched the actual time courses, we computed the root-mean-

squared-error (RMSE) between the model fit and the actual data. 

 We also asked how well the EM and LMSE parameters sets matched the true parameter set. For 

this, we computed the absolute error between the fitted parameters and the underlying two-state 

model parameters used to simulate the data. 

 

3.2.7 Sources of noise 

In our model of learning, we considered two potential sources of noise, one in the generation of an 

action, and the other in learning from error. Our EM algorithm identifies a parameter set that maximizes 

a likelihood function that attributes the randomness in measured behavior to these two processes. In 

contrast, the likelihood function maximized by the LMSE parameter set attributes randomness in 
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measured behavior to the measurement of the behavior itself and assumes that the underlying learning 

system behaves deterministically (see Appendix 2). Therefore, the critical difference between EM and 

LMSE is the manner in which their likelihood functions account for variance in measured behavior.  

To compare these likelihood models, we turned to our experimental data. We computed the 

corrected Akaike Information Criterion (AICc) for the likelihood models maximized by EM (Eq. A3.1.25) 

and LMSE (Eq. A3.2.4). AICc is a metric that can be used to compare the likelihoods associated with 

different models, discounted by the number of parameters contained by these models. The corrected 

AIC differs from the conventional AIC by further penalizing the number of parameters in the model. In 

this sense, it is a more conservative way to compare models that differ in parameter complexity. AICc is 

defined by the following equation: 

 ( ) ( )
1

2 1
2 2log

1

N

e

k k
AICc k y

n k


+
= − +

− −
 

Here k refers to the number of model parameters and n is the number of data points used to fit the 

model. The smaller the value of AICc, the greater evidence for the corresponding model. Our likelihood 

model for EM included a state noise and a motor noise, but omitted noise in the measurement of 

subject behavior. Our likelihood model for LMSE included noise in the measurement of subject behavior, 

but omitted state and motor noise in the underlying learning process. Therefore, because EM has two 

sources of noise and LMSE only one, the EM model had one greater parameter. We fit these models to 

the experimental data by searching for each model’s maximum log-likelihood, and along with the 

number of model parameters, computed the AICc for each subject. 

 To compute the maximum log-likelihood of the LMSE model, we searched its incomplete 

(marginal) log-likelihood function directly (Eq. A3.2.4). We performed this search from 50 different initial 

points, using fmincon in MATLAB 2016a. We used the same search space and model constraints for EM 

and LMSE as described previously. Note that the likelihood model maximized by LMSE also neglects 

noise in the initial state of learning (see Appendix 2). We therefore excluded this initial state variance 

from both of our likelihood models. 

 

3.2.8 Power analysis 

One way to study the motor learning system is to compare how subjects perform in different 

experimental conditions, or at different points in time. For example, we may perform a savings 

experiment where we adapt subjects to a perturbation, wash out the adapted behavior, and then re-

adapt subjects to the same perturbation30. Typically, we find that subjects adapt to the perturbation 
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faster the second time. We can ask how this savings is expressed: did subjects experience an increase in 

retention, an increase in error sensitivity, or perhaps both? In other words, our analyses typically involve 

comparisons. In order to determine if an intervention resulted in a change in behavior, we can ask how 

the model parameters that describe learning changed as the result of the intervention. This statistical 

comparison is dependent on the variance in our estimates of two-state model parameters; as this 

variance increases, more subjects are required to obtain a statistically significant result. 

 Here we imagined that we performed an intervention that resulted in a change to the error 

sensitivity of a population, and a separate intervention that resulted in a change to the forgetting rate of 

the population. For the former, this is what is observed in savings paradigms7,30,124. The latter has been 

observed in experiments that provide feedback in rewarding and punishing environments71. We 

performed power analyses to determine how well EM and LMSE could detect changes in these two-

state model parameters at different effect sizes. Our power analysis considered two forms of 

experiments: within-subject experiments, and between-subject experiments. For our within-subject 

experiment, we imagined that a set of subjects performed Paradigm 2 at two different time points, A 

and B. For our between-subject experiment, we imaged that different sets of subjects performed 

Paradigm 2 in contrasting experimental conditions A and B, like a randomized control trial.  

To generate data for the A condition, we simulated the behavior of 1000 subjects for Paradigm 

2, where each subject’s parameter vector was sampled from a multivariate normal distribution that we 

estimated from our experimental data (Table 3.1) by computing the mean and covariance matrix of the 

two-state model parameters estimated for our 20 individual subjects. To produce performance during 

Exposure B, we imagined that one of these parameters (i.e., a single entry in the parameter vector) had 

changed to a different value, and then re-simulated a new set of 1000 subjects. We fit each simulated 

behavior using EM and LMSE. From this subject pool we selected a certain number of subjects. For our 

within-subject experiment, we sampled the same subjects from Exposure A and Exposure B periods. For 

our between-subject experiment, we sampled subjects independently from the A and B distributions. 

We next identified the parameter values that EM and LMSE identified for the subjects in each exposure. 

For our within-subject experiment, we performed a paired t-test across the Exposure A and Exposure B 

parameter values to determine if either algorithm could be used to detect a statistically significant 

change in the parameter value, at a confidence level of 95%. For our between-subject experiment, we 

used a two-sample t-test. We repeated this analysis for a given number of subjects a total of 10,000 

times, each time resampling subjects from our large 1000 subject pool. We tracked the percentage of 

times that EM and LMSE yielded a statistically significant difference in the parameter value across the 
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10,000 experiments. We used this percentage as a measure of how reliably each algorithm detected 

statistical differences for a given group size. We used these data to ask how many subjects would be 

required in order for EM and LMSE to detect a statistical difference for at least 85% of the simulated 

experiments. 

 The parameter values we selected for the Exposure B period were motivated by previous 

studies. For the slow state retention factor, we considered differences of -3% to +1.5% of the Exposure A 

retention factor, in agreement with the dynamic range seen across subjects adapting to visuomotor 

rotations with rewarding and punishing feedback71. We speculate that the difference in retention factor 

for the single state fits in this study is most reflective of the slow state of learning during the error-clamp 

period. For the fast state error sensitivity, we selected ±15, 25, and 50% to cover the large differences in 

error sensitivity observed for individuals adapting in punishing and rewarding environments71. This 

range in error sensitivity is also similar in magnitude to differences in error sensitivities of the slow and 

fast processes observed across the control and reporting groups in a study examining implicit and 

explicit components of learning in force field adaptation and visuomotor rotation learning72.   

 

3.2.9 Control studies 

We performed a set of control studies where we tested EM and LMSE identification accuracy in 

situations of greater noise, different dynamics for the fast and slow processes, and different 

assumptions about the structure of our two-state model of learning. For each of these control studies, 

we followed the same general approach: we simulated our two-state model and fit simulated behavior 

with EM and LMSE to determine how well each algorithm identified the slow and fast states of learning. 

For certain control analyses we reanalyzed our subject data. Each of our control studies is discussed in a 

separate section of Results. In the section Modeling higher levels of noise, we tested EM and LMSE on 

simulated data sets with much greater levels of state and motor noise. In the section Different noises in 

the fast and slow adaptive processes, we discuss evidence for the existence of two different variances 

for the update of the fast and slow states and perform a sensitivity analysis where we test EM and LMSE 

on simulated data sets with different levels of fast and slow state update variances. In the section, Other 

sources of noise, we consider a way to model internal noise in the sensory observation of an error. In the 

section, Changing the dynamics of the fast and slow adaptive processes, we tested EM and LMSE on data 

sets where the dynamics of the fast and slow properties differed from the average processes measured 

in the subject behavior investigated in our primary analysis. In the section Changing the bounds on the 

parameter space, we tested the identification accuracy of EM and LMSE if we further restrict the 
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parameter space searched by both algorithms. And finally, in the section Trial-by-trial analysis of 

behavior, we show that fitting our state-space model to the trial-by-trial subject behavior as opposed to 

8-trial epochs of subject behavior, does not have any effect on our primary conclusions. For brevity, we 

relegated further details of each of these control studies to the appropriate section in Results. 

 

3.3 Results 

Our aim was to design an algorithm that could uncover hidden processes that contribute to learning 

from error. We considered two algorithms: LMSE and EM. To perform our comparison, we asked 

volunteers (n=20) to participate in an adaptation experiment where they reached to 8 targets (Fig. 

3.1A). The task consisted of a baseline period followed by a 30° visuomotor rotation to the cursor. After 

learning to compensate for the rotation, we removed visual feedback for an extended set of trials, and 

then reinstated feedback in the absence of any visual perturbation. 

The data, represented in epochs of 8 trials, are shown in Fig. 3.1B for 4 subjects. At first, each 

subject reached to the target accurately with some noise (top row, gray). Upon introduction of the 

perturbation, subjects rapidly learned to counter the imposed rotation, learning about 80% of the total 

rotation within 30 epochs. Upon removing visual feedback, the adapted behavior decayed gradually 

towards baseline, and then rapidly washed out during the last 30 epochs of the experiment when 

feedback was reinstated. 

 

3.3.1 Fitting the two-state model to measured behavior 

We assumed that experience of error engaged two learning processes that differed in their sensitivity to 

error, as well as retention properties (Eq. 3.10). We fit this two-state model to the measured data from 

each subject to determine the properties of the hypothesized fast and slow states. To fit our model, we 

used two different algorithms, LMSE and EM. Each algorithm was provided with the noisy single subject 

epoch-by-epoch data (Fig. 3.1B, gray traces, top row). From this behavior, the algorithms estimated 

model parameters. We used these estimates to predict time courses of behavior (blue and red lines, Fig. 

3.1B, top row), and the underlying slow and fast states (Fig. 3.1B, bottom row). The EM and LMSE time 

courses corresponded to the expected value of the behavior and hidden states, under each algorithm’s 

estimates of the model parameters (Eq. 3.12). 
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Figure 3.1. EM and LMSE algorithms uncover different hidden processes. A. Subjects (n=20) participated 
in a reach adaptation task. There were 8 targets in total, each chosen pseudo randomly and presented 
once in epochs of 8 trials. Following a no-perturbation baseline period, a 30° counter-clockwise rotation 
was applied to the cursor representing the subject’s hand position. After 30 epochs of this perturbation, 
visual feedback was removed for 15 epochs. Finally, visual feedback was reinstated during a washout 
block of 30 epochs. B. Single subject behavior. We fit the epoch-by-epoch data (reach direction) of each 
subject with EM (top row, blue) and LMSE (top row, red). Both provide good fits to the measured data. 
Each algorithm estimated the fast and slow processes that produced the measured behavior (bottom 
row). For subject S9, these time courses agreed across algorithms. For S16, EM and LMSE time courses 
exhibited reasonable two-state behavior, but had differing learning dynamics. For S2 and S1, the EM and 
LMSE predictions diverged completely.  
 

We found that the two algorithms provided similar fits to the subject data (Fig. 3.1B, top row). 

However, differences between the algorithms emerged at the level of the fast and slow states of 

learning. For some subjects (Fig. 3.1B, bottom row, subject S9) EM and LMSE agreed quite well. 

However, for other subjects the predictions made by LMSE and EM differed considerably (Fig. 3.1B, 

bottom row, subjects S2 and S1). In these cases, the LMSE predictions often appeared to be 

unreasonable. For example, in subject S2, LMSE predicted large initial biases in the hidden states (Figure 

3.1B, subject S2, bottom). These large initial states were accompanied by a near zero error sensitivity in 

the slow state of learning. This near zero error sensitivity allowed LMSE to use the slow state of learning 

as a bias, accounting for the dynamics of subject S2’s behavior with the fast state alone. LMSE predicted 

that 5 of the 20 subjects possessed such an error-insensitive slow state. In contrast, the EM algorithm 

did not yield any such aberrant estimates. In another example, for subject S1, LMSE estimated a slow 

state retention factor that was greater than 1 (Fig. 3.1B, bottom row, subject S1). This led to a 

monotonically increasing slow state of learning (solid, red) that never decayed. LMSE estimated that 8 of 
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20 subjects possessed an unstable slow state retention factor. Again, the EM algorithm did not yield any 

such results. 

 Differences between EM and LMSE were further highlighted when the fits were averaged across 

subjects. That is, while the average fits to the behavior were nearly identical for EM and LMSE (Fig. 3.2A, 

top figure), the fast and slow state predictions differed considerably between the two algorithms. LMSE 

predicted larger contributions from the fast state than EM, and smaller contributions from the slow 

state. Relative to LMSE, EM predicted a smaller slow state retention factor (paired t-test, t(19)=3.6, 

p<0.01), a larger slow state error sensitivity (paired t-test, t(19)=3.4, p<0.01), a smaller fast state error 

sensitivity (paired t-test, t(19)=2.6, p<0.05), and a smaller fast state retention factor (paired t-test, 

t(19)=2.7, p<0.05). That is, the two algorithms made significantly different predictions regarding 

parameters of the system. 

 The different EM and LMSE model parameters led to contrasting levels of variance in the hidden 

state time courses; the LMSE time courses had considerably higher variability across subjects (compare 

sizes of error bars, Fig. 3.2A, bottom two figures). This elevated variability was largely driven by the 

outlying, likely errant, single subject fits we previously noted. The outlying fits also contributed to 

greater variance in the model parameters; the across subject standard deviation of the LMSE estimates 

exceeded that of EM for 5 of the 6 model parameters (all except fast state retention, Table 3.3). 

 These differences between the two algorithms produced a dilemma. Depending on the choice of 

algorithm, we obtained different descriptions of the fast and slow states of learning. Which estimate 

was closer to the truth?  

To answer this question, we computed AICc to determine the evidence for the likelihood models 

maximized by EM and LMSE. The critical difference between EM and LMSE is that the likelihood function 

maximized by EM contains noise in both the state update process and generation of a movement, 

whereas the LMSE likelihood function considers noise only in the measurement of behavior, not in the 

underlying learning or moving processes (see Appendix 2). 

 

 

Paradigm and 

Algorithm 

Two-state model parameters 

sa  fa  sb  fb  ( )1
sx  

( )1
fx  d 

Paradigm 1 EM 0.0175 0.1878 0.0355 0.0669 1.5149 1.5345 - 

Paradigm 1 LMSE 0.0330 0.2679 0.0472 0.0780 5.9684 6.5494 - 
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Paradigm 2 EM 0.0094 0.1667 0.0253 0.0549 1.5782 1.6078 - 

Paradigm 2 LMSE 0.0225 0.2513 0.0409 0.0715 6.6765 7.4575 - 

Paradigm 3 EM 0.0130 0.1966 0.0393 0.1042 1.5207 1.5892 - 

Paradigm 3 LMSE 0.0368 0.2965 0.0601 0.2902 12.1512 12.6409 - 

Paradigm 4 EM 0.0099 0.1057 0.0241 0.0300 1.3639 1.3469 6.2715 

Paradigm 4 LMSE 0.0132 0.1521 0.0297 0.0354 3.8563 4.4528 10.0969 

Human subjects 0.0127 0.3559 0.0616 0.1282 2.3391 2.7227 - 

Human subjects 0.0339 0.3236 0.0942 0.2212 2.3771 4.5877 - 

Table 3.3. Parameter standard deviation for EM and LMSE. Here we report the standard deviation of the 
two-state model parameter distributions shown in Fig. 3.5. For Paradigm 4, we also provide the standard 
deviation for the set break decay factor, though this is not shown in Fig. 3.5. Note that for all parameters 
and paradigms, the standard deviation of the LMSE distribution exceeded that of EM in simulation. On 
the bottom two rows we provide the standard deviation for each two-state model parameter across the 
20 subjects that participated in our visuomotor rotation task. 
 

We computed the differences in AICc across likelihood models for each subject, resulting in a 

within subject comparison of EM vs. LMSE (Fig. 3.2C). We found that the AICc for the model including 

state and motor noise (EM) was lower (better) than that of the model excluding state and motor noise 

(LMSE): paired t-test across subjects, t(19)=3.4, p<0.01. This suggested that despite having an additional 

parameter, the learning process is better described by the stochastic system considered by EM. 

In summary, when we fit experimental data with each algorithm, we found that EM’s estimates 

of the hidden states diverged from LMSE. Unlike LMSE, EM did not exhibit any aberrant fast and slow 

state predictions. EM also yielded states that were more consistent across subjects; they had smaller 

variances in the model parameters, leading to lower variance in the hidden state time courses across 

subjects. LMSE uses a likelihood function that is blind to state and motor noise. In contrast, EM’s 

likelihood function takes these noise sources into account. The likelihood model maximized by EM 

possessed a lower AICc than LMSE. This implied that a stochastic model of learning and moving was a 

better descriptor of the experimental data. 

 

3.3.2 Fitting the two-state model to simulated data 

To better appreciate how well each algorithm could recover the hidden states where learning and 

moving are noisy processes, we performed simulations (Eq. 3.10) to produce realistic data sets using 

parameters obtained from our experiment. Unlike the behavior collected in the lab, the hidden states 
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were known in these simulated data sets, providing the opportunity to assess how well EM and LMSE 

could uncover the hidden states. Four paradigms were considered: abrupt perturbations that included 

or excluded error-clamp trials (Fig. 3.3A, Paradigms 1 and 2), a paradigm with a gradual perturbation 

(Fig. 3.3A, Paradigm 3), and a paradigm that demonstrated spontaneous recovery and decay of motor 

memory due to set breaks (Fig. 3.3A, Paradigm 4). These simulated paradigms included only a single 

target, and the resulting data were analyzed trial-by-trial. 

 Figure 3.3B shows the noise-free time courses of the simulated behavior (generated via 

Eq. 3.12), and the corresponding fast and slow states. Presence of error produced rapid changes in the 

fast state, but more gradual changes in the slow state when the perturbation was introduced abruptly 

(Paradigm 1). Complete loss of the fast state occurred after set breaks (Paradigm 4). Gradual 

introduction of the perturbation slowed the onset of the fast state of learning (Paradigm 3). Error-clamp 

trials produced rapid decay of the fast state, but produced only small changes in the slow state 

(Paradigm 2). Occasionally the two states had opposite signs (washout trials, Paradigm 2), which led to 

spontaneous recovery in error-clamp trials (Paradigm 4).  
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Figure 3.2. Comparison of parameter values uncovered by EM and LMSE as fitted to experimental data. 
A. Population behavior, represented by the average time course across all 20 subjects. At top, the 
average behavior (black) is shown overlaid with the average EM (blue) and average LMSE (red) fits. EM 
and LMSE had very similar fits to the behavior. However, the algorithms’ predictions regarding the slow 
and fast states diverged. Error bars indicate ±1 SEM. B. Model parameters. Bars indicate the mean value 
across the subjects. Error bars indicate ±1 SEM. C. We compared the corrected AIC of two competing 
likelihood models: one with state and motor noise, and one without state and motor noise. AICc was 
lower for a model with state and motor noise for 14 of the 20 subjects (black lines) and larger for 6 (gray 
lines). A paired t-test across subjects indicated that a model with motor and state noise possessed a 
lower AICc (that is, a better fit) than a model without these noise sources. 
 



78 
 

Figures 3.3C-E show typical time courses of the simulated behavior and hidden states in the 

presence of noise (Eq. 3.10). Similar to our human data, we found that both EM and LMSE provided 

excellent fits to the simulated data (Fig. 3.3C). However, EM appeared more robust in uncovering the 

fast and slow states. In some conditions (Figs. 3.3D and 3.3E, Paradigms 1-3), LMSE produced estimates 

of the hidden states that diverged considerably from the truth. To compare each algorithm’s accuracy in 

recovering the hidden states of learning, for each paradigm (1000 simulations for each of the four 

paradigms) we computed the root-mean-squared-error (RMSE) between three pairs of values: the true 

values of the simulated behavior, fast state, and slow state [ y , fx , sx ], and the predicted time courses 

obtained from EM and LMSE. We observed that across paradigms, LMSE fit the simulated behavior 

better than EM (Fig. 3.4, top row, parameter y ; paired t-test, t(999)>13.9, p<10-5). This is expected, as 

the objective function of LMSE minimizes the RMSE between the observed behavior and model 

predicted behavior (see Appendix 2). With that said, LMSE offered only a modestly improved fit over EM 

(approximately 10% over EM, Fig. 3.4, bottom row, parameter y; one-sample t-test, t(999)>31.5, p<10-5). 

While LMSE more closely tracked the observed data, EM produced far more accurate estimates 

of the fast and slow states (Fig. 3.4, fx , sx ). In other words, LMSE was more prone to predicting errant 

fast and slow state time courses (Figs. 3.3D and 3.3E). LMSE performed particularly poorly in Paradigm 3, 

producing fast and slow state estimates that had errors exceeding those of EM by >275% (Fig. 3.4, 

Paradigm 3, bottom row; one-sample t-test, t(999)>25.0, p<10-5). LMSE also performed poorly in 

Paradigm 1, where it produced state estimates that had errors exceeding those of EM by approximately 

75-125% (Fig. 3.4, Paradigm 1, bottom row; one-sample t-test, t(999)>14.1, p<10-5). Including error-

clamp trials in Paradigm 2 improved LMSE performance marginally (Fig. 3.4, Paradigm 2). Finally, LMSE 

(and EM) performed best in Paradigm 4, the paradigm that included both error-clamp trials and set 

breaks (Fig. 3.4, Paradigm 4). In this case, EM was better than LMSE for the fast state (Fig. 3.4, Paradigm 

4, bottom row; one-sample t-test, t(999)=11.8, p<10-5), with no difference in estimation of the slow 

state (Fig. 3.4, Paradigm 4, bottom row; one-sample t-test, t(999)=0.9, p=0.39). 

Overall, we found that LMSE performed substantially worse than EM in uncovering the hidden 

states. Why did LMSE fit the observed data well but was unable to robustly uncover the hidden states? 

We observed three modes of failure by LMSE.  

In the first mode, LMSE identified retention factors for the slow state that were greater than 1 

(Fig. 3.3D, Paradigm 1). Such retention factors resulted in unstable behavior of the slow state. Relative 

to EM, LMSE was significantly more prone to identifying unstable slow state retention factors. For 
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Paradigms 1 and 3, LMSE identified unstable slow state retention factors in 44.8% and 54% of the runs 

respectively, whereas for EM, this occurred in 15.2% and 6.4% of simulations. The inclusion of error-

clamp trials in Paradigm 2 protected against this mode of failure, lowering the number of runs affected 

by unstable retention to 19.6% for LMSE and 1.3% for EM. Similarly, Paradigm 4 resulted in a very low 

frequency of error: 5.2% and 0.7% of simulations for LMSE and EM, respectively. This mode of failure 

was also demonstrated by LMSE fits to 8 of 20 subjects in our experiment (Fig. 3.1B, subject S1, bottom 

row).  

In the second mode of failure, LMSE converged on a slow state of learning that was insensitive 

to error and possessed near complete retention, causing it to function as a behavioral bias (Fig. 3.3D, 

Paradigm 2). In this case, LMSE accounted for the dynamics of the observed data by relying solely on the 

fast state. These error-insensitive slow states of learning were also observed in LMSE fits to 5 of 20 

subjects in our experiment (Fig. 3.1B, subject S2, bottom row).  

In the final failure mode, LMSE predicted very large initial slow and fast states with similar 

magnitude and opposite sign (Figs. 3.3D and 3.3E, Paradigm 3). For Paradigms 1-4, LMSE identified 

hidden fast or slow states that differed from the true value (threshold of 10° or greater absolute error) 

in 8.1%, 12.2%, 25.8%, and 2.5% of simulations respectively. For EM, this never occurred. This mode of 

failure appeared more prevalent in simulation than in our behavioral data, with EM and LMSE both 

predicting only one subject with an initial state that exceeded 10°, or 1/3 of the eventual perturbation.  

Unsurprisingly, these three modes of failure were accompanied by larger error in the LMSE 

estimates of the model parameters. To quantify each algorithm’s error in estimating model parameters 

we computed the absolute error for each parameter across all paradigms (Fig. 3.5). We found that for all 

parameters and in all paradigms, LMSE possessed a greater absolute error than EM (Fig. 3.5, bars 

labeled P1-4; paired t-test, t(999)>6.0, p<10-5). EM also better estimated the set break decay parameter 

in Paradigm 4 than LMSE (errors of 4.99±0.25 and 7.67±0.43 for EM and LMSE respectively, paired t-test, 

t(999)>13.2, p<10-5). The inclusion of error-clamp trials and set breaks improved the performance of 

both algorithms; with the exception of the initial fast and slow states, both algorithms had the lowest 

error in Paradigms 2 and 4. 
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Figure 3.3. Fitting EM and LMSE to simulated behavior. A. We simulated two-state models of learning in 
the context of four behavioral paradigms, with abrupt and gradual introduction of perturbations, and 
with error-clamp (EC) trials and set breaks. B. The expected value of the measured behavior (black), fast 
state (green), and slow state (blue) of learning. These time courses correspond to two-state model 
parameters extracted from our subject population (Table A3.1). C. For each of the four paradigms, 
behavior was simulated according to a two-state model of learning (Eq. 3.10). 1000 simulations were 
performed for each paradigm. The two-state model parameters were fixed for each simulation, solely 
the seed for the random number generator varied from simulation to simulation. Here we provide an 
example of a behavioral trajectory for each of the four paradigms. We fit each trajectory using EM and 
LMSE. D. The true slow state of learning along with EM and LMSE predictions. In the example 
simulations of Paradigms 1-3, LMSE failed to capture the slow state of learning. In Paradigm 4, both 
LMSE and EM closely tracked the true slow state. E. The true fast state of learning along with EM and 
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LMSE predictions. For Paradigms 1-3, LMSE predictions diverged from the true fast state trajectory. For 
Paradigm 4, both EM and LMSE tracked the true fast state time course. 
 

Although error-clamp trials were also present in Paradigm 3, the gradual introduction of the 

perturbation hampered the response of the fast state of learning (Fig. 3.3, Paradigm 3) which likely 

impaired the ability of each algorithm (LMSE more than EM) to differentiate properties of the two 

learning processes. The opposite was true for Paradigm 4 where the two set breaks, opposite 

perturbations, and error-clamp trials resulted in several “excitations” of the fast state (Fig. 3.3B, 

Paradigm 4). These excitations significantly improved the ability to identify properties of the fast state, 

as evidenced by the markedly reduced error in fast state retention and error sensitivity (Fig. 3.5, 

Paradigm 4) for both algorithms. Error-clamp trials appeared to have a similarly dramatic effect on 

estimation of slow state retention and error sensitivity (Fig. 3.5, compare Paradigm 1 with Paradigm 2). 

 

 

Figure 3.4. Performance of EM and LMSE algorithms. For each paradigm, 1000 simulations were 
performed, with fixed two-state model parameters, but a varying seed for the random number 
generator, altering noise. EM and LMSE were used to fit a two-state model to the simulated behavior. 
The EM and LMSE parameters were used to simulate noise-free time courses for behavior, slow state of 
learning, and fast state of learning. Next, we computed the RMSEs describing how well EM and LMSE 
recovered the hidden fast and slow states of learning, and the overall behavior. At top, the RMSE for the 
behavioral fit (y), slow state fit (xs), and fast state fit (xf) are shown. At bottom, a relative RMSE metric 
was computed to compare the RMSEs of EM and LMSE fits to the same simulated behavior; the RMSE 
for the LMSE algorithm was divided by that of EM, multiplied by 100, and then a factor of 100 was 
subtracted, to compute a percent increase of LMSE RMSE over that of EM. All bars in this figure 
represent the mean RMSE across 1000 simulations. Error bars represent 95% confidence intervals. LMSE 
improved upon the RMSE of the behavior fit by approximately 10% for all Paradigms (Rows 1-4, right). 
However, EM was superior in uncovering the slow and fast states. The largest difference was observed 
for Paradigm 3, followed by Paradigm 1, then Paradigm 2 and Paradigm 4. 
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In summary, in all paradigms EM was more accurate in uncovering the true parameters of the 

learning processes. Differences in hidden state recovery were driven by three failure modes in the LMSE 

algorithm, two of which were also prominent in LMSE fits to our human behavior data set. Inclusion of 

set breaks and error-clamp trials significantly improved the ability of both EM and LMSE to uncover the 

two-state model parameters. 

 

 

Figure 3.5. Parameter estimation errors for EM and LMSE. For each simulation we computed the 

absolute value of the difference between each true parameter, and the parameter values predicted by 

EM and LMSE. All bars in this figure represent the mean absolute parameter error across all simulations. 

Error bars represent 95% confidence intervals. For all parameters and paradigms, EM had lower 

estimation error than LMSE.  

 

3.3.3 A better tool for hypothesis testing 

Sensorimotor tasks are occasionally designed to test the effectiveness of an intervention. Model fits 

provide a tool to ask whether the intervention significantly affected learning parameters such as error 

sensitivity or retention. Power analysis provides an estimate of how many subjects may be needed to 

detect a significant difference. The number of subjects needed to test a hypothesis depends on the 

noise properties of the data. In our experiment, EM parameter estimates had a lower variance than 

LMSE (evident by visual inspection of Fig. 3.2B, see Table 3.3 for numerical details). This lower variability 

in the parameter estimates has a practical implication: it should improve the ability to test hypotheses.  

To explore this question, we considered a within-subject and a between-subject experimental 

design. A within-subject experiment is typical for the study of savings and anterograde interference, 

where the same subjects are exposed to similar or contrasting perturbations at two different time 

points. Between-subject designs are common when testing the effects of some intervention against a 

control group, where the subjects in both conditions differ. Here we imagined that these interventions 

may cause changes in learning rate, as is observed in savings paradigms7, and retention, as is observed 

in differing reward environments71. 
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We analyzed how many subjects would be required to achieve a particular level of confidence in 

the ability to detect differences in the learning parameter modified by the intervention. To do this, we 

created experiments by sampling subjects from a large pool. For our within-subject experiment, we 

sampled the same subjects in two different environments. For our between-subject experiment, we 

sampled subjects independently in the two different environments. We performed t-tests to see if there 

was a difference in the EM and LMSE learning parameters across the two simulated environments. We 

used a paired t-test to test for within-subject changes, and a two-sample t-test to test for between-

subject changes. These simulated environments possessed the same trial structure (Paradigm 2) but 

differed in that subjects were simulated with a different error sensitivity or retention factor. We 

analyzed changes in each error sensitivity and retention factor separately, i.e., in each of our simulated 

experiments, only one parameter truly differed within the subject population across the two 

environments. We varied the number of subjects and determined the percentage of simulated 

experiments for which a statistically significant (p<0.05) difference existed in the appropriate model 

parameter. Finally, we determined the number of subjects that would be required to detect a significant 

change in parameter value, for at least 85% repetitions of the experiment. 

Figures 3.6A and 3.6B provide the results for our within-subject and between-subject analysis, 

respectively. Unsurprisingly, we found that a within-subject comparison required fewer subjects than a 

between-subject comparison, for both EM and LMSE. A within-subject test is more powerful, as it 

accounts for between-subject variability, increasing the power of the statistical comparison. For both 

the within-subject test and between-subject test we found that the number of subjects required to 

achieve an 85% detection rate generally decreased as the effect size (the magnitude of the parameter 

difference across the two environments) increased. This applied to both increases (solid lines) and 

decreases (dashed lines) in each parameter. For all effect sizes and parameters, EM required fewer 

subjects to reach the threshold detection level. Specifically, EM required approximately 20-95% and 30-

95% fewer subjects than LMSE for the within-subject comparison and across-subject comparison. 

In summary, we found that as compared to LMSE, EM reduced the number of subjects that 

would be needed to detect effects of an intervention that altered error sensitivity or retention.  
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Figure 3.6. Power analysis for EM and LMSE. We simulated within-subject and between-subject 
experiments to determine the number of subjects that would be required to detect a change in learning 
parameters. We created a pool of 1000 simulated subjects by sampling two-state model parameters 
from a multivariate normal distribution. We created different distributions by scaling a single learning 
parameter for each of the 1000 subjects. We simulated behavior in Paradigm 2 and fit the data with EM 
and LMSE. We then sampled subjects to perform hypothesis testing. For within-subject tests, we 
sampled the same subjects from different parameter levels. For between-subject tests, we sampled 
subjects independently from different parameter levels. For each test, we performed a paired t-test 
(within-subject analysis) or two sample t-test (between-subject analysis) to determine if EM or LMSE 
detected a statistically significant difference in the learning parameter. We repeated this process for 
different random samples of our subject population (10,000 for each test). Finally, we determined the 
minimum number of subjects that would be required for each algorithm to detect a significant 
difference for 85% of our samples. Here we show the number of subjects required to reach an 85% 
detection rate for both EM (black) and LMSE (gray) as a function of the magnitude of the true parameter 
difference for each test (the effect size). We performed tests for both increases (solid lines with filled 
circles) and decreases (dashed lines with filled squares) in four two-state model parameters. The results 
for the within-subject analysis and between-subject analysis are shown in A and B, respectively. We only 
report results for which fewer than 500 subjects were required to reach the 85% detection rate. For 
LMSE, greater than 500 subjects were required for five different parameter-effect size pairs in the 
between-subject analysis (once for EM). 
 

3.3.4 Modeling higher levels of noise 

Subjects performing sensorimotor learning tasks exhibit different levels of noise in their motor behavior. 

Does the performance of either EM or LMSE worsen in the presence of higher levels of noise? To answer 

this question, we performed a sensitivity analysis by scaling the state and motor noise variances to 

different levels (0.5, 2, 4, 6, 8, and 10 times the values reported in Table 3.1). At each level, we 
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simulated the performance of 1000 subjects in Paradigm 2. We fit the simulated behavior with EM and 

LMSE, and computed the RMSEs for each algorithm’s estimates of behavior and hidden states. 

As expected, LMSE always provided a closer fit to the behavioral data (Fig. 3.7A). This result was 

expected because the objective function of LMSE minimizes the RMSE of the observed behavior. 

However, for all levels of noise, EM better isolated the hidden states of learning (Figs. 3.7B and 3.7C). 

The differences in the hidden state RMSE were approximately an order of magnitude larger than the 

difference in RMSE for the observed behavior. Therefore, irrespective of the noise level, it appeared that 

EM traded off small errors in fitting the observed behavior for larger improvements in uncovering the 

hidden fast and slow states. In summary, we expect that our conclusions about the relative performance 

of EM and LMSE would hold even at higher levels of state and motor noise. 

 

3.3.5 Different noises in the fast and slow adaptive processes 

We assumed that the fast and slow learning processes were affected by state noises with equal 

magnitude. However, faster processes that change more rapidly may also be accompanied by higher 

levels of noise. In fact, a relationship between learning rate and state variance would be expected from 

a Bayesian interpretation of learning55. In light of these considerations, we reanalyzed our subject 

behavior with a two-state model of learning with two separate variances for fast and slow states of 

learning. In line with our intuition, we found that the variance of the fast state (mean ± SEM, 2.74 ± 0.58 

deg2) was greater (paired t-test, t(19)=4.39, p<0.001) than that of the slow state (mean ± SEM, 0.63 ± 

0.34 deg2). 

We next asked if a model with separate variances for the slow and fast states was more likely to 

explain the data than a model with only one variance. To ask this question we computed the AICc for 

each subject for these two models. A within-subject paired t-test, across models, did not reveal a 

significant difference in the AICc for a model with a single state noise, or separate state noises for the 

slow and fast state (paired t-test, t(19)=0.39, p=0.703). This result indicates that in our experimental 

data, a model with two separate variances for the fast and slow states was not justified.  

Despite this, we performed a sensitivity analysis to determine how well EM and LMSE would 

identify the fast and slow states of learning if each process was affected by different levels of state 

noise. In this analysis, we fixed the cumulative level of slow and fast state variance (i.e., we fixed the 

sum of the slow and fast state variances) and changed the fraction of the total state noise variance 

attributed to either the fast and slow state. We analyzed levels of 25%, 37.5%, 50% (i.e., equal 

contribution from the fast and slow state), 62.5%, and 75%. At each level, we simulated the behavior of 
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1000 subjects performing Paradigm 2. We fit the simulated behavior with EM and LMSE, and computed 

the RMSEs for each algorithm’s estimates of behavior and hidden states of learning, as in Fig. 3.4. 

Regardless of noise levels tested, EM had greater error in the fitting of the measured behavior (Fig. 

3.7D), but it remained superior to LMSE in the identification of the slow and fast states (Figs. 3.7E and 

3.7F). Therefore, we expect the superior performance of EM would generalize to systems with different 

levels of variance in the fast and slow states. 

 

 

Figure 3.7. Sensitivity analysis for state and motor noise. A, B, C. We scaled the state and motor noise 
variances by 0.5, 2, 4, 6, 8, and 10 times the values reported in Table A3.1 (measured from our subject 
population). At each noise level we performed 1000 simulations of Paradigm 2. We fit the simulated 
reaching behavior with EM and LMSE, generated EM and LMSE estimates of the behavior, fast, and slow 
states of learning, and finally computed the RMSE between the true time courses and model fits. The 
RMSEs for the behavior, slow, and fast state are shown in A, B, and C, respectively. Solid lines indicate 
the mean RMSE across all 1000 simulations at each noise level. The shaded error bars indicate 95% 
confidence intervals around the mean. D, E, F. We performed another analysis where we allowed the 
slow and fast processes to have different variances. We fixed the overall level of state noise (sum of the 
fast and slow state variances) and performed a sensitivity analysis where we assigned different fractions 
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of the overall state noise differentially to the slow and fast states. We tested levels where the slow (or 
fast) state had 25%, 37.5%, 50%, 62.5%, and 75% of the overall variance. For each level, we simulated 
1000 simulations of Paradigm 2. We fit the simulated behavior using EM and LMSE and computed 
RMSEs for the behavior, slow process, and fast processes, as in A, B, and C. The RMSEs for the behavior, 
slow, and fast state are shown in D, E, and F, respectively. Solid lines indicate the mean RMSE across all 
1000 simulations at each noise level. The shaded error bars indicate 95% confidence intervals around 
the mean. 
 

3.3.6 Other sources of noise 

We assumed that noise from all processes that contribute to learning from error could be combined into 

a cumulative state noise by adding the variances of each noise source together. However, there exist 

sources of noise that violate this assumption. Consider, for example, noise involved in the learner’s 

observation of error. To correctly incorporate this source of noise, we could modify Eq. (3.6) by adding 

an observation noise that adds to the true error. In this model, the observation noise would be 

multiplied by error sensitivity, and therefore the state update noise in Eq. (3.6) would also depend on 

error sensitivity. We considered this more complete model, by simulating Eq. (3.6) with an added 

observation noise term. We performed 1000 simulations of this model for Paradigm 2 and attempted to 

recover the variances of the three different noise sources using EM. Unfortunately, we found that our 

algorithm was unable to estimate the variance of observation noise. For approximately 80% of 

simulations, EM’s estimate of the observation noise variance converged to either an upper or lower 

bound of the parameter space, far from the true value we used in simulation. That is, our algorithm had 

no power to estimate this variance separately from the independent state and motor noises.  

This limitation was caused by the multiplication of observation noise by error sensitivity. 

Because of this multiplication, the variance contributed by the observation noise is multiplied by the 

square of error sensitivity, and was therefore exceedingly small relative to the independent state noise 

variance. Therefore, while a more accurate model of learning might include this observation noise, we 

currently cannot estimate its magnitude using our algorithm. 

 

3.3.7 Changing the dynamics of the fast and slow adaptive processes 

Motor learning in different effectors (e.g. eye, arm, etc.) and paradigms (e.g. force field adaptation, 

visuomotor adaptation, etc.) occurs at different rates. Would the accuracy of EM or LMSE estimates of 

the hidden processes vary with the underlying learning and forgetting rates of the subject population? 

To investigate this question, we performed sensitivity analyses for four parameters: slow retention, fast 

retention, slow error sensitivity, and fast error sensitivity. We varied each of these parameters in turn 
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across the ranges used for our power analysis. For each parameter level, we performed 1000 

simulations of our two-state model (Eq. 3.10) for Paradigm 2. We fit the simulated behavior with EM 

and LMSE, and computed the RMSEs for each algorithm’s estimates of behavior and hidden states of 

learning, as in Fig. 3.4. As expected, LMSE continued to better fit the observed data in all simulations 

(Fig. 3.8, row 1). However, in every case EM was more accurate in uncovering the fast and slow states 

(Fig. 3.8, rows 2 and 3). This difference in hidden state RMSE was an order of magnitude larger than that 

of the observed behavior RMSE. Therefore, we expect that our conclusions about EM and LMSE would 

generalize to environments where learning exhibited different dynamics than those explored within our 

primary analysis. 

 

3.3.8 Changing the bounds on the parameter space 

Both algorithms were constrained to search an identical parameter space (Table 3.2). Despite this, we 

found that LMSE frequently exhibited modes of failure in the identification of two-state model 

parameters. One of these modes of failure involved the identification of slow state retention factors 

whose magnitude exceeded 1. Retention factors in this range can lead to unstable behavior of the slow 

state of learning. We doubt that a biological system would exhibit this unstable behavior. Could the 

LMSE algorithm be rescued by modifying the parameter space to prevent the identification of these 

unstable retention factors? To answer this question, we reanalyzed our primary simulations for 

Paradigms 1-4 (Figs. 3.3, 3.4, and 3.5) by refitting the EM and LMSE algorithm in a parameter space 

whose upper bound for the slow and fast state retention factor was equal to 1. We fit each simulated 

behavior with EM and LMSE, and computed the RMSEs for each algorithm’s estimates of behavior and 

hidden states of learning (Fig. 3.9). 

We found that restricting the parameter space had very little effect on the performance of EM 

(compare RMSE for the EM algorithm in Figs. 3.4 and 3.9). This is to be expected, considering EM did not 

identify many solutions with unstable retention factors for any of the 4 paradigms. In contrast, the 

performance of LMSE improved in terms of identifying the fast and slow states, specifically for 

Paradigms 1, 2, and 3 (compare RMSE for the LMSE algorithm in Figs. 3.4 and 3.9). This was also 

expected, considering LMSE predicted many behaviors with a slow state retention factor that exceeded 

1. However, despite the improvement in LMSE identification of the hidden processes in Paradigms 1-3, 

LMSE error exceeded that of the EM algorithm (Fig. 3.9; Paradigms 1, 2, and 3; xs, xf). Therefore, 

restrictions on the parameter space that eliminated unstable behavior of the slow state of learning 

improved but did not rescue the performance of LMSE relative to the EM algorithm. 
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Figure 3.8. Sensitivity analysis for the dynamics of the fast and slow states. We performed sensitivity 
analyses to determine how well EM and LMSE could isolate that fast and slow states of learning, for two-
state model parameters that differed from those observed for our visuomotor rotation subject 
population (Table A3.1). We analyzed one parameter at a time, fixing the remaining two-state model 
parameters to the values reported in Table A3.1. For each analysis, we scaled the two-state model 
parameter to several different values, corresponding to the effect sizes used in our power analysis in Fig. 
3.6. At each parameter level we performed 1000 simulations of Paradigm 2. We fit the simulated 
reaching behavior with EM and LMSE, generated EM and LMSE estimates of the behavior, fast, and slow 
states of learning, and finally computed the RMSE between the true time courses and model fits. The 
top, middle, and bottom rows, show the RMSE for the behavior, slow state, and fast state fits, in that 
order. The shaded error bars indicate 95% confidence intervals. The parameters investigated are as 
follows: the fast state retention factor (shown in A), the slow state retention factor (show in B), the fast 
state error sensitivity (shown in C), and the slow state error sensitivity (shown in D). For each analysis, 
EM identified slow and fast states of learning with lower RMSE than LMSE. These results indicate that 
the relative difference between EM and LMSE performance would generalize to other dynamics of 
learning.  
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3.3.9 Trial-by-trial analysis of behavior 

Prior to fitting our state-space model to our behavioral data, we averaged single subject behavior across 

8-trial epochs, where each of the 8 targets in our rotation task was visited once. We chose an epoch-

based timescale for the analysis of subject behavior in order to minimize the effects of generalization on 

trial-based learning (see Epoch and trial-based analysis of subject behavior). However, an epoch-based 

timescale of motor behavior exhibits different dynamics than a trial-biased timescale; more is learned 

and forgotten in an epoch of 8 trials, and the variance in trial-by-trial behavior differs from that of 

epoch-by-epoch behavior. Therefore, the retention factors, error sensitivities, and noise variances that 

describe single subject data for our epoch-based analysis will differ from those of a trial-based analysis. 

We performed a set of control analyses to confirm that these differences in the trial-by-trial 

data would not lead to changes in the identification accuracy of EM or LMSE. We reanalyzed our 

experimental data on a trial-by-trial basis with two different models of generalization. Because we did 

not measure the generalization function of each subject, we considered two extreme cases, (1) where 

subjects fully generalized learning from one target to all other targets (full-generalization model) and (2) 

where subjects had no-generalization of learning from one target to other targets (no-generalization 

model). For the full-generalization model, we applied Eq. (3.10) to our trial-by-trial subject behavior as if 

the same target was visited on each trial. For the no-generalization model, we extended the 

dimensionality of our state to include a fast and slow state for each target (a total of 16 states, 2 hidden 

states for each of the 8 targets). For a given trial, only the fast and slow states for that target 

experienced error-based learning consistent with the case of no-generalization, but all states 

experienced trial-by-trial forgetting. The full details of this model are described in Appendix 4. 

The trial-by-trial analysis yielded strikingly similar results to our epoch-by-epoch analysis. As 

before (Fig. 3.2A), EM and LMSE provided similar fits of the measured data for both the full and no-

generalization models (Fig. 3.10A, top and bottom rows, respectively). As in the epoch-by-epoch 

predictions in Fig. 3.2A, for both trial-by-trial models, EM estimated larger contributions from the slow 

state and LMSE estimated larger contributions from the fast state (Fig. 3.10B). The differences in these 

trajectories were driven by different estimates of the two-state model parameters (not shown in figure). 

As with our epoch-by-epoch model parameters (Fig. 3.2B), in our full-generalization model, EM 

estimated a smaller slow state retention factor than LMSE (paired t-test, t(19)=3.20, p=0.0047) and a 

larger slow state error sensitivity (paired t-test, t(19)=3.65, p=0.0017). For the no-generalization model 

these trends were not statistically significant. As before, the variance of the LMSE parameter estimates 

exceeded those of EM for all retention factors and error sensitivities of the no-generalization model, and 
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all parameters except the fast state retention factor of the full-generalization model. These increased 

variances were caused by errant LMSE slow and fast state predictions that resembled the failure modes 

noted in Fig. 3.1B for the epoch-by-epoch analysis. For 8 and 7 of the 20 subjects (no-generalization and 

full-generalization, respectively), LMSE estimated unstable retention factors that exceeded 1. For 3 and 

6 of the 20 subjects (no-generalization and full-generalization, respectively), LMSE estimates of slow 

state error sensitivity tended towards zero yielding slow states of learning that were largely insensitive 

to error. 

 

 

Figure 3.9. Comparison of EM and LMSE in a restricted parameter space. In our primary analysis, we 
found a preference for LMSE to assign slow retention factors that exceed 1, which led to unstable 
behavior of the predicted slow process. We asked whether LMSE could be rescued by modifying the 
parameter search space to prevent the identification of these unstable retention factors. To answer this 
question, we reanalyzed our simulations for Paradigms 1-4 (Figs. 3.3, 3.4, and 3.5) by refitting the EM 
and LMSE algorithm in a parameter space whose upper bounds for the slow and fast state retention 
factors were equal to 1. We used the EM and LMSE parameters to simulate noise-free time courses for 
behavior, slow state of learning, and fast state of learning. Next, we computed the RMSEs describing 
how well EM and LMSE recovered the hidden fast and slow states of learning, and the overall behavior 
for the same simulations depicted in Fig. 3.4. At top, the RMSE for the behavioral fit (y), slow state fit 
(xs), and fast state fit (xf) are shown. At bottom, we computed the percentage difference between the 
RMSEs for EM and LMSE. Positive values indicate a larger RMSE for the LMSE algorithm. Error bars 
represent 95% confidence intervals. We found that restricting the upper bound on the slow and fast 
state retention factors improved the RMSE of the LMSE fits to the hidden states (compare Fig. 3.4 with 
Fig. 3.9), but did not completely rescue LMSE predictions. 

We repeated our AICc analysis on the likelihood models fit by EM and LMSE. Recall that the 

LMSE model excludes state and motor noise, and therefore possesses fewer parameters than EM. We 

found the same result as before (Fig. 3.2C): the likelihood used by EM possessed a lower AICc than the 

likelihood model used by LMSE (Fig. 3.10C; paired t-test for full-generalization, t(19)=2.83, p=0.011; 
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paired t-test for no-generalization, t(19)=3.81, p=0.001). Therefore, trial-by-trial analyses of our data 

assuming either complete generalization or no-generalization of learning both suggested that a model 

that includes state and motor noise in the process of error-based learning was more likely to explain 

measured behavior. 

 

 

Figure 3.10. Comparison of EM and LMSE on a trial-by-trial analysis of the data. We collected the 
behavior of n=20 subjects in a visuomotor rotation task. We fit the two-state model to the trial-by-trial 
data recorded for individual subjects using EM and LMSE. We considered two trial-by-trial models that 
differed in terms of generalization. The full-generalization model (top row) consisted of a single fast and 
slow state whose learning completely generalizes across targets. The no-generalization model (bottom 
row) consisted of separate fast and slow states for each of the 8 targets, whose learning did not 
generalize across targets. A. Population behavior. We computed the average trial-to-trial behavior of the 
subject population. The average behavior (black) is shown overlaid with the average EM (blue) and 
average LMSE (red) fits. EM and LMSE had very similar fits to the behavior. B. Predicted fast and slow 
states. For both the full and no-generalization models, EM estimated larger contributions from the slow 
state of learning and smaller contributions from the fast state of learning. Error bars indicate ±1 SEM. 
Here the average time courses across the 8 fast states and 8 slow states are shown for the no 
generalization model. C. We compared the corrected AIC of two competing likelihood models: one with 
state and motor noise and one without these noise sources. AICc was lower (better) for a model with 
state and motor noise. Here we provide the mean difference in AICc for both models (state and motor 
noise likelihood – no state and motor noise likelihood). D. We used the trial-by-trial parameters to 
perform a set of control simulations. We simulated Paradigm 2 a total of 1000 times, and fit each 
simulated data set with EM and LMSE. While LMSE fit the observed reaching behavior more closely (y), 
EM vastly outperformed LMSE in the identification of the hidden slow and fast states (xs and xf). 
 

Finally, although in our primary analysis we did not perform any averaging of our simulated data 

sets, these simulations were indirectly affected by our epoch-based analysis of subject behavior because 

we used these parameter sets as a basis for the simulated data. For this reason, we used the trial-by-

trial parameters (Fig. 3.10B) to perform a set of control simulations. We replicated our epoch-by-epoch 
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analysis by simulating Paradigm 2 (a total of 1000 times with our no-generalization and full-

generalization state-space models). We found that while LMSE fit the observed reaching behavior more 

closely (Fig. 3.10D, y) improving on EM by approximately 5%, EM vastly outperformed LMSE in the 

identification of the hidden slow and fast states by approximately 50-300% (Fig. 3.10D, xs and xf).  

In summary, in both the epoch-by-epoch and trial-by-trial data, EM and LMSE identified 

different slow and fast state trajectories. The likelihood model maximized by EM was more likely to 

explain both the epoch-by-epoch and trial-by-trial behavior. That is, in all cases the evidence pointed to 

a learning model that was stochastic in its adaptation to error. In simulation, EM was superior to LMSE 

in the identification of the slow and fast states when the parameter set was taken from trial-by-trial 

subject behavior, as well as from epoch-by-epoch subject behavior. 

 

3.3.10 Savings is caused by an increase in error sensitivity of fast learning processes 

One of the hallmarks of adaptation is savings: the observation that learning occurs more rapidly when 

similar perturbations were experienced in the past. It is well established that savings is caused by an 

increase in sensitivity to error7,37,49,125, specifically of the fast adaptive process37. Here, we aimed to 

determine how savings is expressed in two different modalities of learning: eye movements and arm 

movements. Unlike earlier studies, here we used GEM to obtain the maximum likelihood estimate for 

the learning parameters of a two-state model. In Experiment 1, participants (n=20) held the handle of a 

robotic arm and made reaching movements to 8 different targets. Participants were exposed to a 

visuomotor rotation that altered the position of the on-screen cursor by 30°. After adapting to the 

perturbation (Exposure 1), a no feedback block ensued, followed by a washout period. After a short set 

break, this perturbation scheduled was revisited once again (Exposure 2). We mirrored this paradigm for 

a separate set of participants who participated in a saccade adaptation paradigm (n=16). Both types of 

adaptation showed evidence of savings: a faster rate of learning in Exposure 2, relative to Exposure 1 

(Fig. 11A, reaching at left, saccades at right; compare red with black). 

 To determine which of the adaptive processes contributed to this faster rate of re-learning, we 

fit our two-state model to each participant’s behavior using our GEM algorithm. The algorithm revealed 

that memory retention of the slow and fast adaptive processes was no different during Exposures 1 and 

2, for both reaching (Fig. 3.11B, reach) and saccades (Fig. 3.11B, eye). On the contrary, the cause of 

savings was a change in the fast state error sensitivity alone (Fig. 3.11B; paired t-test; reach, p<0.05; eye, 

p<0.01). Therefore, savings for both modalities of movement could be ascribed to sole changes in fast 

state error sensitivity. 
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Figure 3.11. Savings is caused by an increase in error sensitivity of the fast-adaptive process. A. 
Participants were tested in an arm movement (n=20, left) experiment and an eye movement (n=16, 
right) experiment. For reaching, participants reached to 8 different targets. Two exposures to the same 
perturbation (epochs 6-35) were followed by a no feedback period (epochs 36-50) and then a washout 
period (epochs 51-75). Learning appeared faster during Exposure 2 (red) than during Exposure 1 (black). 
A similar paradigm was used for saccade adaptation (right). Participants adapted to a 5-degree gain 
down perturbation in a memory-guided saccade adaptation task. Two exposures to the same 
perturbation (epochs 11-50) were followed by a no feedback period (epochs 51-70) and a washout 
period (epochs 71-100). As in reaching, learning during the second exposure (red) was faster than during 
the fast exposure (black). B. We quantified these changes in learning using a two-state model of 
adaptation. We fit each the two-state model to each participant’s behavior. At left, we show the 
retention factors for the slow and fast states for both reaching and saccades. We observed no 
differences in retention between Exposures 1 and 2. At right, we show the error sensitivity for the slow 
and fast states for both reaching and saccades. In both cases, fast state error sensitivity was increased 
during Exposure 2, but slow state error sensitivity remained the same. Statistics: no indicates means 
p>0.05, * means p<0.05, and ** means p<0.01. 

 

Interestingly, for reach adaptation, the no feedback period (epoch 35-50) appeared to show a 

faster rate of decay during Exposure 2. If memory retention did not differ in either exposure, what was 

the cause of this change in forgetting? Interestingly, the model accurately predicted this trend, not 

because of any difference in decay rates, but because at the start of the no feedback period, the fast 

state of adaptation made up a larger fraction of the adapted behavior in Exposure 2 than in Exposure 1 
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due to its increase in error sensitivity. Because the fast state also decays more rapidly, increases in the 

relative contributions of the fast state will also increase the apparent rate of decay. Therefore, it is 

important to note that faster rates of forgetting do not necessarily mean that the underlying states of 

learning have changed their retention capabilities over time. 

 

3.3.11 Spontaneous recovery after the passage of time is caused by fast state decay 

A primary hallmark of behavior that is most consistent with two-state models of adaptation is 

spontaneous recovery8. Spontaneous recovery refers to the reemergence of an earlier behavior despite 

the absence of any cue. It is typically demonstrated in paradigms where participants are adapted to 

perturbation A, then exposed briefly to an opposite perturbation B, and then put in an error-free 

environment8,9,36. Though our experiment was not designed to promote spontaneous recovery, we 

nevertheless observed of recovery of behavior after the set break separating the two exposures (Fig. 

3.12A, compare behavior before and after the gray set break). To understand the cause of this recovery, 

we used GEM to estimate the underlying fast and slow states of adaptation throughout each period of 

the experiment (Fig. 3.12B, fast shown in green, slow shown in red). This decomposition indicated that 

spontaneous recovery of the memory of Exposure 1 occurred due to decay of the fast state. During the 

washout period, the slow state of adaptation remained positively biased, and the fast state became 

negatively biased. The set break caused an abrupt loss of the fast state, but spared the slow state (Fig. 

3.12C, slow state comparison at left, p>0.05; fast state comparison after set break at right (p<0.05). This 

sudden lost of the fast state caused a small apparent recovery of the previous behavior. Thus, 

spontaneous recovery that emerges after a break in time, versus a sequence of error-free movements 

appears to have the same root cause: decay of the fast-adaptive process. 

 It should be noted that we also observed a spontaneous recovery of behavior in our saccade 

adaptation paradigm, but at a very peculiar point. During both the first and second exposure to the 

perturbation, the set break during the error-free period on epoch 60 (Fig. 3.11A, right), resulted in a 

different flavor of recovery. First, behavior appeared to decay as expected after the set break, but then 

slowly grew during the error-free period. Such recovery is not predicted by the two-state model, 

because participants were never exposed to an opposing perturbation that could counterbalance the 

sign of the fast and slow processes. We offer two potential explanations: (1) if saccades made during the 

set break are interpreted by the brain as zero perturbation washout trials, then such a spontaneous 

recovery could be predicted by the two state model or (2) perhaps certain instances of memory decay 

are not truly decay, but a period during which the brain switches between two contexts, in this case, 
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saccades made using the Eyelink apparatus, and those that are note. In terms of this latter possibility, 

the reemergence may represent the gradual recall of a prior context in which the system was adapted. 

 

 

Figure 3.12. Spontaneous recovery after a break in time is caused by loss of the fast state. A. Behavior 
during the reaching paradigm described in Fig. 3.11 is shown side-by-side for the first (left, black) and 
second (right, red) exposures to the perturbation. A single set break separated each period. Behavior 
was observed to spontaneous increase after the set break (see black arrow on epoch 76). B. The GEM 
predictions for the fast (green) and slow (red) states are shown. Clearly, the model predicts that 
spontaneous recovery occurs due to the abrupt loss of the negatively-biased fast state after the passage 
of time. C. We quantified this loss by calculating the predicted slow (left) and fast (right) states before 
and after the set break. Statistics: no indication means p>0.05; * means p<0.05. 
 

3.3.12 The expression of savings after impairment of the basal ganglia  

Others have posited that reward systems in the brain contribute to savings through a reinforcement-

based learning mechanism54. Evidence for this is perhaps strongest for the saccadic system, where 

projections from the basal ganglia to the superior colliculus and then to the inferior olive are known to 

cause complex spikes in the cerebellar cortex126 and the presence of reward appears to alter the rate of 

motor learning127, and in some cases retention of memory71, though the latter results are mixed within 

the human psychophysics literature. 
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If reward circuitry modifies the rate of adaptation, it may be the case that individuals with 

damage to dopaminergic structures, like the basal ganglia, may exhibit deficits in the ability to save. 

Some studies have addressed this possibility, specifically in the context of visuomotor rotation128–131. 

Uniformly, these authors have suggested that Parkinson’s Disease (PD) patients have an impairment in 

their expression of savings. With that said, a revisiting of some of this literature, does suggest some 

hints of savings, for example from the first exposure to the fourth exposure of the perturbation128. 

Regardless, if taken at face value, the impaired savings in PD in this context could be attributed to 

deficits in either implicit adaptation, or more cognitive explicit strategies62,63,65,132. 

Here we aimed to determine how PD patients expressed savings in a different form of 

adaptation that is thought to primarily invoke implicit adaptation mechanisms: force field adaptation. 

Patients (n=8) and healthy controls (n=10) reached to a single target in a two-dimensional workspace. 

After a baseline period, an abrupt perturbation was applied to the arm, on four separate exposures. The 

maximum deviation of the hand for the controls and patients is shown in Fig. 3.13A and 3.13B. To 

quantify the presence of savings, we fit a decaying exponential to these timecourses. Healthy controls 

showed clear evidence of savings (Fig. 3.13C, left) with an increase in the rate of learning after the first 

exposure to the perturbation. In addition, healthy controls exhibited an increase in the total amount of 

adaptation with each subsequent exposure (Fig. 3.13D, left). The presence of savings was less clear in 

the PD group. There was no clear change in the rate of adaptation with subsequent exposure to the 

perturbation (Fig. 3.13C, right). In addition, there was no change in the total amount of adaptation (Fig. 

3.13D, right). Therefore, these preliminary data suggested that savings may be impaired in PD even in 

force field adaptation. 

There are considerable number of caveats that cloud this conclusion. First, the initial error 

experienced at the start of the perturbation (Fig. 3.13E) dropped significantly for the PD group after the 

first perturbation, but not for the control group. Considering the fast process is most likely to contribute 

to savings and is most active at the start of the perturbation, these differences in initial performance 

make it difficult to compare the PD and control groups. Likely, these changes were caused by an 

elevation in co-contraction in the limb. If true, the lack of savings may be caused by corruption of the 

motor plan by non-specific learning strategies (e.g., co-contraction), rather than a bonafide deficit in the 

patient’s response to error. Finally, we only collected performance during force field trials, but not on 

channel trials in an effort to reduce the total number of trials and prevent patient fatigue. In retrospect, 

this was likely a suboptimal choice. Without channel trials, we cannot disentangle non-specific learning 
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mechanisms like co-contraction, from perturbation specific error-based learning strategies. Therefore, 

more data is certainly needed to confirm any impairment in savings in PD. 

 

 

Figure 3.13. Damage to the basal ganglia may prevent the expression of savings. A. Healthy age-matched 
controls (n=10) performed a standard force field adaptation task. They adapted to an abrupt force field 
on four separate exposures. Here we show the maximum displacement of the arm on each trial during 
each exposure. B. The same as in A but for a group of Parkinson’s Disease patients (n=8). We fit a 
decaying exponential model to behavior during each exposure to quantify the rate of learning (C), the 
total extent of adaptation (D), and the initial error at the start of each perturbation (E). 
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3.4 Discussion 

State-space models were first applied to data in adaptation experiments following the observation that 

experience of a single error produced robust trial-by-trial changes in behavior26,133. This provided the 

possibility to assay learning not only in typical scenarios where perturbations were sustained, but also in 

scenarios where the perturbations were random134,135. The initial models assumed a single state; 

however, the observation of spontaneous recovery during saccade adaptation in monkeys61 suggested 

that experience of error engaged multiple learning processes. Smith et al.8 modified the state-space 

equations by proposing that the putative learning processes included a fast process that learned 

strongly from error but forgot rapidly, and a slow process that learned weakly from error but exhibited 

robust retention. Unfortunately, the task of identifying these processes was difficult because there was 

typically no direct way to measure them. Rather, their state had to be inferred from their collective 

influence on behavior. Here, we approached this estimation problem in the context of data measured in 

typical motor learning studies and designed an algorithm to uncover the hidden processes.  

 

3.4.1 Design of a new algorithm 

Previous attempts to estimate fast and slow processes of learning had predominantly relied on least-

squares techniques45,70–72. However, to our knowledge, robustness of the least-squares technique was 

not tested and compared with alternative algorithms. Here we used LMSE to fit a two-state model to 

behavioral data collected in a reach-adaptation task. We found that while LMSE fit the observed 

behavior well, for a subset of subjects it appeared to misidentify properties of the hidden processes; for 

these subjects LMSE estimated parameters that produced physically unrealistic trajectories of the fast 

and slow states. We hypothesized that LMSE occasionally yielded aberrant results because it incorrectly 

attributed any noise in the measured behavior to the measurement itself rather than the underlying 

learning process. In other words, LMSE was ignorant of any randomness in the state update process, 

which is affected by both state noise and motor noise (due to the process of error-based learning). To 

rectify this problem with LMSE, we developed a new algorithm based on EM. 

Unlike LMSE, the EM algorithm is compatible with systems where both learning from error and 

generating a movement have independent noise sources. We developed a two-state model that 

represented the random processes involved in learning from error and production of movements. For 

such a system, our EM algorithm used a different, and in some sense, more complete, likelihood model 

than LMSE.  
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EM has received limited application in the sensorimotor literature74. We speculate that this is 

because of two reasons. (1) Previous applications of the algorithm were restricted to experiments that 

could be described by time-invariant state-space models. That is, in previous descriptions of EM, one 

could not use the algorithm with modern sensorimotor experiments that include behavioral probes such 

as error-clamp trials27 and set breaks, the second of which causes time-dependent changes to the state-

space equations. Rather than using a closed form solution74, here we used a numerical approach, 

allowing us to fit models to data that included error-clamp trials and set breaks. (2) Previous 

implementations could not specify bounds on the model parameters, and constrain relationships 

between model parameters. Here, we solved this problem by implementing a generalized EM algorithm 

that maximized the expected complete log-likelihood function numerically within a constrained 

parameter space. 

 

3.4.2 Evaluating the new algorithm 

We performed a visuomotor rotation experiment and fit the measured data with EM and found that 

parameters estimated by the algorithm differed from those of LMSE. EM appeared to eliminate the 

aberrant single subject fits observed for the LMSE algorithm. Additionally, EM parameters had lower 

variability across subjects, leading to reduced variance in the corresponding fast and slow state time 

courses. We computed the AICc for models that included (EM) or ignored (LMSE) noise in the process of 

motor learning. We found that the model with motor and state noise was more likely to explain the 

measured data in our experiment, than one where noise was attributed externally to the measurement 

of subject behavior. Therefore, we were able to make two conclusions: 1) experimental data suggested 

that equations that include noise in the learning process and moving process are a better descriptor of 

behavioral data than those that omit these noise sources; 2) EM, but not LMSE, is the appropriate 

algorithm to uncover parameters of a stochastic learning system. 

To determine how well EM would perform over LMSE on a data set with state and motor noise, 

we performed simulations where the true trajectories of the hidden states were known. We tested EM 

and LMSE on simulated data generated in four learning paradigms, across a variety of noise conditions 

and parameter values. While in all cases EM performed slightly worse than LMSE in fitting the observed 

data, it consistently outperformed LMSE in the identification of the hidden states. Specifically, EM 

predicted hidden state time courses that were more closely matched to the true states, and identified 

model parameters that were more tightly distributed about the true values. For these reasons, we 
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expect the EM toolbox to provide a more robust method of fitting state-space models to single subject 

behavioral data.  

In comparison to LMSE, EM identified learning parameters that had significantly reduced 

variance. For this reason, in simulated power analyses of typical experiments, we found that use of EM 

significantly reduced the number of subjects needed to statistically make within-subject and between-

subject comparisons. Therefore, it appears that the new algorithm might allow for a more robust 

method of hypothesis testing. 

 

3.4.3 Limitations of the algorithm 

Our model assumed that two sources of noise, a state noise and a motor noise, affected the processes 

of learning and movement production, respectively. Other authors have also considered state noise in 

models of learning74,76. However, at present we do not have a complete understanding of the properties 

of such noise. With that said, here we found evidence that a model with state noise was more likely to 

explain human behavior during a visuomotor rotation task. To show this, we repeated our analysis in Fig. 

3.2C, for the comparison of a model with both state and motor noise and a separate model with only 

motor noise. For our subject population, the corrected AIC for the model with both noise sources was 

lower (better) than that with only a motor noise source (paired t-test, t(19)=2.549, p<0.05). 

Furthermore, the differentiation between state and motor noise is more harmonious with a Bayesian 

interpretation of motor learning55,56. Additionally, the existence of state noise is also consistent with 

autocorrelations that arise between successive movements that can accumulate due to variability in 

planning a movement that is independent of variability in performing the movement itself136. 

 The manner in which we described state and motor noise was not entirely accurate. For 

example, we assumed that the variance of motor noise was signal independent. While this assumption 

seems reasonable for visuomotor rotation learning where each movement has the same amplitude, for 

motor effectors like the eye, a better model of learning might account for scaling of noise with the 

amplitude of movement. Accounting for this signal dependency would require fundamental 

modifications to the E- and M-steps of our EM toolbox. 

A useful modification to our model would be the inclusion of time-varying error sensitivity7. 

Such a modification could be incorporated by adding an additional parameter that determines the rate 

at which error sensitivity changes over time. Along these lines, the processes of learning and retention 

may possess nonlinearities not accounted for by our model. These modifications to the model would 

require derivation of a different expected complete log-likelihood function and an extended Kalman 
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filter (for nonlinear systems) and therefore fundamental modifications to our EM toolbox would be 

required to fit such nonlinear behavior. 

Another extension could be the inclusion of more than two-states of learning. Preliminary 

evidence suggests that slow learning states can be subdivided into two component processes (yielding a 

total of 3 hidden states) with differing levels of susceptibility to temporal decay73,137. Such a model of 

learning would be directly compatible with our EM approach with the addition of a retention factor, 

error sensitivity, and initial state. 

Different model fits could be obtained by changing the restrictions on the parameter space we 

searched for both algorithms during the fitting process. In some cases, the experimenter can fix the 

initial states to zero to improve fits. However, the goal of our work was to identify an algorithm that 

could perform robustly for any perturbation sequence, independent of the subject’s initial states and 

independent of the modeler’s knowledge of the subject’s initial states. For this reason, we did not 

attempt to improve EM and LMSE performance by fixing the initial states, as this constraint cannot be 

applied in general circumstances. 

The form of the model can lead to correlations within the estimated parameters. For example, 

consider washout of learning. The rate of washout is determined by both forgetting and learning from 

error. Fast washout of learning can be explained by high error sensitivity and low retention factor. For 

this reason and others, there is a tendency to predict that these parameters are correlated. We 

quantified correlations within parameters estimated by EM and LMSE. For EM, there were two pairs of 

model variables with appreciable correlation (absolute value of correlation coefficient > 0.4), and for 

LMSE there were three. The two pairs shared by both algorithms were slow state retention-slow state 

error sensitivity (EM, R=-0.455; LMSE, R= -0.628) and fast state retention-slow state error sensitivity 

(EM, R=-0.412; LMSE, R=-0.682). The third pair exclusive to LMSE was fast state retention-slow state 

retention (LMSE, R=0.536). Therefore, both algorithms were affected by correlated parameter 

estimates, the magnitude of these correlations appeared smaller for the EM algorithm.  

There are alternative approaches to uncovering hidden behavioral states. EM can be thought of 

as a frequentist’s approach to mathematical estimation. It identifies the parameter set with the most 

likely solution to the problem. However, EM assumes a flat prior distribution over the parameters; in 

other words, the algorithm currently does not allow the modeler to use prior information regarding the 

probability distributions of the parameters of the learning system. These considerations can be 

accounted for within the context of Bayesian approaches to estimation. To our knowledge, this Bayesian 
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framework has not been applied to two-state models of adaptation; Bayesian techniques represent an 

exciting avenue that may further improve upon the robustness of the EM approach we pursued here58.  

 

3.4.4 Relationship between mathematical hidden states and neural substrates of learning 

Why might it be useful to mathematically identify the hidden processes that underlie learning? In terms 

of behavior, various studies have posited that the fast and slow timescales of learning map onto 

dissociable components of a movement: during saccades, the early component of the movement 

exhibits properties that resemble influence of the slow process, whereas the later component of the 

same movement exhibits influence of the fast process138. During reaching, fast processes appear to 

mirror more temporally-labile components of memory and slower processes appear more temporally-

stable8,9,29,55. Fast processes may relate to explicit or cognitive types of motor learning, where slower 

processes are supported by implicit, unconscious motor learning mechanisms11,72. Fast states of learning 

may require larger amounts of preparation-time to be expressed than slow states of learning, which are 

present in behavior executed at low reaction times32. 

In terms of neural substrates of learning, some authors have found that the neural basis of the 

fast process may depend on the cerebellum, as evidenced by the observation that non-invasive 

cerebellar stimulation can modulate learning from error4,116, and damage to the cerebellum can spare 

slow processes2. For example, people with cerebellar damage maintain the ability to modulate error 

sensitivity of the slow process139. Imaging results suggest that for arm movements, both fast and slow 

adaptive processes may depend on the cerebellum47, as well as regions of the cerebral cortex.  

At the neuronal level, the existence of different timescales of memory may be present within 

the architecture of the cerebellum. A recent study found that the basic computational unit in the 

cerebellum may be micro-clusters of P-cells that share a common preference for error25. Anatomical 

studies show that a given error is transmitted to the cerebellum via complex spikes that engage 

different micro-clusters of P-cells, placed in disparate regions of the cerebellum140. This raises the 

possibility that a single error produces plasticity in multiple regions of the cerebellum, engaging distinct 

neural elements that can combine their outputs in service of adaptation1. Indeed, P-cells in the flocculus 

exhibit a preference for error direction118. When a visual error is in the preferred direction of a P-cell, 

that cell produces complex spikes, which in turn results in depression of simple spikes on the 

subsequent trial. If the temporal distance between the two trials is large, these changes fade away, akin 

to a process of forgetting. In contrast, that same visual error is in the anti-preferred direction of another 

group of P-cells, resulting in reduction of complex spikes below baseline, which produces small 



104 
 

potentiation of the simple spikes on the subsequent trial. These two groups of P-cells exhibit different 

sensitivities to the same error, and exhibit forgetting with passage of time, two elements that appear 

quite similar to mathematical two-state models inferred from behavior. That is, the neural basis of 

multiple timescales of memory may be in part associated with the diversity of error-preferences in the 

P-cells of the cerebellum. 

Comparison of mathematical estimation of these states of learning with these probes provides 

an opportunity to identify the neural substrates that mediate the multiple timescales of motor memory. 

 

3.5 Appendix 

This appendix contains four sections. The first section contains a mathematical description of our EM 

algorithm. Our form of the EM algorithm applies a different maximization step than previous 

descriptions in the sensorimotor literature74. Our numerical implementation of the M-step would best 

classify our algorithm as a generalized EM algorithm. First, we provide a qualitative overview of EM and 

generalized EM. We then derive the equations required to apply EM to our two-state model. The 

toolbox that implements the generalized EM algorithm, along with supporting documentation is 

available at http://shadmehrlab.org/Tools/tools.html. 

The second section provides a description of the least-squares (LMSE) algorithm. We discuss the 

general structure of LMSE and provide the equations we used for the algorithm. The third section 

provides tables and parameter values. The final section discusses an extended model of learning where 

multiple targets are presented to the subject. 

 

3.5.1 Mathematical description of the generalized EM algorithm 

Given a state-space model of behavior (Eq. 3.10), we ask how the parameters of the model can be 

estimated from a set of measured behavioral data. Suppose that our paradigm consists of N trials. The 

experimental design of our paradigm specifies the sequence of targets   ( ) ( ) ( )1 2

1
, , ,

N N
g g g g= , error-

clamp trials, and perturbations   ( ) ( ) ( )1 2

1
, , ,

N N
r r r r= . During the experiment, we record the subject’s 

motor outputs   ( ) ( ) ( )1 2

1
, , ,

N N
u u u u=  which, along with  1

N
g , allows us to compute the subject’s 

motor action on each trial relative to the target   ( ) ( ) ( )1 2

1
, , ,

N N
y y y y= . We provide a description of 

these variables in the context of three common sensorimotor learning paradigms (force field adaptation, 

visuomotor adaptation, and saccade adaptation) in the third section of this document within Table 3.4. 

http://shadmehrlab.org/Tools/tools.html
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Our goal is to determine the parameter set  2 2, , , , , ,s f s f x ua b ba d  =  that best explains the 

measured data. Note that the d parameter is only relevant for paradigms that include set breaks. A 

standard approach to parameter estimation is maximum likelihood estimation (MLE). MLE identifies the 

parameter set that maximizes the likelihood of observing the measured data, given a model parameter 

set. We will refer to this likelihood as the incomplete likelihood function. It is incomplete, as it does not 

include all the random variables of our system, i.e., it omits the hidden states of learning. Please note 

that other sources may refer to the incomplete likelihood function as the marginal likelihood function. 

Stated mathematically, MLE identifies the parameter set ̂  according to  ( )1
ˆ argmax

N
L y



 = . We 

provide a derivation of the incomplete likelihood for our two-state model in Section A1.4 of the 

Appendix. While many MLE problems can be solved by maximizing this function directly, for systems 

described by our two-state model (Eq. 3.10), this maximization has no closed-form solution, and can also 

be difficult to solve numerically. 

Another approach to the MLE problem is an algorithm known as EM. Instead of finding the 

maximum likelihood estimator in one step by maximizing the incomplete likelihood function, EM 

iteratively increases the incomplete likelihood function by maximizing a different objective function 

known as the expected complete log-likelihood function. We will derive this function shortly. Central to 

EM is the complete likelihood function described by:    ( )1 1
,

N N
cL L y = x . We will later show that this 

complete likelihood is the product of several exponential terms. Therefore, it is simpler to work with the 

natural logarithm of the complete likelihood, cl , where    ( )1 1
log ,

N N
c el L y  =

  
x . 

As its name suggests, EM is composed of an expectation (E-step) and a maximization (M-step) 

step. The algorithm begins by guessing an initial parameter set 0  and then performs the E-step and M-

step in order, in an iterative fashion. During the E-step, we consider the conditional expectation of the 

complete log-likelihood function,  1
,

N
c tE l y  

  
, where t  

is the estimate of the parameter set 

obtained from the M-step of the previous EM iteration. We will refer to this expectation as the expected 

complete log-likelihood function. We will later show that a functional form of the expected complete 

log-likelihood function can be derived using the Kalman filter, concluding the E-step. 
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Model 

variable 

Sensorimotor learning paradigm 

Force field adaptation Visuomotor adaptation Saccade adaptation 

( )n
y  

The adaptation index 

describing the force profile 

Heading angle of the 

reach relative to the 

target. 

The saccadic endpoint 

relative to the cued target. 

( )n
r  

A value (typically 0 or 1) 

encoding the presence or 

absence of the force field. 

It can be standardized to 

some force field magnitude 

level and then take 

fractional values. 

An external rotation to the 

cursor about the starting 

position of the reaching 

movement. 

A displacement of the target 

position presented after the 

subject executes her primary 

saccade. 

( )n
ch  

Error-clamp trials in force 

field tasks apply a stiff 

spring to eliminate error 

between subject forces and 

robot force. Should take 

the value 0. 

The value of the clamped 

angular error between 

feedback of the subject’s 

hand position and the 

target position. During no 

feedback trials, can take 

the value 0 (Kitago et al. 

2013). 

The value of the clamped 

angular error between the 

final target position and the 

endpoint of the subject’s 

primary saccade. 

Table 3.4. Interpretation of model variables for common learning paradigms. Our derivation of the two-
state model used general language that could apply across different sensorimotor learning modalities. 
Here we provide a description of some key parameters in the context of force field adaptation, 
visuomotor rotation, and saccade adaptation, to assist the general reader. 
 

In the M-step we compute an updated parameter set that maximizes the expected complete 

log-likelihood function according to  1 1
argmax ,

N
c tt E l y



 +
 =
  

. Critically78, iteration of the E- and 

M-steps guarantees that the incomplete likelihood function increases with each update to the model 

parameters:  ( )  ( )11 1 t

N N

t
L y L y 

+
 . The E-step and M-step are iterated until the incomplete 

likelihood function converges to a stationary point. 

Previous descriptions of the EM algorithm74,79 have outlined the E-step and M-step for linear 

time-invariant dynamical systems similar, though not identical, to the form of Eq. (3.10). The previous 

implementations of EM assumed state equations that were time-invariant, representing experiments 

that had neither set-breaks nor error-clamp27 trials. Under these assumptions, there existed closed-form 

solutions for the M-step. However, the introduction of set breaks in Eq. (3.10) introduces time-varying 
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nonlinearities to the two-state model that make the closed-form specification of the M-step difficult, if 

not impossible. Furthermore, our restrictions to the fast and slow state dynamics (i.e., constraints 

relating the fast and slow retention factors and error sensitivities) complicate our ability to identify a 

closed-form expression that globally solves the M-step. In such cases, a more general form of the EM 

algorithm known as generalized EM is useful77. In generalized EM, rather than maximizing the expected 

complete log-likelihood function during the M-step, one selects 1t +  such that:  

    ( )      ( )  1 1 1 1 1 11log , , log , ,
N N N N N N

e t e tt tE L y y E L y y   +
      

            
x x  

In words, to increase the incomplete likelihood function using EM, it is sufficient to identify a parameter 

set that simply increases the expected complete log-likelihood over the value associated with the 

parameter set attained on the previous EM iteration. 

In our generalized EM algorithm, we select an invariant parameter space. We numerically search 

this parameter space during each M-step of the algorithm to maximize the expected complete log-

likelihood function. This maximization ensures that we satisfy the condition of the generalized EM 

algorithm above. That is, by identifying the maximal value of the expected complete log-likelihood 

function in a parameter space that does not change from one iteration to the next, we guarantee that 

the updated parameter set is better than (or at least as good as) the previous parameter set, which is 

also contained in the same parameter space. This is a generalized EM algorithm in that it does not 

globally maximize the expected complete log-likelihood function. Though more computationally 

intensive than the standard EM algorithm, our generalized EM algorithm has the benefits of allowing the 

modeler to specify hard parameter bounds as well as functional constraints on the relationship between 

model parameters. Therefore, when using our algorithm, the modeler can restrict the parameter space 

to obtain only physically relevant solutions, and appropriate two-state model dynamics. In the following 

section we describe the mathematics that define our generalized EM algorithm. 

 

3.5.1.1 Expectation Step 

The E-step requires derivation of the expected complete log-likelihood function. Note that the complete 

likelihood function can be factored given the Markov-form of Eq. (3.10) (Shadmehr and Mussa-ivaldi 

2012). This factorization allows the complete likelihood function to be expressed as the following 

product. 
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( ) ( )( ) ( ) ( ) ( )( ) ( )( ) 

−
+

= =

   
=    
   
 

1
1 1

1 1

, , ,
N N

n n n n n

n
c

n

L L y L y Lx x x x   (A3.1.1) 

Eq. (A3.1.1) expresses the complete likelihood function in terms of three types of probability density 

functions. Our goal is to find general expressions for the likelihood functions on the right-hand-side of 

Eq. (A3.1.1). We can obtain the first likelihood ( ) ( )( ),
n n

L y x  directly from the observation equation of 

Eq. (3.10). This likelihood is the probability density function of a normal random variable, which is 

provided below: 

 ( ) ( )( ) ( )( ) = 2, ,
n n nT T

uL y Nc x c x  (A3.1.2) 

The second likelihood on the right-hand-side of Eq. (A3.1.1) can be obtained from the state update 

equation of Eq. (3.10), and is the probability density function for a multivariate normal random variable 

described by:  

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
+

= +
1

, , ,
n n n n n n n n

L y N A e Qx x x b  (A3.1.3) 

To fully specify the complete likelihood of Eq. (A3.1.1), we must also obtain an expression for 
( )( )1

L x , 

the probability density function for the initial state. We will assume that the initial state of the learner is 

itself a normal random variable: 

 ( )( ) ( )11
1

,L N V=x x   (A3.1.4) 

The mean of the normal random variable 1x  
can be represented as 1

1
(1) ( ) T

s fx x =
 

x  which 

introduces two additional parameters to our state-space model, (1)
sx

 
and 

(1)
fx , the mean initial values of 

the slow and fast states, respectively. We will assume that we can represent the variance-covariance 

matrix 1V
 
in the diagonal form 

2
1

1 2
1

0

0
V





 
=  
    

which introduces the parameter 2
1 , the variance of the 

initial states. Our full parameter set that we seek to identify now consists of ten variables, i.e., 

( ) ( ) 112 2 2
1, , , , , , , , ,s f s f x u s fa a b b d x x  = . Substitution of Eqs. (A3.1.2) to (A3.1.4) into Eq. (A3.1.1) 

yields the following expression for the complete likelihood function. 
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Due the various products of exponential functions in Eq. (A3.1.5), it is simpler to consider the natural 

logarithm of the likelihood function which we will refer to as cl . Taking the natural logarithm of both 

sides of Eq. (A3.1.5), yields the following form for cl . 
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We proceed with the E-step by deriving an expression for  1
,

N
c tE l y  

  
. This conditional expectation 

yields the expected complete log-likelihood function that we analyze in the M-step. To conserve space, 

we will represent the conditioned terms in the expectation using a  symbol. We can easily obtain

cE l   by expanding the quadratic terms in Eq. (A3.1.6) and then taking the conditional expectation. 

Doing so yields the following intermediate form of the expected complete log-likelihood function. 
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 (A3.1.7) 

As we can see from the above equation, the expected value operator only affects terms within Eq. 

(A3.1.7) that are functions of the hidden states. Our final step is to derive an alternative form for the 

expectation terms in Eq. (A3.1.7) that are quadratic functions of the unknown states. We note the 

following identity, which applies to any pair of multivariate random variables x , y and some matrix A of 

appropriate dimension. 

    ( )cov ,
TTE A E AE tr A  = +    

x y x y y x  

Here  tr  is the trace operator. This identity allows us to express the quadratic terms of Eq. (A3.1.7) 

as a function of linear state expectations and covariances, which we can compute using the Kalman 

filter. Applying this identity to Eq. (A3.1.7) yields our final expression for the expected complete log-

likelihood function. 
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Eq. (A3.1.8) is the culminating result of the E-step. Note that the following shorthand notations have 

been applied in Eq. (A3.1.8). 

 

( )  

( )  ( )
( ) ( )  ( )

1

1

1, 1

1

ˆ ,

var ,

cov , ,

Nn N n
t

Nn N n
t

Nn n N n n
t

E y

V y

V y






+ +

 =
  

=

=

x x

x

x x

  (A3.1.9) 

The shorthand quantities ˆn N
x , 

n N
V , and 

1,n n N
V

+
 can be computed using a smoothed Kalman filter79. 

To summarize the Kalman smoother equations, we begin by evaluating the following posteriors which 

are computed using a forward pass of the standard Kalman filter. 
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x x
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  (A3.1.10) 

The terms ˆn n
x  and 

n n
V  are our posterior state estimate and variance covariance matrix on the n-th 

trial, given our current parameter estimate and all our observations up to the n-th trial. Note that this 

expectation and variance are similar, but not equivalent to the desired ˆn N
x  and 

n N
V which we will 

refer to as our smoothed Kalman estimates. These smoothed Kalman estimates are the expectation and 
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variance of the state on the n-th trial, given all the observations we have made. To first compute ˆn n
x  

and 
n n

V  we must calculate the Kalman gain 
( )n

k  according to: 

 ( ) ( )
−

− −
= +

1
1 12n n n nn T

uV Vk c c c   (A3.1.11) 

To compute the Kalman gain we require the prior estimate for the variance-covariance matrix, denoted

1n n
V

−
. Using the Kalman gain we can compute ˆn n

x  and 
n n

V  according to the following equations. 

 ( ) ( )( )1 1ˆ ˆ ˆn n n n n nn n Ty
− −

= + −x x k c x   (A3.1.12) 

 ( )( ) 1n n n nn TV V
−

=  − k c   (A3.1.13) 

Next we forward project these posteriors to obtain the prior estimates for the next trial: 

 
( ) ( ) ( )+

= +
1ˆ ˆn n n nn n n

A ex x b   (A3.1.14) 

 
( ) ( ) ( )1

T
n n n nn n n

V A V A Q
+

= +   (A3.1.15) 

The forward Kalman filter proceeds by recursively iterating Eqs. (A3.1.11) to (A3.1.15) a total of N times 

to compute 
1 1 2 2ˆ ˆ ˆ, , ,

N N
x x x as well as 

1 1 2 2
, , ,

N N
V V V . The prior states and covariances will also be 

required for smoothing. We initialize this recursion with the priors 
1 0
x̂  and

1 0
V . Here these priors are 

taken as the parameter estimates for 1x  and 1V  obtained on the previous iteration of the algorithm. 

That is, the prior expectation and variance are computed from the values of 
( )1
sx ,

( )1
fx , and 2

1  that 

were obtained from the M-step of the previous EM iteration. 

To obtain the expectations and covariances required for EM (Eq. A3.1.9), we will now perform 

Kalman smoothing. The Kalman smoother uses backwards recursions to compute the means and 

variances of the probability distributions described in Eq. (A3.1.9). In other words, after obtaining the 

posterior state and variance-covariance matrix for all N time steps, we can recursively smooth our 

previous estimates. Our current implementation has been described previously74,79. We note that the 

smoothed Kalman estimates on the final time step, N, were already computed in the final step of the 

forward Kalman filter. Therefore, computation of each quantity in Eq. (A3.1.9), begins with N-1. First, we 

compute the helper variable 
( )n

J  which functions similarly to a Kalman gain. 

 
( ) ( ) ( )

1
1

T
n n n nn n

J V A V
−

+
=   (A3.1.16) 
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With the computation of 
( )n

J  we can now compute 
n N

V , our smoothed variance-covariance matrix. 

 
( ) ( ) ( )1 1

T
n N n n n N n nn n

V V J V V J
+ +

= + −   (A3.1.17) 

We also need to compute our smoothed state estimates. 

 ( ) ( )1 1ˆ ˆ ˆ ˆn N n n n N n nn
J

+ +
= + −x x x x   (A3.1.18) 

Recursion of Eqs. (A3.1.16) to (A3.1.18) computes 
1 2 1ˆ ˆ ˆ, , ,

N N N N−
x x x  and 

1 2 1
, , ,

N N N N
V V V

−
. To 

complete the E-step, we also require a smoothed estimate for the covariance of consecutive states 

denoted by 
1,n n N

V
+

. We can obtain this covariance using the following equation. 

 
( )1, 1n n N n N n

V V J
+ +

=   (A3.1.19) 

Note that 
2,1 3,2 , 1

, , ,
N N N N N

V V V
−

 do not need to be computed in a recursive process, and can be 

calculated after recursion of Eqs. (A3.1.16) to (A3.1.18). 

 

3.5.1.2 Maximization Step 

In the M-step of the EM algorithm, the goal is to maximize the expected complete log-likelihood 

function that is derived in the E-step. For our two-state model, there exists no closed-form expression 

that globally maximizes the expected complete log-likelihood function. Therefore, we used a generalized 

M-step that numerically maximizes the expected complete log-likelihood function (Eq. A3.1.8) in a 

constrained parameter space. We maintained the same parameter space for each iteration of our 

generalized EM algorithm. As we described in the introduction to Appendix 1, maintaining this invariant 

parameter space is sufficient to guarantee convergence of the EM algorithm. 

  To perform our numerical maximization, we used fmincon in MATLAB R2016a. Because fmincon 

performs constrained minimization, we converted our maximization problem to a minimization problem 

by minimizing the negated expected complete log-likelihood in Eq. (A3.1.8) with respect to the two-state 

model parameter set    =
(1) (1)

1
2 2 2, , , , , , , ,,s f s f x u s fa a b b d x x . We constrained the parameter space for 

this numerical optimization in two ways. First, we specified lower and upper bounds for all the model 

parameters according to Eq. (A3.1.20). 
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The numerical values for the upper and lower bounds that specify Eq. A3.1.20 are provided in Table 3.2. 

We used identical bounds for our least-squares algorithm, as described in Appendix 2. The second way 

we constrained our parameter space is by enforcing conventional two-state model dynamics. Recall that 

the fast and slow states have the following properties; the fast state learns rapidly, but also forgets 

rapidly. The slow state learns slowly, but forgets slowly. To enforce these state dynamics, one can 

specify the following parameter constraints. 

 

, 0

s f

f s

a a a

b b b

a b

 + 

 +
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  (A3.1.21) 

As defined in Eq. (A3.1.21), the slow state will have a greater retention factor than the fast state, and 

the fast state will have greater error sensitivity than the slow state. For Eq. A3.1.21, we used the value 

0.001 fora  andb . To summarize the generalized M-step, we numerically maximize Eq. (A3.1.8) using 

fmincon in a parameter space that is constrained by Eqs. (A3.1.20) and (A3.1.21). 

Note that the selection of the upper and lower bounds in Table 3.2 will be specific to modeler 

preferences and the features of the behavioral data. In the current work, we selected upper bounds on 

the initial states that were equal in magnitude to the size of the perturbation. We felt this was a logical 

bound as it represents the maximum value that could be attained by the slow or fast state at any point 

during the adaptation timecourse, in the absence of noise. For our retention factors we specified an 

upper bound of 1.1. We selected this bound to be greater than 1 to demonstrate that the LMSE 

algorithm tended to identify unstable properties in the slow state of learning. In Changing the bounds on 

the parameter space, we detail a control analysis where we changed this upper bound to 1, to prevent 

the identification of unstable fast and slow retention factors. For our error sensitivities, we specified a 

lower and upper bound of 0 and 1, to prevent “negative” learning, or unstable learning, respectively. 

Finally, for all the variances of our noise terms (state, motor, and initial state) we specified an upper 

bound of 10 degrees2. This parameter will be specific to the range and units of the behavioral data. Here 



115 
 

we selected this value to greatly exceed the variance of the residuals for the state-space model fit to any 

of our subject behaviors. 

  

3.5.1.3 Algorithm summary 

Here we offer a practical summary of the algorithm. The algorithm begins by specifying an initial guess 

for 0 , which are the initial values for the model parameters that will seed the algorithm. 

1. Use the current parameter estimate t  to compute the posteriors 
1 1 2 2ˆ ˆ ˆ, , ,

N N
x x x  and 

1 1 2 2
, , ,

N N
V V V  as well as the priors 

2 1 3 2 1ˆ ˆ ˆ, , ,
N N−

x x x and 
2 1 3 2 1

, , ,
N N

V V V
−

by 

recursively applying Eqs. (A3.1.11) to (A3.1.15). These forward recursions are seeded using the 

current parameter estimates, 
0

1
1ˆ =x x

 
and 

1 0
1V V= . 

2. Use the posterior and prior estimates from Step 1 to compute the smoothed conditional 

expectations and variances 
1 2 1ˆ ˆ ˆ, , ,

N N N N−
x x x  and 

1 2 1
, , ,

N N N N
V V V

−

 by recursively 

applying Eqs. (A3.1.16) to (A3.1.18) backwards in time. Compute the conditional covariances 

2,1 3,2 , 1
, , ,

N N N N N
V V V

−

 by applying Eq. (A3.1.19). 

3. Numerically maximize (e.g., fmincon in MATLAB) the expected complete log-likelihood function 

(Eq. A3.1.8) with respect to the model parameters subject to desired bounds (Eq. A3.1.20) and 

linear constraints (Eq. A3.1.21). The maximizing model parameters now become the parameter 

estimates for the current EM iteration. 

4. Return to Step 1 and start the next EM iteration using the updated model parameters computed 

in Step 3 to perform the state estimation. Stop when the incomplete likelihood function has 

converged. 

 

3.5.1.4 The incomplete likelihood function 

The EM algorithm iteratively locates local extrema of the incomplete (marginal) likelihood function. This 

function can be evaluated at the conclusion of each iteration of the algorithm in order to track 

convergence. Here we provide a brief derivation of the form of the incomplete likelihood function 

 ( )1

N
L y  . First, by successive application of the definition of conditional likelihood, we can factor the 

incomplete likelihood function as follows: 
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This factored incomplete likelihood reveals a direct relationship between the complete likelihood and 

the Kalman filter; ( )  ( )1

1
,

nn
L y y

−  is a normal random variable with a mean and variance that can be 

computed from the priors obtained using the forward Kalman filter: 
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Therefore, the incomplete likelihood function can be expressed as follows: 

 ( ) ( ) ( )( ) ( )1 211 2

1

ˆ, , , ,
N

n n n nN T T

n
uL y y y N V 

− −

=

= + c x c c  (A3.1.24) 

Given that Eq. (A3.1.24) is a product of exponentials, we consider the natural logarithm: 
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In summary, to compute the incomplete log-likelihood associated with a given set of model parameters, 

we use Eqs. (A3.1.11-15) to compute the prior hidden state expectations and variances, and 

subsequently apply Eq. (A3.1.25). 

 

3.5.1.5 Convergence 

In this section we discuss issues related to the convergence of the generalized EM algorithm. In a 

constrained parameter space, we can expect our implementation of the generalized EM algorithm to 

converge to either a stationary point or a boundary of the constrained parameter space80. As with any 

EM algorithm, we are not guaranteed that this stationary point is the desired global maximum of the 

incomplete log-likelihood function. The stationary point reached by an EM algorithm is determined by 

its initial conditions (i.e., the starting parameter guess). Therefore, it is imperative to perform the EM 

algorithm using different initial conditions. Here for each set of data, we used 5 or 10 initial conditions 

(for simulated and behavioral data, respectively) in an attempt to identify the parameter set that 
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resulted in the greatest incomplete log-likelihood. We found that using 50 different initial conditions for 

the algorithm did not meaningfully affect our results, and therefore chose a smaller number of initial 

conditions to make the computation time for our study more tractable. 

For each initial condition, we performed a fixed number of EM iterations. We found that the 

number of iterations required to achieve convergence scaled with the size of the data set. In virtually all 

cases, we found that 100 iterations of the EM algorithm was more than sufficient to achieve 

convergence of the incomplete log-likelihood function. The only exception, was for our trial-by-trial 

control analysis, where we used 200 iterations, due the greater number of trials and slower convergence 

rate. Although we used a fixed number of iterations in this study, the modeler could set a convergence 

criterion that terminates the algorithm once the change in log-likelihood from one EM iteration to the 

next falls below some threshold. 

 

3.5.2 Overview of the LMSE algorithm 

The current standard technique used for fitting state-space models to motor learning data is one that 

selects the model parameters that minimize the squared-error between measured variables and model 

predictions. Here we offer a brief description of one form of this algorithm, the least-mean-squared-

error (LMSE) technique, which generalizes to other least-squares techniques implemented within the 

literature. To use LMSE, we imagine a noise-free state-space analogue of Eq. (3.10). We previously 

described this system in Eq. (3.18) but reproduce it again below: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

+
= +

=

1n n n n n

n nT

A e

y

x x b

c x
  (A3.2.1) 

This noise free system is equivalent to the expected value of the states and observed behaviors 

predicted by our general two-state model of Eq. (3.10). To be clear, 
( )n

e  refers to the model prediction 

for the error in our noise-free system (i.e. the expected value of the error in Eq. (3.10) given our model 

parameters), not the errors actually measured during the experiment (with the exception of error-clamp 

trials where the expected value of the error is equal to the error imposed on that trial). 

Note that Eq. (A3.2.1) describes a deterministic system; specification of the parameter set 

 (1) (1), , , , , ,LMSE s f s f s fa a b b x x d =
 
entirely determines the progression of the slow and fast states for a 

given sequence of perturbations, error-clamp trials, and set breaks. The LMSE algorithm simply searches 

this 7-dimensional parameter space to identify the parameter set that satisfies the following 

optimization. 
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Here 
( )n

y
 
is the measurement on trial n and 

( )ˆ n
y

 is the model prediction, which is computed from the 

output of Eq. (A3.2.1). The argument of the argmin function of Equation (A3.2.2) is the mean-squared-

error between the observation and model prediction for a given parameter set. For all LMSE fits in this 

study, we used the MATLAB function fmincon to identify the least-squares solutions. For each LMSE fit, 

the algorithm was seeded at 50 points scattered across the parameter space, to better ensure the 

identification of the minimum mean-squared-error within the search space. The parameter space used 

for the LMSE algorithm was identical to that of the EM algorithm and is reported in Table 3.2. 

 The least-squares algorithm can also be thought of as a maximum likelihood estimator, under 

certain conditions. For our two-state model, the least-squares algorithm maximizes the likelihood of a 

system where any randomness in the measured behavior is attributed to the measurement process 

itself (i.e. it is external to the underlying motor learning process). For this system, we assume that the 

actual motor action generated by the subject 
( )n
truey  differs from the observed behavior 

( )n
y  due to 

some non-zero Gaussian measurement noise: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )

 

+
= +

=

= +

 −
= 


1

20,

where

, not an error-clamp trial

, error-clamp trial

n n n n n

n nT
true

n n n n
true measure measure m

n n
n true

n
c

A e

y

y y N

r y
e

e

x x b

c x

   (A3.2.3) 

Here  2
m  represents the variance of our measurement. Note for the EM algorithm, we did not include 

this term and assumed that there was no measurement noise in our system (i.e. 
( ) ( )

=
n n

truey y ). To 

reiterate, Eq. (A3.2.3) describes a system where the underlying learning process is deterministic. The 

only noise in our model is that in the experimental measurement of the behavior, which does not affect 

the true behavior of the learner. 

To prove that the MLE for this system satisfies the least-squares optimization in Eq. (A3.2.2) we 

must compute its incomplete likelihood function. For this, we consider the factored form of the 

incomplete likelihood function of Eq. (A3.1.22). To specify this form, we must compute the conditional 
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means and variances described in Eq. (A3.1.23). Critically, for our system in Eq. (A3.2.3) the measured 

behavior of the subject is corrupted by a measurement noise that is independent on every trial. 

Therefore, all of the measured behaviors are independently distributed and Eq. (A3.1.23) simplifies to 

( )   ( ) 
−   =

    

1

1
,

nn n
E y y E y  and 

( )  ( ) ( )( )  
−

= =
1 2

1
var , var

nn n
my y y . Applying these 

conditional means and variances to Eq. (A3.1.25) yields the following form of the incomplete log-

likelihood: 
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Note that 
( )  

 
n

E y in Eq. (A3.2.4) is also equal to 
( )ˆ n

y  in the objective function for LMSE (Eq. A3.2.2). 

Furthermore, note that maximization of Eq. (A3.2.4) implies minimization of the quantity

( ) ( )( )
=

 −
 

2

1

N
n n

n

y E y . This is the same quantity minimized by the LMSE algorithm in Eq. (A3.2.2). 

Therefore, the parameter set that solves our least-squares algorithm also maximizes the likelihood of a 

system without state and motor noise. 

 

3.5.3 Multiple target state-space model of learning 

In the state-space model outlined in our Methods, we assume that the learner possesses a single slow 

and fast state which are consistently engaged in the learning process on each trial. This model is most 

compatible with data sets where the same movement target is provided to the subject on each trial. 

Here we consider a more complicated paradigm where the learner is presented with a sequence of trials 

where she is instructed to make a movement towards a target that can change from one trial to the 

next. We assume that the number of targets is finite, and equal to G. Note that for our visuomotor 

rotation paradigm, G = 8. We will now provide the necessary modifications to the equations described in 

our Methods for this multiple target model. 

 As for the single target case, the learner adjusts her movement towards each target according to 

her estimate of the perturbation. As before, this estimate depends on the state of a slow and fast 

adaptive process. The learner has a separate fast and slow state for each target, all of which are 

included in the state vector
( ) ( ) ( ) ( ) ( )  =

 
2 1

1 1
n nn n nGx

G G

T

s s f fx . Here sk is the slow 
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state for target k and fk is the fast state for target k. The learner’s estimate of the perturbation depends 

on this state vector according to the following equation: 
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Eq. (A3.3.1) formalizes the selection of the appropriate fast and slow state for the current target. On 

each trial it will contain two entries that are equal to one (all others are zero). In this way, the estimate 

of the perturbation is the sum of the fast and slow state that correspond to the target on trial n. 

The evolution of the fast and slow states from one trial to the next depends both on forgetting 

and error-based learning according to Eq. (A3.3.2). 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )+

= + + +
1 n nn n n n n

learn baseA C e Cx x b    (A3.3.2) 

In the no-generalization model analysis described in our Results, we constrained the parameters of our 

modified state update equation, with the following four assumptions. Of course, any of these 

restrictions could be relaxed to allow for a more general model. First, the fast states of learning all 

exhibit the same forgetting properties, as do the slow states (i.e., they have the same slow and fast 

retention factors). Second, all fast states of learning all learn at the same rate, as do the slow states (i.e., 

they have the same slow and fast error sensitivities). Third, there is no-generalization of learning across 

targets. Therefore, the error experienced on trial n only engages the fast and slow processes that 

correspond to the target presented on trial n. And finally, all states experience a baseline level of state 

noise on each trial. The fast and slow states engaged in the learning process experience amplified noise 

on that trial. 

To enforce all these rules, we made the following constraints on the parameters in Eq. (A3.3.2). 

To enforce that each state forgets from one trial to the next, with no difference in forgetting across 

targets, we represented A as a 2G by 2G diagonal matrix of the form 

( ) =2 2 , , , , ,Gx G
s s f fA diag a a a a . To enforce that all slow states and all fast states learn at the 

same rate, we used a common error sensitivity vector  =  
2 1 Tx

s fb bb = . 

To account for generalization, we introduced the selector matrix 
( )n

C . Suppose that target k is 

visited on trial n. For our no-generalization model, the selector matrix causes only the slow and fast 
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states corresponding to target k to learn on trial n. In this case, the selector matrix is a 2G x 2 matrix of 

the form: ( )
( ) ( )

( ) ( )

 
  =
 
 

12 2

1

0 0 0

0 0 0

T
nn

n GGx

nn
G

c c
C

c c
. It is critical to note that this selector 

matrix could be used to encode generalization of learning across targets. In the case of generalization, 

the modeler could replace the zero elements in matrix C to cause a single error to differentially affect 

the update of each state. 

And finally, to enforce our rule concerning the variance of the state update process, we 

separated state noise into two terms in Eq. (A3.3.2): a baseline state noise that affects the evolution of 

each state on every trial 
( )n
base and an additional noise source that only affects the states that 

experienced learning on a particular trial 
( )n
learn  (i.e., the states for the target presented on trial n). To 

enforce the latter property, we multiplied the learning noise by the selector matrix. Given the 

dimensions of our system, our baseline and learning noises had the following form: the baseline noise 

( )
 2 1n Gx

base was unbiased with mean  0 0
T

 and covariance matrix 

 =2 2
2

2
2b

Gx
e

G
Ga GxsB  where 

2
base  represents a common baseline variance for all states. The 

learning noise
( )n
learn was unbiased with mean  0 0

T
 and variance-covariance matrix = 2 2

2
learn xL , 

where  2
learn  represents the state update variance associated with learning. 

 We can account for set breaks with the decay factor introduced in our model described in Eq. 

(3.10) of the manuscript. With the introduction of set breaks, our two-state model can now be 

represented as the following system of state-space equations that account for both error-clamp trials, 

set breaks, and multiple targets: 
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Chapter 4. The origins of anterograde 
interference in visuomotor adaptation 

 

Anterograde interference refers to the negative impact of prior learning on the propensity for future 
learning. There is currently no consensus on whether this phenomenon is transient or long-lasting, with 
studies pointing to an effect in the time scale of hours to days. These inconsistencies might be caused by 
the method employed to quantify performance, which often confounds changes in learning rate and 
retention. Here, we aimed to unveil the time course of anterograde interference by tracking its impact 
on visuomotor adaptation at different intervals throughout a 24h period. Our empirical and model-
based approaches allowed us to measure the capacity for new learning separately from the influence of 
a previous memory. In agreement with previous reports, we found that prior learning persistently 
impaired the initial level of performance upon revisiting the task. However, despite this strong initial 
bias, learning capacity was impaired only when conflicting information was learned up to 1h apart, 
recovering thereafter with passage of time. These findings suggest that when adapting to conflicting 
perturbations, impairments in performance are driven by two distinct mechanisms: a long-lasting bias 
that acts as a prior and hinders initial performance, and a short-lasting anterograde interference that 
originates from a reduction in error-sensitivity. 
 

4.1 Introduction 

We gain robustness through adaptation: in the face of environmental and/or internal perturbations, 

adaptation allows us to maintain precise control of elementary movements like reaching and saccades. 

Like other types of learning, adaptation may lead to interference or facilitation depending on the level of 

congruency of sequentially learned materials. Facilitation of learning is commonly referred to as savings, 

a process by which subsequent exposure to the same perturbation results in faster learning44,141. In 

contrast, successive adaptation to opposing perturbations, for example, rotation A followed by rotation 

B may lead to a deficit in the learning of B. This phenomenon, known as anterograde interference, has 

been reported in various adaptation paradigms38,142,143. Yet, there is currently no consensus on whether 

anterograde interference is transient or long lasting. In fact, whereas some studies suggest that 

anterograde effects may last less than a few hours104,142, others appear to point to a long-lasting impact 

in the time scale of days39,42. It has even been suggested that anterograde interference may be stronger 

than retrograde interference39,42,143, masking the effect of interest in retrograde protocols aimed at 

unveiling the time course of memory consolidation39.  

This lack of consensus may be partly due to the method employed for measuring interference82. 

Previous studies estimated the amount of interference of A on B predominantly based on the initial level 

of performance, computed by averaging through the first trials of the learning curve. This empirical 
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measure does not discriminate between changes in learning rate and retention. That is, initial 

performance in B is a mixture of how much the subject has retained what they learned in A, and how 

much they can learn from errors experienced in B. If anterograde interference arises from impairment in 

the ability to learn, one would expect that prior exposure to A would reduce the learning rate in B. Yet, 

with the exception of143 no study that we are aware of has focused on the rate of learning as the 

fundamental measure of anterograde interference.  

Here, we aimed to unveil the origins of anterograde interference by varying the time interval 

elapsed between adaptation to opposing rotations throughout a 24 h period. This approach allowed us 

to estimate how the passage of time affected two potential sources of performance impairment: (1) 

retention of an opposing prior memory versus (2) changes in the rate at which new information could be 

acquired. We recruited a large number of subjects (n = 93) in order to measure how adaptation changed 

from A to B, when the two events were separated by 5 min, 1 h, 6 h and 24 h. We used a trial-by-trial 

error-based model of learning8,9,74,101,135 to determine the impact of prior learning on three separate 

processes: (1) biases in performance due to the memory of A, (2) the rate of memory decay in B, and (3) 

the capacity of learning from error in B. These three processes are represented separately by three 

specific model parameters: (1) the initial state of the learner in B, (2) the retention factor and (3) the 

error sensitivity. In contrast with previous findings, our work shows that anterograde interference 

recovers gradually with passage of time. This recovery proceeds despite initial impairments in 

performance that originate from a lingering memory of A that persists over a much longer time scale.  

 

4.2 Materials and methods  

Ninety-three healthy volunteers (33 males; ages: mean ± std. dev. 24±4 years old) with no known history 

of neurological or psychiatric disorders were recruited from the School of Medicine of the University of 

Buenos Aires. All subjects were right-handed as assessed by the Edinburgh handedness inventory144. The 

experimental procedure was approved by the local Ethics Committee and carried out according to the 

Declaration of Helsinki. 

 

4.2.1 Experimental Paradigm 

Subjects were seated in a comfortable chair and performed a center-out-back task using a joystick 

operated with the thumb and index fingers of their right hand. Visual information was presented on a 

computer screen. The right elbow laid comfortably on an armrest and the wrist laid on a structure that 
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fixed the joystick over a desktop. Subjects were told to maintain the same wrist posture across 

experimental sessions. Vision of the hand was occluded throughout the study.  

At the beginning of each trial, we displayed one of 8 potential targets (0.4 cm diameter, placed 2 

cm from the start point and concentrically located 45° from each other) on a computer screen. Joystick 

position was represented on the screen with a gray cursor of the same size as the target. The gain of the 

joystick was set to discourage subjects from correcting their movements online. Specifically, a 

displacement of 1.44 cm of the tip of the joystick moved the cursor on the screen by 2 cm. On average, 

movement time for correct trials was 125.5 ± 26.6ms (mean ± 1 std. dev.), providing little or no 

opportunity for within-movement corrections based on visual feedback. Participants were instructed to 

make a shooting movement through the target, as fast as possible, starting at target onset. There were 8 

trials per cycle (one for each target) and 11 cycles per block. The order of target presentation was 

randomized within each cycle. 

Two types of trials were presented throughout the experimental session (Fig. 4.1A). During null 

trials, participants performed shooting movements in the absence of a perturbation. During perturbed 

trials, a counterclockwise (CCW, labeled as perturbation A), or a clockwise (CW, labeled as perturbation 

B) visual rotation of 30° was applied to alter the trajectory of the cursor. 

Feedback about the subject’s movement was provided on each trial via the color of the cursor, 

which varied along a gradient between red (miss) and green (hit). Furthermore, subjects had a limited 

amount of time to complete the movement after the appearance of the target. If the elapsed time 

exceeded 900 ms, the trial was aborted and the cursor was turned red until the next trial. Target hits 

with error < 2.5° were rewarded with a simulated sound of an animated explosion. The total score (hit 

percentage) was displayed on the screen at the end of each block. Subjects were instructed to try to 

maximize this score throughout the experiment. The task was programmed using MATLAB’s 

Psychophysics Toolbox, Version 3.  

 

4.2.2 Experimental Procedure 

Figure 4.1A illustrates the experimental design. Participants were randomly assigned to one of four 

experimental groups or a control group. The experimental groups (Fig. 4.1A) performed one block (11 

cycles) of null trials followed by six blocks (66 cycles) of CCW perturbed trials (perturbation A). After a 

variable time interval, each group performed six blocks (66 cycles) of the CW perturbation (perturbation 

B). The four experimental groups were distinguished by the amount of time that separated the two 

rotations: 5 min (n = 16), 1 h (n = 20), 6 h (n = 19), and 24 h (n = 18). This variation in the period between 
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perturbations A and B allowed us to assess how the passage of time impacted the initial level of 

performance in B (first cycle), as well as on each subject’s ability to adapt to B. 

A group of subjects (n = 20) experienced only the B perturbation. This control group served two 

purposes. First, it was critical for our analysis of anterograde interference, serving as our benchmark for 

performance in B without any potential influence of learning in A. Second, given that subjects always 

learned A before B, this group was key in ruling out an order effect. Control subjects performed 1 block 

(11 cycles) of null trials followed by 6 blocks (66 cycles) of B. 

 

4.2.3. Data post-processing 

For each trial, the pointing angle was computed based on the angle of motion of the joystick relative to 

the line segment connecting the start and target positions. Trials in which pointing angles exceeded 120° 

or deviated by more than 45° from the median of the trials for each cycle were excluded from further 

analysis (1.6% of all trials). After this processing, the trial-by-trial data were converted to cycle-by-cycle 

time series by calculating the median pointing angle in each 8-trial cycle for each subject. Unless 

otherwise noted, the cycle-by-cycle data were used for each analysis reported in this work. 

 

4.2.4 Model-free data analysis 

We empirically quantified each subject’s learning rate in A and B by fitting a single exponential function 

(Eq. 4.1) to the sequence of pointing angles measured in the A and B periods.  

 ( ) − += ex( p) t cy t  (Eq. 4.1) 

Here ( )y t  represents the pointing angle on cycle t. The first cycle of the rotation was represented by t = 

0.  The exponential fits included three parameters. The parameters α and c determine the initial bias 

and the asymptote of the exponential, respectively. The parameter   represents the learning rate of 

the subject. We constrained the relationship between α and c to force the exponential fit to intersect 

subject behavior at time step t = 0. Therefore, the exponential function had only two free parameters; 

the third was fixed by the initial level of subject performance. We fit one exponential function to the 66 

cycles of the A rotation and another one to the 66 cycles of the B rotation (Figure 4.1). Each period was 

fit using the fmincon function (MATLAB 2018a) to minimize the squared error between subject behavior 

and the exponential fit. 
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Although the exponential function closely approximates the decay of motor error during 

adaptation to a single perturbation, its learning rate parameter reflects a mixture of cycle-by-cycle 

forgetting and error-based learning. This potentially confounds our analysis of interference because 

during the A perturbation, the direction of forgetting (always towards baseline performance) opposes 

the direction of error-based learning. However, during the B perturbation, an initial bias in the 

performance of the experimental groups towards A causes forgetting and error-based learning to act in 

the same direction. This relationship switches once subjects pass the “zero point” of baseline 

performance: here retention and error-based learning again oppose one another. These considerations 

illustrate the difficulties inherent in using exponential fits to disambiguate the differential effects 

learning and forgetting may have on behavior. 

 

4.2.5 State-Space Model 

To better quantify subject performance in A and B, we used a state-space model that dissociates the 

effect of cycle-to-cycle learning from forgetting while appreciating initial biases in learning. 

When people perform a movement that produces an unexpected result, they learn from their 

movement error and retain part of this learning over time. In other words, behavior during sensorimotor 

adaptation can be described as a process of error-based learning and trial-by-trial forgetting8,26,135. State-

space models of learning consider how the behavior of a learner changes due to trial-by-trial error-

based learning, and decay of memory due to the passage of time (i.e., trials). To examine the 

anterograde interference of A on B, we fit a single module state-space model to the empirical data. This 

allowed us to ascribe any differences in performance during the B period to meaningful quantities: 

sensitivity to error, forgetting rate, and initial state. 

We imagined that the state of the learner (the internal estimate of the visuomotor rotation) 

changed from one cycle to the next, due to error-based learning and partial forgetting, according to Eq. 

(4.2). 

 
( ) ( ) ( ) ( )


+

= + +
1t t t t

x
x ax be  (Eq. 4.2) 

Here ( )tx  represents the state of the learner on cycle t. The parameter a  is a retention factor that 

encapsulates how well the subject retains a memory of the perturbation from one cycle to the next. The 

parameter b  represents sensitivity to error and determines the rate at which each subject learns from 

error. The error sensitivity is multiplied by the visual error 
( )te  between the pointing angle and target. 
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The change in state from one cycle to the next is corrupted by state noise 
( )
t

x  which we assumed to be 

Gaussian with mean zero and variance equal to 
2

x . 

The internal state of the subject is not a measurable quantity. Rather, on each cycle, the motor 

output of the subject is measured. We imagine that the motor output directly reflects the internal state 

but is corrupted by motor execution noise according to Eq. (4.3). 

 
( ) ( ) ( )

= +
t t t

y
y x  (Eq. 4.3) 

As with our exponential fit of Eq. (4.1), here 
( )t

y  represents the subject’s pointing angle on cycle t. We 

assumed that the motor execution noise 
( )


t

y  corrupting the reaching movement was Gaussian with 

mean zero and variance equal to 
2

y . 

We fit the state-space model to cycle-by-cycle single subject behavior using the Expectation 

Maximization (EM) algorithm101. The algorithm identified the parameter set that maximized the 

likelihood of observing each sequence of subject pointing angles given the parameters and structure of 

our state-space model. This parameter set contained 6 parameters: the retention factor a, error 

sensitivity b, state noise variance 
2

x , motor noise variance 
2

y , and two parameters describing the 

initial state of the learner. We modeled the initial state of the learner as a normally distributed random 

variable with mean 1
x  and variance 

2

1 . The parameter 1
x

 
served as our estimate of the initial bias of 

the learner. 

To fit the model, we started the EM algorithm from 5 different initial parameter sets, performed 

100 iterations of the algorithm101, and selected the parameter set with the greatest likelihood. We fit 

our state-space model to single subject behavior separately for the A and B periods. For the A period, 

we fit the 77 cycles encompassing the first 11 null cycles and the following 66 CCW rotation cycles (Fig. 

4.1). We fit the initial null trials along with the perturbation trials to increase confidence in the model 

parameters. For the B period, we fit the 66 cycles encompassing the CW rotation (Fig. 4.1). 

 

4.2.6 Validation of the single state-space model 

Our primary analysis assumed that learning could be represented using a single adaptive state. For a 

single state system, impairment in the learning rate in B requires that the learning system (i.e., the 
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model parameters) has changed from the A to the B period. In contrast, two-state models of learning 

posit that adaptation is supported by two parallel learning processes, a slow process that learns little 

from error but exhibits strong retention over trials, and a fast process that learns greatly from error but 

has poor ability to retain its memory over trials. To validate the choice of a single state over a two-state 

model, we fit a two-state model of learning to the A and B sequences of subject pointing angles, and 

compared the single state model and two-state model in their abilities to describe subject behavior 

using the Bayesian Information Criterion (BIC).  

In a two-state model, the states evolve over trials according to Eq. (4.4). 
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 (Eq. 4.4) 

Here, the slow and the fast states are represented by the quantities sx and fx ,  respectively. As with 

the single state model (Eq. 4.2) each state changes due to forgetting (described by its retention factor a) 

and error-based learning (described by its error sensitivity b). These internal estimates of the 

perturbation are additively combined to determine motor behavior according to Eq. 4.5. 

 
( ) ( ) ( ) ( )= + +
t t t t

s f yy x x  (Eq. 4.5) 

We fit this two-state model of learning to subject behavior during the A and B periods using the EM 

algorithm101. The algorithm identified the parameter set that maximized the likelihood of observing each 

sequence of subject pointing angles. We fit the model to the same cycles in A and B described for the 

single state model fits. To fit the model, we started the EM algorithm from 20 different initial parameter 

sets, performed 250 iterations of the algorithm, and selected the parameter set with the greatest 

likelihood. The model parameter set consisted of 9 variables: slow and fast retention factors s
a  and f

a

, slow and fast error sensitivities s
b  and f

b , the variances of state evolution and motor execution, and 

three parameters for the initial state of the learner. We modeled the initial fast and slow states as 

normally distributed random variables with mean 
( )1

s
x and 

( )1

f
x , and variance

2

1 . Each model was fit 

under the linear constraints 
f s

b b and 
s f

a a . These constraints enforce that the slow state learns 

more slowly than the fast state, but also retains its memory better from one trial to the next8. 

Then, we computed the Bayesian Information Criterion (BIC) for both models: 



129 
 

 ( ) ( )= −
max

log 2logBIC k n L  (Eq. 4.6) 

Here k represents the number of model parameters (6 for the single state model, 9 for the two-

state model), n represents the number of data points, and max
L  represents the maximum likelihood for 

the model fit obtained using the EM algorithm. To obtain a single estimate of BIC for each subject, we 

averaged the BIC over the A and B periods. To quantify the evidence for each model, we compared the 

BIC distributions for the single state and two-state models for all subjects in the experimental groups 

using a paired t-test. 

 

4.2.7 Statistical assessment 

Statistical differences were assessed at the 95% level of confidence. Prior to statistical testing, outlying 

parameter values were detected and removed based on a threshold of three median absolute 

deviations from the group median. For cases where our variables of interest did not fail tests for 

normality and equality of variance, we used a one-way ANOVA for our statistical testing. In cases where 

the statistical distributions failed tests for both equal variance across groups (Bartlett’s test) and 

normality (Shapiro-Wilk test) we used the Kruskal-Wallis test to detect non-parametric differences 

across experimental groups. In cases where our statistical tests indicated a significant effect of group (p 

< 0.05), we used either Tukey’s test (following one-way ANOVA) or Dunn’s test (following Kruskal-Wallis) 

for post-hoc testing. For the latter (Dunn’s test), pairwise tests of all experimental groups were 

conducted against the control group and Bonferroni corrected. In cases where one-way ANOVA was 

used for statistical testing, complementary figures depict the mean statistical quantity for each group as 

well as the standard error of the mean, calculated assuming a normal distribution. In cases where 

Kruskal-Wallis was used for statistical testing, complementary figures depict the median statistical 

quantity for each group as well as the standard error of the median (estimated with bootstrapping). 

When comparing mean values against zero, a one-sample t-test test was used followed by the 

Bonferroni correction for multiple comparisons. 

 

4.3 Results 

When people adapt to perturbation A, and then switch to the opposite perturbation B, performance in B 

appears impaired42,142,145–147. Pinpointing the origin of this behavioral deficit is hard because 

performance in B may reflect two different processes: the level of retention of the memory of A, and the 
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ability to learn B. In addition, these factors may vary independently as a function of time. Our study 

aimed to dissociate between these two factors by varying the time interval elapsed between A and B as 

subjects adapted to conflicting visuomotor rotations. 

  

4.3.1 Memory of A decays in time, but persists even after 24 hours 

On each trial, subjects moved a joystick to displace a cursor to one of 8 targets. On average, movement 

time for correct trials was 125.5 ± 26.6ms (mean ± 1 std. dev.), providing little or no opportunity for 

within-movement corrections. All groups initially trained in a baseline period of null trials (no 

perturbation) followed by adaptation to perturbation A (Figure 4.1A). After completion of training in A, 

subjects in each group waited for a specific amount of time (5 min, 1 h, 6 h or 24 h), and then were 

exposed to perturbation B. Figure 4.1B shows the pointing angle during null trials (cycles 1 to 11), 

learning of A (cycles 12 to 77) and learning of B (cycles 78 to 143) for each of the experimental groups 

(gray curves) and the control group (black curve). Pointing angle refers to angle of motion of the joystick 

relative to the line segment connecting the start and target positions. As expected, the pointing angle 

during null trials was close to zero. During exposure to perturbation A, subjects shifted their pointing 

angle gradually, approaching -30°, but maintained small, sustained residual errors10. After adapting to A 

and waiting the assigned time, subjects returned and were exposed to perturbation B. 

How did learning of A impact performance in B? We quantified the initial level of performance in 

B as the mean pointing angle during the first cycle of adaptation for each group (Fig. 4.2A). Given that 

little or no learning is expected to take place in one cycle (1 cycle = one trial per target), this measure 

allowed us to estimate the recall of A. 

The initial level of performance in B was biased towards A and decayed as a function of time 

(Fig. 4.2A, one-way ANOVA, F(88,4) = 39.59, p < 0.001; Dunnett’s test, control different from all 

experimental groups with p < 0.001. Tukey’s test, 5 min different from 24 h with p = 0.045, all other 

comparisons are non-significant). Notably, even at 24 h the memory of A remained strong, exhibiting 

nearly 50% retention (one-sample t-test against zero with Bonferroni correction: p < 0.001 for all 

experimental groups), while the control’s group pointing angle was not different from zero (p=0.28). 

This observation is consistent with the presence of a lingering memory of A104,145. This level of memory 

retention (48%) is comparable to that found for reaching under a visuomotor rotation of 30 degrees, 

and for velocity dependent force-field42, suggesting that our findings are generalizable to other 

experimental paradigms.   
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In summary, during initial performance in B the movements were strongly influenced by the 

presence of a memory of A. This memory decayed with time, but was still present at 24 h.  

 

 

Figure 4.1. Paradigm to measure anterograde interference. A. Paradigm. Subjects held a joystick and 
made pointing movements towards one of eight visual targets shown on a display. The experiment 
began with 11 cycles of null trials (Null) after which a 30° counterclockwise rotation was applied to the 
cursor for 66 cycles (perturbation A). Next, each experimental group waited a period of time ranging 
from 5 min to 24 h. After this break, subjects were immediately exposed to a 30° clockwise rotation 
(perturbation B) for 66 cycles. B. Behavior. Pointing angles on each trial were collapsed into cycles by 
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identifying the median pointing angle across each cycle of 8 trials. The shaded region indicates ±1 
standard error of the median. Each group differs in the amount of time that elapsed between the 
exposure to the A and B periods (from top to bottom: 5 min, 1 h, 6 h, and 24 h). The behavior for each 
experimental group (gray) is compared with that of a control group (black) that was exposed to 11 cycles 
of null and then 66 cycles of the B perturbation. 

 

Figure 4.2. Effect of prior learning on the initial level of performance and the ability to learn. A. The 
initial level of performance in B, estimated from the mean pointing angle on the first cycle is displayed 
here for all groups. Given that learning within one cycle is minimal, in the experimental groups this 
measure reflects the retention of the memory of A. Even at 24 h, there is roughly 50% retention of A. B. 
The rate of improvement (i.e., the learning rate) in B for all experimental groups and the control group is 
shown. In A and B, error bars indicate ±1 standard error of the mean and median, respectively. Asterisks 
indicate a level of significance of p < 0.05 (*) or p < 0.001 (***). 
 

 

4.3.2 Anterograde interference dissipates with increasing time separating A and B 

In order to assess the rate of learning, we fit the motor output for each subject in A and B with an 

exponential function (Eq. 4.1). The exponential model accounted for 67.2 ± 13.2% (mean ± 1 std. dev.) of 

the variance in individual subject behavior. Note that this is almost double of the variance accounted for 

when fitting individual trials instead of cycles (35.2 ± 10.6%, mean ± 1 std. dev.). If the exponential curve 

was fit to the median behavior across the group, thus reducing cycle-by-cycle variability in reaching 

movements, the variance accounted for 92.1 to 95.9% depending on the group. 

We found that during the A period there was no difference in the learning rates across the four 

experimental groups (Kruskal-Wallis, X2(62) = 4.75, p = 0.19). That is, the various groups were 

indistinguishable during learning of A. 

 To examine if prior learning of A impaired the ability to learn B, we compared the rate of 

learning in B with that of the control group (Figure 4.2B). Non-parametric testing revealed a significant 
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effect of group on the ability to learn B (Fig. 4.2B; Kruskal-Wallis, X2(80) = 10.84, p = 0.029). Post-hoc 

comparison between each experimental group and the control group identified a significant difference 

at 5 min and 1 h (Dunn’s test with Bonferroni correction, 5 min different from control with p = 0.044, 1 h 

different from control with p = 0.024), that disappeared by 6 h (6 h and 24 h not different from control 

with p > 0.952). This temporal pattern in the impairment of motor learning is consistent with the theory 

of consolidation141. 

 Finally, to rule out the possibility that our results may be explained by an order effect (subjects 

always learned the CCW rotation before the CW rotation), we statistically compared the rate of learning 

of the control group with those of the experimental groups during learning in A. No differences were 

found between the learning rates of A and B control (Kruskal-Wallis, X2(78) = 5.53, p = 0.237). Therefore, 

the control condition rules out the possibility that our results are explained by the order in which the 

perturbations were learned.  

In summary, while the lingering memory of A caused the starting point of the adaptation to be 

strongly biased in all experimental groups, the learning process itself was significantly impaired only at 5 

min and 1 h. As the time interval lengthened, the ability to learn recovered. 

 

4.3.3 Anterograde interference is caused by a decrease in sensitivity to error that recovers with 

time 

The exponential model we employed for our empirical analysis implicitly assumed that the rate of 

learning remained constant across trials. For the B period, this assumption is unlikely to be true because 

initially, learning from the errors induced by B is aided by forgetting of the memory of A. That is, as the B 

period starts, performance falls toward baseline, and the rate of this fall is due to two processes: 

forgetting of A, and learning from error in B. During this period, forgetting and learning act in the same 

direction. However, once the performance crosses baseline levels, the influence of memory decay on 

behavior is in the opposite direction to learning from error. State-space models of learning disentangle 

these processes of forgetting and learning. For this reason, we fit a state-space model to each subject 

separately during the A and B periods (Eq. 4.2 and 4.3). 

To assess which model was more appropriate to explain our data, we fit both a one-state and a 

two-state model of learning separately to the A and B periods and compared the likelihood of each 

model using the Bayesian Information Criterion (BIC). At the level of individual subjects, we found that a 

two-state model of learning was justified in only 5 of the 73 subjects across the experimental groups 
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(Fig. 4.3A, black lines). Therefore, in our task, the measured behavior was better described by a single 

state (Fig. 4.3B, lower BIC for single state model, paired t-test, t (92) = 16.133, p < 0.001) than a two-

state model of learning. This is in agreement with previous work on visuomotor adaptation in reaching49. 

Therefore, we fit a single-state model to the data.  

The state-space model assumes that learning is governed by two processes: a process that 

learns from error, and a process that retains a fraction of that memory from one trial to the next. The 

model closely tracked the observed behavior (Fig. 4.4A). 

 

 

Figure 4.3. Validation of the single state-space model for interference dataset. A. We calculated the 
Bayesian Information Criterion (BIC) for single and two-state model fits to individual subject behavior. 
The endpoint of each line shows the average BIC for the A and B periods (left, single state model; right, 
two-state model). Each line depicts the result for a single subject. Black lines indicate subjects for which 
the two-state model was superior to the single state model. B. We calculated the difference in BIC for 
the single state and two-state models. Negative values indicate higher evidence for the single-state 
model. The bar depicts mean BIC, and error bars indicate ±1 standard error of the mean. 
 

To quantify the model’s goodness-of-fit, we computed the fraction of each subject’s behavioral 

variance accounted for by our model fit (R2). To measure this coefficient of determination, we computed 

the expected value of the behavior predicted by our stochastic model (Eqs. 4.2 and 4.3) and compared 

this prediction with each individual subject’s data. We found that for single subjects, our model 

accounted for approximately 81.4 ± 8.4% (mean ± 1 std. dev.) of the variance in subject behavior. We 

repeated this analysis at the group level, where noise in the process of learning (Eq. 4.2) and production 

of a movement (Eq. 4.3) is smoothed over subjects. For each group, we computed the median behavior 

(Fig. 4.4A, black curves for experimental groups, red curve for control), the median behavior predicted 
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by our model (Fig. 4.4A, blue curves for experimental groups, green for control), and then the coefficient 

of determination for these two time-courses. At the group level, the model accounted for 96.0 to 98.2% 

of the variance in median subject behavior. 

 

 

Figure 4.4. State-space model fit to interference dataset. A. We fit individual behavior using a single 
state model that estimated cycle-by-cycle forgetting, error-based learning, and initial bias. Each plot 
depicts the median pointing angle for each experimental group (black lines) as well as the median 
pointing angle predicted from simulating the state-space model without noise (blue lines) using the 
maximum likelihood model parameter sets identified for each subject. Behavior (red) and state-space 
predictions (green) are provided for the control group in the top-left plot. The shaded error region 
indicates ±1 standard error of the median. B. Initial state of the learner at the start of the B period. C. 
Error sensitivity during the B period. D. Retention factor during the B period. In panels E-G we repeated 
our primary analysis, excluding the initial cycles of large errors from the model fit. To this aim, based on 
our exponential model, we selected the cycle during which the pointing angle was nearest zero. E. New 
initial pointing angle for this analysis (black) and the true initial pointing angles at the start of B (gray). F. 
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Error sensitivity of a state-space model after removing the initial period of large errors. G. Error 
sensitivity of the state-space model fit after removing the initial period of large errors (black) and fit to 
the entire B period (gray). Each bar represents the mean (B and E) or median (C, D, F, and G) parameter 
value for each group. Error bars indicate ±1 standard error of the mean or median. Asterisks indicate a 
level of significance of p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***). 
 

Using the model parameters, we measured the impact of prior learning on: (1) biases in 

performance due to the memory of A, (2) the rate of memory decay in B, and (3) the capacity to learn 

from error in B. These three processes are represented separately by three specific model parameters: 

(1) initial state of the learner in B, (2) retention factor (3) and error-sensitivity.  

Unsurprisingly, the initial state of the learner in B (Fig. 4.4B) closely followed our empirical 

estimate of the initial level of performance in B (Fig. 4.2A). As the interval between A and B increased, 

the initial state of the learner in B, i.e., the amount of the A memory retained over time, decreased (one-

way ANOVA, F(88,4) = 52.16, p < 0.001; Dunnett’s test, control different from all experimental groups with 

p < 0.001. Tukey’s test, 5 min different than 24 h with p = 0.023, all other comparisons are non-

significant). However, despite this temporal decay, all experimental groups retained at least 50% of the 

memory of A (one-sample t-test with Bonferroni correction, all experimental groups p < 0.001), while 

the control group was not different from zero (p=0.11). Therefore, impairment of performance in B was 

in part caused by a lingering memory of A that was present even at 24 h. 

To what extent was the impairment in B driven by changes in the rate of error-based learning 

and the strength of memory retention? Similar to our empirical analysis, we first confirmed that the 

experimental groups did not differ in performance during the A period. That is, there was no difference 

in error sensitivity (Kruskal-Wallis, X2(65) = 1.16, p = 0.763) or retention factor (Kruskal-Wallis, X2(66) = 

0.53, p = 0.912) across the experimental groups during adaptation to A. Yet, we found that error 

sensitivity was affected by prior learning (Fig. 4.4C; Kruskal-Wallis, X2(83) = 14.47, p = 0.006). Post-hoc 

tests against the control group unveiled a significant reduction in error sensitivity at 5 min and 1 h but 

not at longer time intervals (Dunn’s test with Bonferroni correction, 5 min different from control with p 

= 0.008, 1 h different from control with p = 0.004, 6 h and 24 h not different from control with p > 

0.132). In contrast, we found no difference in the retention factor during learning in B for any of the 

experimental groups, including the control group (Fig. 4.4D; Kruskal-Wallis, X2(79) = 5.66, p = 0.226). 

In summary, our state-space model pointed to a similar conclusion drawn from our empirical 

findings. Prior exposure to A resulted in a bias in the initial state of B that persisted through 24 h. 

However, despite this lingering initial bias, prior exposure produced a short-lived impairment in error 

sensitivity: error sensitivity in B resembled control values when the time between A and B was 6 h or 
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more. Therefore, differences in performance in B for any timescale greater than 6 h were likely related 

to a prior memory of A and not to a deficit in learning. 

 

4.3.4 Error sensitivity is independent of initial error size 

We and others have shown that sensitivity to error declines as a function of error size51,52,148. This raises 

the concern that the differences in error sensitivity reported in Fig. 4.4C may be driven by the 

differences in the magnitude of the initial error experienced at the start of perturbation B. To address 

this possibility, we re-analyzed behavior in B, this time controlling for initial error size. To this aim, we fit 

an exponential function (Eq. 4.1) and identified the cycle in which each participant exhibited a pointing 

angle near zero, and re-fit our state-space model to the behavior after this point. In this way, model 

parameters could no longer be impacted by differences in initial error size across groups (Fig. 4.4E). We 

found that the pattern of error sensitivity described when fitting the whole behavior (Fig. 4.4C; Kruskal-

Wallis, X2(83)=14.47, p=0.006; Dunn’s test 5 min vs control, p=0.008; Dunn’s test 1 hour vs control, 

p=0.004) persisted even when the initial error was near zero (Fig. 4.4F; Kruskal-Wallis, X2(81)=11.25, 

p=0.024; Dunn’s test 5 min vs control, p=0.041; Dunn’s test 1 hour vs control, p=0.007). Furthermore, no 

significant differences were found when the two analyses were compared (Fig. 4.4G; Wilcoxon signed 

rank test for each experimental group with Bonferroni correction, p>0.177 for all groups). 

In conclusion, these results indicate that the impact of prior learning on error sensitivity cannot 

be explained by the initial level of error experienced in B. Rather, the effect appears to be related to a 

deficit in the ability to learn. 

 

4.3.5 Alternate hypotheses: a two-state model account of anterograde interference  

The decrease in error sensitivity observed here is at odds with a prior account of anterograde 

interference in force field adaptation143, in which an impairment of learning arises from differing initial 

biases in the underlying adaptive states of a two-state system, rather than a change in sensitivity to 

error. Briefly, in the two-state framework, learning in B is hindered when the slower state of learning is 

biased towards earlier adaptation. We tested this idea in a supplementary analysis using a two-state 

model, and found that it fails to account for our empirical data (Section 4.3.6). Therefore, the fact that 

the slow state is heavily biased towards A at the start of B cannot explain the deficit we observed in the 

speed of learning in B. In fact, fitting a two-state model in which parameters are free to vary from A to B 

(Section 4.3.7), yields a similar pattern of impairment in error sensitivity of the slow module to the one 
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obtained with a single-state model, with no impact of anterograde interference on the fast module. This 

analysis suggests that the recovery of behavior we observe over time was not caused by the interaction 

of the fast and slow states (i.e., the initial bias) but rather by the restoration of error sensitivity of the 

slow process. Altogether, our findings indicate that anterograde interference in visuomotor adaptation 

is caused by a genuine impairment in error sensitivity both for one-state and two-state models of 

learning.  

 

4.3.6. Differences in the initial bias of two parallel adaptive states cannot explain interference  

An earlier account of anterograde interference143 investigated how the emergent properties of a 

learning system composed of two parallel adaptive states8, could demonstrate impaired learning in B 

after the experience of A. In a two-state model of learning, adaptation is achieved through the 

combined output of two parallel adaptive states, a fast learning state (Fig. 4.5A, green) and a slow 

learning state Fig. 4.5A, red). Sing and Smith (2010), demonstrated that a two-state learning system 

exposed to two opposing perturbations A and B, would demonstrate slower learning in B (Fig. 4.5A, 

compare B curve with the naïve A curve shown in blue) because the slow state is heavily biased towards 

A at the start of B. That is, a two-state system can exhibit impairment during the B period, even though 

error sensitivity remains the same in A and B. It is critical to distinguish this earlier hypothesis from our 

conclusion that anterograde interference is caused by a true reduction in error sensitivity from A to B.  

 To test if the model by Sing and Smith (2010)143 could explain the pattern of interference 

reported herein, we simulated a two-state model of learning using the same parameters for A and B 

(Eqs. 4.4 and 4.5). We provide an example of such a simulation in Fig. 4.5B. We obtained the parameters 

for this simulation by fitting the two-state model to the control group behavior in B, as described in our 

Methods. The initial fast and slow states in B were obtained from the final fast and slow states in A. 

Passage of time was accounted for by forcing the fast and slow states to decay between the A and B 

periods. To do this, we calculated the amount of forgetting that occurred from the last cycle in A to the 

first cycle in B in our visuomotor dataset, and scaled the fast and slow state down by the median level of 

forgetting observed in each experimental group. To determine if each simulation showed signs of 

anterograde interference, we compared the rate of learning in B to that of the control group using an 

exponential model (Eq. 4.1) fit to all cycles in the B period. 

Finally, we fit the two-state model to the A period behavior of the 5 min experimental group 

that exhibited the largest reduction in error sensitivity. We used these parameters to simulate behavior 
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in the B period and then compared the rate of learning in this simulated B period to that of the actual B 

period (Fig. 4.5E and F). 

Fig. 4.5C depicts the rate of learning obtained from the actual performance normalized to the 

control condition, to allow comparisons with the two-state model simulations. We found that the 

learning rate observed in our two-state model simulations of visuomotor adaptation was not affected in 

B at any of the time points (Fig. 4.5D). Fig. 4.5E shows the actual learning curve for the 5 min group 

compared to the prediction of the two-state model for the same condition. We found that the 

exponential rate of improvement in B exhibited by our two-state model simulation was a rather poor 

predictor of actual behavior (Fig. 4.5F, paired t-test, t(15) = 4.235, p < 0.001). That is, our subjects 

learned much slower in the B perturbation than predicted by a two-state model in which parameters 

remain constant in A and B. These results argue against the hypothesis that biases in the initial fast and 

slow states at the start of B could have led to the reduction in learning rate we observed in actual 

subject behavior. 

           

Figure 4.5. Initial biases in a two-state learning system cannot account for anterograde interference. A. 
The two-state model (parameters obtained from Sing and Smith, 2010) posits that behavior (black) can 
be decomposed into parallel contributions from a slow (red) and fast (green) state. After learning the A 
perturbation (left half of the figure, +30° perturbation) both the fast and slow states are biased towards 
a memory of A. At the start of B (right half of the figure, -30° perturbation) the initial bias of the slow 
state towards A can slow the rate of learning of the B perturbation, as compared to initial learning of A 
(blue trace shows the pointing angle during A with opposite sing and shifted to the 0° pointing angle of 
B). B. Simulations using the two-state model parameters identified for the control group in our 
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visuomotor rotation task. Simulations were performed for individual participants, and included noise in 
motor execution and in the process of learning. Parameters were the same in A and B. We show one 
batch of simulations, for a hypothetical group of 15 participants. We show the simulated behavior 
(black), simulated slow state of learning (red) and the simulated fast state of learning (green). C. Rate of 
learning, measured from an exponential fit to our visuomotor dataset, normalized to the median rate in 
the control group. Values less than one indicate anterograde interference. D. Metrics for our two-state 
model simulation for our visuomotor parameter set. Learning rate in B is reported, normalized to control 
values. Bars show the median interference in each group. Lines denote one standard deviation, across 
1000 batches of simulated groups with 15 participants each, with noise. An exponential was then fit to 
the median simulated group behavior in A and B. E. We simulated behavior of each subject during the B 
perturbation (red) using the two-state model parameters fit to the A period and compared it to the rate 
of learning of our 5 min experimental group (black). Solid lines indicate median prediction or behavior 
across subjects. Error bars indicate ±1 standard error of the median. F. We fit our exponential model to 
the actual and simulated B behaviors. Bars indicate the median learning rate. Error bars indicate ±1 
standard error of the median. Asterisks indicate a level of significance of p < 0.001. In B and C, shaded 
values denote ±1 standard error of the median.  
 

4.3.7 Error sensitivity of the slow state is impaired in a two-state model of anterograde 

interference 

Even though we found better evidence for a single state learning process than a two-state learning 

process, we still considered how a two-state model of learning would account for the pattern of 

anterograde interference observed in our task. To this aim, we fit our two-state model of learning (Eqs. 

4.4 and 4.5) to the pointing angles of each participant in the A and B periods, and allowed the model 

parameters to freely vary between A and B. 

We found that the pattern of interference differed in the slow and fast states of learning (Fig. 

4.6). The slow state of learning showed clear signs of interference that mirrored our findings from a 

single state model (Fig 4.6A; one-way ANOVA, F(79,4) = 2.86, p = 0.0289). That is, the slow state error 

sensitivity of the 5 min group significantly differed from that of the control group (Dunnett’s test, 5 min 

different from control with p = 0.015, 1 h marginally different from control with p = 0.062, all other 

comparisons have p > 0.574), and gradually recovered over time. The fast state error sensitivity, on the 

other hand, was no different across each of the experimental time points and the control group (Fig. 

4.6B; one-way ANOVA, F(79,4) = 0.34, p = 0.852). We speculate that the faster state of learning was not as 

salient due to the large number of targets used in our experimental paradigm. Increasing the number of 

targets also increases the time between successive visits to the same target, which leads to more decay 

in the faster temporally-unstable learning process29.  

Therefore, we conclude that even for a two-state model of learning, participant behavior is best 

explained by a model in which error sensitivity is reduced when B closely follows A in time, but recovers 
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with longer separation between each period. The reduction in error sensitivity is specific to the slow 

state of learning, but spares faster components of learning. 

 

 

Figure 4.6. Error sensitivity of the slow state of learning is impaired with anterograde interference. We 
fit a two-state model of learning to participant behavior in A and B, allowing the model parameters to 
freely vary in each rotation period. Here we report the mean slow state error sensitivity (A) and fast 
state error sensitivity (B) during the B period. We tested for differences in error sensitivity using a one-
way ANOVA, with post-hoc testing of each experimental group against the control group. We observed 
differences in error sensitivity only for the slow state of learning. Asterisks indicate a level of significance 
of p < 0.05. Bars indicate the mean parameter values across participants in each group. Lines indicate ±1 
standard error of the mean. 
 

4.3.8 Relative implicit/explicit contributions are unlikely to explain differences in error 

sensitivity 

It is possible that the changes we observed in error sensitivity are due to differential contributions from 

implicit and explicit components of learning. One of the signatures of explicit, strategy-based, learning is 

a requirement for extra time before the onset of a movement32,62. Therefore, we would expect that if a 

change in error sensitivity is caused by a change in the relative contribution of the explicit system, there 

would be a concomitant variation in Reaction Times (RT). To address this possibility, we analyzed RTs 

throughout adaptation in B. RTs were computed for each movement as the time elapsed from target 

presentation to movement onset. Median RT cycles were then calculated for each participant. We found 

no statistical differences in RT across groups when all behavior during adaptation to B was considered 

(Fig. 4.7A; repeated measures ANOVA=main effect of cycle p<0.001; main effect of group: p=0.536; cycle 

x group interaction: p=0.442). 

Further examination of the first block (first 11 cycles) to capture possible changes in RT during exposure 

to higher initial errors during the critical early cycles, did not reach significance either (Fig. 4.7B; one-

way ANOVA, F(88,4) = 1.06, p = 0.382). These results suggest that the relative implicit/explicit contribution 



142 
 

to visuomotor adaptation was similar between experimental and control groups and did not change 

with the amount of time separating A. 

 

Figure 4.7. Reaction times during adaptation to the countermanding perturbation. A. Mean RT ± 
standard error of the mean corresponding to each cycle as a function of time for all groups. B. Mean RT 
± standard error of the mean corresponding to the first block, when error size is large. 
 

4.3.9 The implicit adaptive system is strongly limited by anterograde interference 

Many authors have found that changes in the rate of learning can be attributed to explicit learning 

systems31. In these cases, implicit systems are generally thought to generate inflexible responses to 

error. Here, we sought to test if changes in implicit systems contribute to anterograde interference. To 

do this, we repeated the primary experiment, but this time limited reaction time to suppress explicit 

contributions to learning62. To do this, we instructed participants to begin their reaching movement as 

soon as possible, after the target location was revealed. To enforce this, we limited the amount of time 

available for the participants to start their movement after the target location was shown. This upper 

bound on reaction time was set to either 230-250 ms. We found that lower than these durations, 

participants were prone to executing random reaching movements or started their movement too late 

on most trials. If the reaction time of the participant exceeded the desired upper bound, the participant 

was punished with a 1 second timeout in the experiment after providing feedback of the endpoint. In 

addition, a low unpleasant tone (200 Hz) was played, and a message was provided on screen that read 

“React faster”. 

Participants held the handle of a two-link robotic arm and made “shooting” movements with 

their arm in the x-y plane. Vision of the arm was occluded by an opaque white screen. Instead, feedback 
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of the hand position was provided through a small white cursor (3 mm diameter) that was placed on the 

screen by a projector. 

At the start of each trial, the participant brought their hand to a center starting position (circle 

with 1 cm diameter). After maintaining the hand within the start circle for 750 ms, a target circle (1 cm 

diameter) appeared in 1 of 8 positions (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) at a displacement of 8 

cm from the starting circle. Participants then performed a “shooting” movement to move their hand 

briskly through the target. 

Participants were provided audiovisual feedback about their movement speed and accuracy. If a 

movement was too fast (duration < 75 ms) the target turned red. If a movement was too slow (duration 

> 325 ms) the target turned blue. If the movement was the correct speed, but the cursor missed the 

target, the target turned white. Successful movements (correct speed and placement) were rewarded 

with a point that was displayed in the top left corner of the screen and also a pleasing tone (1000 Hz). If 

the movement was not successful, no point was awarded and a negative tone was played (200 Hz). 

Once the hand reached the target, visual feedback of the cursor was removed, and a yellow marker was 

frozen on screen to provide static feedback of the final hand position. At this point, participants were 

instructed to move their hand back to the starting position. During this time, the cursor continued to be 

hidden until the hand was moved within 2 cm of the starting circle. After 1 second, the robot motors 

turned on to assist the participant in finding the starting circle if it was not already reached. 

In the experiment, each target was visited once in a pseudorandom order in cycles of 8 trials. 

Participants performed two blocks of movements, A and then B. The A period consisted of 5 

cycles of normal movements followed by 80 cycles of movements where the cursor feedback was 

rotated by 30° in the CCW direction. The B period consisted of 80 cycles of movements where the cursor 

feedback was rotation by 30° in the CW direction. A and B were separated by a specified period of time. 

In the 5 min group (n=9), participants waited 5 minutes after finishing A before starting B. In the 24 hr 

group (n=11), participants waited 24 hours after finishing A before starting B. 

Our results (Fig. 4.8) strongly suggested that implicit adaptation is altered by anterograde 

interference. First, the application of the upper bound on reaction time served to strongly limit the time 

participants used to prepare their movements (Figs. 4.8A and 4.8B), nearly halving that of the original 

experiment. This reduction is reaction time is known to isolate implicit learning, by preventing the 

expression of explicit memories that require additional time to prepare. If anterograde interference 

solely affected explicit adaptation and not implicit adaptation, we would expect to see no slowing of 

learning when reaction time is severely restricted. This was not the case (Fig. 4.8C). In fact, in both the 5 
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min group and 24 hr group, we noted a significant slowing of adaptation in B as compared with A. As 

before, the learning rate appeared to partially recover over time (Fig. 4.8D), but remained suppressed in 

B even after 24 hrs. Therefore, we can conclude that anterograde interference strongly interacts on the 

implicit learning process, but its magnitude diminishes in time. The strong reduction in learning rate in 

the 24 hr group relative to that of our original data set (Fig. 4.8D red) suggests that explicit learning 

partially rescued the deficit caused by implicit adaptation. Therefore, it may be that anterograde 

interference is specific to implicit adaptation. 

 

 

Figure 4.8. Anterograde interference in implicit adaptation. A. The mean RT. Left (“free”) is the original 

data set. Right (“limit”) is the control data set where reaction time is limited. B. The mean RT. For “free” 

this is the first block average that you reported in the original data set. For “limit” this is the average 

over the first 11 cycles of the limit reaction time group. C. This is the behavior in B compared to the 

“flipped” behavior in A. All data is for the “limit” RT data set. Left is the 5-minute group (n=9). Right is 

the 24-hour group (n=11). To align the traces, we fit an exponential to the mean, and shifted along the 

time axis so that the exponential fit for each curve intersects zero at the same epoch number. D. Here is 

a quantification of slowing of learning. To account for potential differences in the speed of learning A, 

here this is the rate of learning in B normalized to the rate of learning in A. In other words, this is the 

rate from an exponential fit to the B period divided by the same quantity for the A period. You can see 

for both the 5 min and 24 hr groups, limiting RT increases the amount of interference. 
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4.3.10 Reduced error sensitivity is likely the cause of anterograde interference in force field 

adaptation 

Is the reduction in error sensitivity we observed for visuomotor rotation a general property of 

sensorimotor adaptation? To answer this question, we revisited a force field adaptation experiment 

described in Sing and Smith (2010)143. In this work, the authors argued that anterograde interference 

(Fig. 4.9A) is caused by the interaction of a fast and slow adaptive state. To quantify interference, the 

authors focused on behavior in the A period and compared it to the behavior in the B period, but only 

after behavior in B had crossed the point of zero-adaptation. Here we note a potential issue with this 

metric. Slowing of learning after the zero-point of adaptation could be caused either by (1) the 

interactions between a slow and fast state, or (2) the reduction in error sensitivity of the slow state, fast 

state, or both. On the contrary, in our work, we consider the rate of adaptation for all of the behavior in 

B, not solely after the zero-crossing. The benefit of this metric, is that it will only show a reduction if 

there is an adaptive process whose error sensitivity decreases. In other words, it will not show a 

reduction solely from the interactions of a fast and slow state, whose constitutive parameters do not 

change. 

 Therefore, we fit an exponential to the A period and the B period behavior of each group (Fig. 

4.9B). To obtain the behavior of each group, we obtained the mean performance and standard error of 

each group from Fig. 4A of Sing and Smith (2010)143. Then we generated theoretical subjects by sampling 

data on each trial assuming a normal distribution. We created theoretical sets of subjects, computed 

their mean, and then fit the exponential model. We repeated this bootstrapping approach, and then 

isolated the innermost 95% of the bootstrapped data. As a result, we found that repetition of A led to a 

precipitous drop in the learning rate for all groups in B. This result effectively means that one state of 

adaptation must have experienced a reduction in error sensitivity. 

 To further rule out the possibility that anterograde interference could not be caused solely by 

the interactions of a fast and slow state, we fit the two-state model to behavior in A and used these 

parameters to simulate performance in B, specifically for the 112 B trial group that performed roughly 

the same number of trials in A and B. We then fit our exponential model to the simulated behavior in A 

and the simulated B behavior (Fig. 4.9C, red) and compared the difference in adaptation rate to that 

observed in the actual subject data (Fig. 4.9C black). Whereas the data showed a decrease in learning 

rate from A to B, this reduction in learning rate was not observed when the B period behavior was 

simulated from two state model parameters obtained from the A period. 
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Now that we had confirmed that behavior in B had truly slowed due to a reduction in error 

sensitivity, we next attempted to identify whether this reduction occurred in the slow state, fast state, 

or both states of learning. To do this we fit a two-state model to behavior in A and B. When fitting the 

state-space model, we only possessed measurements on error-clamp trials randomly interspersed 

throughout the experiment. The missing intervening data points make use of the generalized EM 

algorithm in Chapter 3 impractical. Therefore, to fit the state-space model we used the technique 

adopted in Sing and Smith (2010)143. We fit the two-state model to the data in the least-squares sense. 

However, we used a hypothesis-driven adjustment; we fit behavior in A and B simultaneously, but 

allowed error sensitivity of the fast and slow state to vary across A and B. In other words, we started 

with a noise-free two-state model: 
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 (Eq. 4.7) 

Here, the slow and the fast states are represented by the quantities xs and xf. There error is given by 

( ) ( )−r n y n  where the perturbation r is zero during baseline, 1 during A, and -1 during B, and y is the 

adaptation index. 

 To fit behavior, we first collapsed data across the A period for each group. Then we fit the two-

state model to the A period. We used the retention factors estimated from this two-state fit for further 

fitting. We next fit the two-state model to both A and B at the same time, requiring continuity in the fast 

and slow state between A and B. But we allowed there to be two separate slow state error sensitivities 

and two separate fast state error sensitivities, one for A and one for B. Therefore, A and B were allowed  

to have different error sensitivities, but shared the same retention factors. Using the retention factors 

for our model fit to A, we next fit the 4 free error sensitivity parameters for each group separately. 

 This modeling approach provided an excellent fit to behavior during both the A and B periods 

(dashed lines in Fig. 4.9A). Furthermore, the model suggested that anterograde interference was caused 

by a decrease in both the error sensitivity of the slow state (Fig. 4.9D) and fast state (Fig. 4.9E). Exposure 

to A prior to B appeared to completely impair the fast state of learning irrespective of the number of 

training trials in A. On the contrary, the impairment in error sensitivity in the slow state appeared to 

increase as the number of training trials in the A period increased. Altogether, our results from 
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visuomotor rotation and re-analysis of force field data suggested that time in A decreases the learning 

rate in B, but time after B allows this error sensitivity to recover. 

 

 

Figure 4.9. Anterograde interference in force field adaptation. A. Here we show the data as reported in 
Sing and Smith (2010). The dashed black lines show the two-state model fit to the data. B. We combined 
data from all groups for the A period. We fit an exponential to the learning curve (in A). Then we fit 
exponentials to the B period for each group separately. Error bars show 95% CI intervals. C. At left, we 
show the exponential fit to the A period (as in B) as well as the exponential fit to the 112-trial group that 
experienced A for 112 trials. This group was chosen because it is the group that most nearly had just as 
many perturbation trials in A as in B, like the visuomotor rotation experiment. At right, we show 
simulations of the two-state model. Here, we fit the model to the A period, and then simulated behavior 
in B with constant parameters. Note that without a reduction in error sensitivity, there is no change in 
the learning rate. Therefore, anterograde interference in force field adaptation is not caused solely by 
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biases in the slow and fast states. Error bars show 95% CI intervals. D. Here we show the error sensitivity 
for the slow state. The A period here refers to the 112-trial group shown in C. All of the other bars refer 
to the B period. Error bars show 95% CI intervals. E. Here we show the error sensitivity for the fast state. 
The A period here refers to the 112-trial group shown in C. All of the other bars refer to the B period. 
Error bars show 95% CI intervals. 
 

4.4 Discussion 

How do motor memories influence one another? In this work, we studied the expression of anterograde 

interference in visuomotor adaptation by varying the time elapsed between learning opposing 

perturbations. We examined the impact of prior learning on the initial level of performance as well as 

the rate of learning over the time course of 5 min through 24 h. We found that these two parameters 

behaved very differently as a function of time. On one hand, adaptation in A biased the initial level of 

performance in B. Although the magnitude of this effect decreased with time, it remained strong at 24 

h. On the other hand, prior adaptation impaired the ability to learn from error, resulting in reduced 

error sensitivity when perturbations were separated by 5 min and 1 h. Unlike the bias caused by prior 

learning, error-sensitivity completely recovered with the passage of time. To the best of our knowledge, 

these findings demonstrate for the first time that anterograde interference, a fundamental concept in 

memory research, is caused by a reduction in error sensitivity that recovers over time. 

 

4.4.1 Anterograde interference differs from a lingering memory of a prior  

There has been no general agreement in the sensorimotor literature regarding how to define and, 

therefore, quantify anterograde interference. With the exception of Sing and Smith (2010)143, who 

measured the relative change in learning rate, most previous studies estimated anterograde 

interference based on the initial level of performance, by averaging across the first 

trials/cycles/blocks40,48,142,145,146. For example, Tong and Flanagan (2003)146 reported interference at 5 

min based on the average of the second and third cycles. Likewise, Miall and collaborators (2004)39 

reported interference at 15 min based on the initial state obtained from fitting a power function, while 

noting that the rate of learning was not affected. Yet, it is likely that the initial level of performance, 

when averaged across trials, not only reflects the capacity for learning in B but also the bias of a 

lingering memory of A. Evidence supporting this possibility comes from force field studies showing that 

the preferred direction of the biceps and triceps during exposure to a second opposing force field is 

appropriate to solve the first force field (e.g. Thoroughman and Shadmehr 1999104). Therefore, assessing 

anterograde interference based on the initial level of performance may overestimate its magnitude.  
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Here, we compared the bias imposed by the memory of A with the deficit observed in the rate 

of learning. We reasoned that if, as suggested by previous work, the initial level of performance reflects 

the level of anterograde interference then the two measures should behave similarly as a function of 

time. In contrast, we found that initial performance was profoundly hindered throughout the 24 h of 

testing, whereas the ability to learn resembled control levels starting at 6 h. Furthermore, the fact that 

the pattern of error sensitivity persists when controlling for initial error size suggests that anterograde 

interference is caused by a genuine down-regulation of error-sensitivity.   

 

4.4.2 Anterograde interference and memory stabilization 

Our work sheds light on a long-standing debate regarding the failure of retrograde protocols at unveiling 

the time course of memory consolidation. Over the past two decades, several laboratories have 

attempted to uncover the time course of memory stabilization using behavioral protocols based on 

retrograde interference40,42,142. In these studies, subjects usually adapt to opposing perturbations A (A1) 

and B separated by a time interval that varies between minutes to 24 h. Next, they wait for a further 

period of time (usually 24 h) and are again exposed to A (A2) to assess the integrity of the motor 

memory. Consolidation of the memory of A should be reflected as the presence of savings (a faster rate 

of learning) in A2. Although this approach has proved successful in declarative41,150 and some kinds of 

motor skill learning tasks151,152, it has led to inconclusive results in sensorimotor adaptation. In fact, with 

the exception of three force-field studies reporting release from interference at around 6 h142,145 or 

later153, other experiments have shown complete lack of savings even if 24 h are interposed between A1 

and B40,42,154,155. These inconsistencies have also been reported for perceptual and motor sequence 

learning, prism adaptation155,156, and declarative tasks including the paired associate task157–160. Miall and 

collaborators (2004)39 have claimed that naïve performance at recall (A2) reported in retrograde 

protocols40,42,155 reflects a mixture of anterograde interference from B and the integrity of the memory 

of A, and not catastrophic retrograde interference. It is important to note, however, that these authors 

measured anterograde interference based on the initial level of performance. In light of our findings, the 

interpretation of these studies may need to be revisited. Our data indicates that because release from 

interference starts at around 6 h, anterograde interference is not likely to cause naïve performance in 

A2. Tracking the time course of recovery in learning rate reported here, provides a new path forward for 

understanding the process of memory stabilization. 

The temporal dissociation we observed between the initial level of performance and the rate of 

learning likely reflects contributions of two distinct processes: (1) the persistence of a prior memory and 
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(2) competition for neural resources that support learning. The formation of memory involves learning-

dependent synaptic plasticity as part of a process known as long-term potentiation and depression (LTP 

and LTD). Given that biological substrates underlying synaptic plasticity are limited by nature, cellular 

modifications induced by learning temporarily constrain the capacity for further LTP induction. This 

phenomenon is known as occlusion, and reflects competition for neural resources that support plasticity 

(Ling et al. 2002). Using this approach, it has been reported that motor skill learning in rats and humans 

is associated with LTP161–163. Cantarero and collaborators showed that in fact, in humans, occlusion fades 

around 6 h after motor skill learning. In this light, we may speculate that adaptation in A may have 

partially occluded the capacity for further synaptic plasticity, thereby hindering adaptation in B. 

In our study, all experimental groups received the same amount of training in A. However, 

others have demonstrated that increased repetition of the A perturbation enhances the amount of 

interference in B30,143. Our results suggest that these changes in interference are caused not by 

differences in the amount of the A memory retained at the start of B, but potentially because of the 

amount of occlusion that occurred during the A period. That is, it may be that greater amounts of 

adaptation during the A period lead to further depletion of synaptic resources, thereby increasing the 

amount of interference in B. If this is correct, time in A appears to increase the amount of interference, 

and time after A improves the recovery from this occlusion. 

The timing of recovery from interference we describe here (starting around 6 h) coincides with 

the peak in functional connectivity of a visuomotor adaptation network that includes the primary motor 

cortex (M1), the posterior parietal cortex (PPC) and the cerebellum164. These regions have been linked to 

memory formation in this paradigm165–168. Whether this timing reflects the process of motor memory 

consolidation is now a hypothesis amenable for testing.  

 

4.4.3 Anterograde interference results from an impairment in error sensitivity that recovers 

with time 

Using a state-space model allowed us to identify which aspect of learning was affected by anterograde 

interference, i.e., a deficit in the ability to learn from error or in the ability to retain information cycle-

by-cycle. Here we found that anterograde interference could be attributed to a change in error 

sensitivity. It is well established that humans have the ability to change their error sensitivity depending 

on the errors they have experienced in the past125. Current models of error sensitivity7 posit that 

sensitivity to a specific error increases gradually in an environment where that error is likely to occur 
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again on the next trial, and decreases gradually if the error is unlikely to occur again. In this way, 

sensitivity to an error is specific to one’s prior history of error. However, the decrease in error sensitivity 

we report here, is of a different nature. Here, error sensitivity in B is reduced even though errors in B 

were never experienced during the A perturbation. This points to a different mechanism for error 

sensitivity modification, one in which learning of a perturbation actively suppresses learning of a 

different perturbation, potentially through a competition for neural resources that subsides at longer 

time intervals. 

 It is not currently clear if this interference affects all errors in B, or only a subset of error sizes. 

Because error sensitivity from the start of the B period (Fig. 4C) did not differ from the adaptation rate 

after the point of zero-crossing (Fig. 4F), we expect that interference generalizes broadly over errors 

opposite to those experienced in A. We would therefore expect the same temporal pattern of 

interference on the rate of de-adaptation during washout trials after A, with faster de-adaptation at long 

intervals (>6h) than short intervals, though to our knowledge, this prediction has not been clearly 

tested. 

Substantial evidence indicates that visuomotor adaptation results from the interplay 

between explicit learning (driven by target error) and implicit learning (driven by prediction 

error)11,14,31,32. Could the changes we observed in error sensitivity be caused by differential contributions 

of implicit and explicit components of learning? This possibility is unlikely for two reasons. The reaction 

time (a marker for explicit learning) of experimental and control groups were similar in B (Section 4.3.8), 

suggesting that the relative implicit/explicit contribution to adaptation did not change with the amount 

of time separating A and B. In addition, the pattern of error sensitivity persisted even after the critical 

early cycles, generally associated with the use of explicit strategies, were excluded (compare Figs. 4C 

and 4F). Together these results undermine the possibility that differences in the relative implicit/explicit 

contributions could account for our results. 

In conclusion, we have examined the strength and duration of anterograde interference in 

visuomotor adaptation by tracking its impact on behavior when learning opposing perturbations was 

separated from 5 min through 24 h. We found that prior learning dramatically hindered the initial state 

at all time intervals. This was likely due to a bias imposed by a lingering memory associated with 

adapting to the initial perturbation. Prior learning also impaired the ability to learn from errors for at 

least 1 h, but a release from interference was detected starting as early as 6 h post training. This finding 

is consistent with a process of memory stabilization for this type of learning. Our work suggests that the 

poor performance observed when opposing rotations are learned consecutively, is driven by two distinct 
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phenomena operating on different time scales (days vs. hours): a long-lasting influence of a memory 

that acts as a prior which negatively influences the initial level of performance, and a shorter-lasting 

impairment of learning.
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Chapter 5. Asymptotic limits of sensorimotor 1 

adaptation 2 

 3 

In many forms of motor adaptation, after extended practice performance reaches a saturation point in 4 

which learning appears to stop, despite the fact that residual errors persist. Why is there a limit to 5 

adaptation? Here we measured reaching in visuomotor and force field perturbation environments and 6 

found that while reach adaptation exhibited an asymptotic limit, this limit changed with the second 7 

order statistics of the perturbation: when the variance of the perturbation decreased, the adaptation 8 

limit increased, leading to better performance. This relationship appeared to be causal, as the 9 

adaptation limit could be changed in real-time by altering perturbation variance. In addition, the 10 

relationship persisted at low reaction times, indicating that implicit processes played a role in changing 11 

the adaptation limit. To better understand why variance impacted adaptation, we considered a 12 

mathematical model in which the adaptation limit was due to a balance between two competing 13 

biological forces: error sensitivity, which promoted learning, and forgetting, which promoted 14 

performance decay. To test the model, we measured each of these forces during adaptation, and found 15 

that the adaptation limit was controlled exclusively through error sensitivity modulation. By sorting 16 

movements according to error size, we found that changes in error sensitivity were linked to the 17 

consistency of the error experience: participants learned to adapt more from consistent error sequences 18 

and less from inconsistent error sequences. These observations suggest that during adaptation, time-19 

varying error sensitivities interact with constant forgetting, setting the boundary conditions that 20 

produce an apparent limit in the total extent of adaptation. 21 

 22 

5.1 Introduction 23 

During motor adaptation, humans and other animals experience perturbations that alter the sensory 24 

consequences of motor commands, yielding sensory prediction errors. The brain responds to each error 25 

by learning, thus adjusting its motor commands on the subsequent attempt. Over many trials, these 26 

adjustments to the motor commands accumulate, but surprisingly, adaptation often remains 27 

incomplete: even after an extended period of practice, residual errors persist. Residual errors are 28 

observed in various behaviors including reaching14,123,142,169, saccades9,170, and walking171. Thus, an 29 

unknown factor appears to limit the total amount of adaptation. Why does adaptation stop despite the 30 

fact that residual errors remain? 31 

 An important clue is the observation that the mean of the residual errors is not fixed, but varies 32 

with the variance of the past perturbations. For example, when people are exposed to perturbations 33 

that vary in magnitude from one trial to the next, an increase in the perturbation variance also increases 34 
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the mean of the residual errors172–174. Thus, the asymptote of adaptation is not a hard limit, but a 35 

dynamic variable that depends on the second order statistics of the perturbation history. 36 

 To understand these observations, we begin with a well-established model in which the process 37 

of adaptation is driven by two competing forces: sensitivity to error which produces learning, and trial-38 

by-trial forgetting which produces decay8,36,55,58. When errors are large, learning dominates, yielding 39 

changes in motor commands that improve performance. However, as errors become small, forces that 40 

encourage forgetting reach an equilibrium with forces that induce learning. At this equilibrium, 41 

performance stops changing, yielding persistent steady-state errors10. 42 

While this theoretical framework predicts that residual errors should vary with the mean of the 43 

perturbation, it fails to explain why the residual errors are altered by the variance of the perturbation. 44 

One possibility is that perturbation variance affects error sensitivity55–60,125,175, while another possibility is 45 

that perturbation variance affects the forgetting rate. To compare these ideas, we trained volunteers to 46 

make reaching movements in the presence of variable visual or force field perturbations. In some 47 

experiments, we imposed a strict upper bound on reaction time, thus limiting the contributions of 48 

explicit strategy32,62,132,176. In all cases, we found that an increase in perturbation variance decreased 49 

asymptotic performance, thereby increasing residual errors. Critically, these changes in residual errors 50 

were caused by modulation of error sensitivity, not forgetting rates.  51 

 But why did increases in perturbation variance alter error sensitivity? To answer this question, 52 

we sorted pairs of movements according to error size, and found that sensitivity to each error size 53 

changed during adaptation: an error size that was consistently encountered was followed by an increase 54 

in sensitivity to that error7. This simple rule, increase error sensitivity when errors are consistent, 55 

correctly predicted not only changes to the rate of learning during adaptation, but also the magnitude of 56 

the residual errors that remained at the end of adaptation.  57 

Together, the results suggest that the brain does not simply learn from error and then discard 58 

the error information. Rather, the effect of an error lasts beyond the trial in which it was experienced, 59 

forming a memory of past errors that serves to regulate error sensitivity. Changes in error sensitivity 60 

reach an equilibrium with forgetting, resulting in an asymptotic limit on the extent of adaptation. 61 

 62 

5.2 Materials and methods  63 

A total of 117 volunteers participated in our experiments. All experiments were approved by the 64 

Institutional Review Board at the Johns Hopkins School of Medicine. In addition, we re-analyzed an 65 

earlier study with 16 participants172. In Experiments 1-5, participants held the handle of a planar robotic 66 
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arm (Fig. 5.1A) and made reaching movements to different target locations in the horizontal plane. The 67 

forearm was obscured from view by an opaque screen. An overhead projector displayed a small white 68 

cursor (diameter = 3mm) on the screen that tracked the motion of the hand. Throughout testing we 69 

recorded the position of the robot handle using a differential encoder with submillimeter precision. We 70 

also recorded the forces produced on the handle by the subject using a 6-axis force transducer. Data 71 

were recorded at 200 Hz. 72 

 73 

5.2.1 Visuomotor rotation 74 

Experiments 1, 3, 4, and 5 followed a similar protocol. At the start of each trial, the participant brought 75 

their hand to a center starting position (circle with 1 cm diameter). After maintaining the hand within 76 

the start circle, a target circle (1 cm diameter) appeared in 1 of 4 positions (0°, 90°, 180°, and 270°) at a 77 

displacement of 8 cm from the starting circle. Participants then performed a “shooting” movement to 78 

move their hand briskly through the target. Each experiment consisted of epochs of 4 trials where each 79 

target was visited once in a pseudorandom order. 80 

Participants were provided audiovisual feedback about their movement speed and accuracy. If a 81 

movement was too fast (duration < 75 ms) the target turned red. If a movement was too slow (duration 82 

> 325 ms) the target turned blue. If the movement was the correct speed, but the cursor missed the 83 

target, the target turned white. Successful movements (correct speed and placement) were rewarded 84 

with a point (total score displayed on-screen), an on-screen animation, and also a pleasing tone (1000 85 

Hz). If the movement was unsuccessful, no point was awarded and a negative tone was played (200 Hz). 86 

Participants were instructed to obtain as many points as possible throughout the experimental session.  87 

Once the hand reached the target, visual feedback of the cursor was removed, and a yellow 88 

marker was frozen on-screen to provide static feedback of the final hand position. At this point, 89 

participants were instructed to move their hand back to the starting position. The cursor continued to 90 

be hidden until the hand was moved within 2 cm of the starting circle. In most experiments, participants 91 

actively moved their hand back to the start position. However, in Experiments 3 and 5, the robot 92 

assisted the subject if their hand had not returned to the start position after 1 second. 93 

Movements were performed in one of three conditions: null trials, rotation trials, and no 94 

feedback trials. On null trials, veridical feedback of hand position was provided. On rotation trials, once 95 

the target appeared on screen (the cue for the reaching movement), the on-screen cursor was rotated 96 

relative to the start position (Fig. 5.1A). Each rotation experiment terminated with a period of no 97 
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feedback trials. On these trials, the subject cursor was hidden during the entire trial. In addition, the 98 

subject was provided no feedback regarding movement endpoint, accuracy, or timing. 99 

 As a measure of adaptation, we analyzed the reach angle on each trial. The reaching angle was 100 

measured as the angle between the line segment connecting the start and target positions, and the line 101 

segment connecting the start and final hand position. The final hand position was taken to be the 102 

location of the hand right after the hand exceeded 95% of the target displacement. The sign of the 103 

reaching angle was determined by whether the final hand position was rotated CW or CCW relative to 104 

the line connecting the start and target positions. For analysis of reaching errors, we computed the 105 

same quantity, but for the final cursor position rather than the final hand position. On perturbation 106 

trials, these two quantities are related by the rotation that occurred on that trial. 107 

 108 

5.2.2 Force field adaptation 109 

In Experiment 2, participants were perturbed by a velocity-dependent force field (Fig. 5.1A), as opposed 110 

to a visuomotor rotation. At trial onset, a circular target (diameter = 1 cm) appeared in the workspace, 111 

coincident with a tone that cued subject movement. Participants then reached from the starting 112 

position to the target. The trial ended when the hand stopped within the target location. After stopping 113 

the hand within the target, movement timing feedback was provided. If the preceding reach was too 114 

slow, the target turned blue and a low tone was played. If the reach was too fast, the target turned red 115 

and a low tone was played. If the reach fell within the desired movement interval (450-550 ms), the 116 

subject was rewarded with a point (total score displayed on-screen), an on-screen animation, and also a 117 

pleasing tone (1000 Hz). Participants were instructed to obtain as many points as possible throughout 118 

the experimental session. After completing each outward reaching movement, participants were 119 

instructed to then bring their hand back to the starting position. This return movement was not 120 

rewarded and was always guided by a “channel” (see description below in this section). 121 

As in the rotation experiments, the target appeared in 1 of 4 positions (0°, 90°, 180°, and 270°) 122 

at a displacement of 10 cm from the starting circle. Each experiment consisted of epochs of 4 trials 123 

where each target was visited once in a pseudorandom order. The experiment began with a set of null 124 

field trials (no perturbations from the robot). After this period, participants were exposed to a force 125 

field. The force field was a velocity-dependent curl field (Fig. 5.1A) in which the robot generated forces 126 

proportional and perpendicular to the velocity of the hand according to: 127 
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where vx and vy represent the x and y velocity of the hand, fx and fy represent the x and y force 129 

generated by the robot on the handle, and b represents the magnitude of the force field. Note that the 130 

sign of b determines the orientation of the field (the field if CW is b > 0 and CCW if b < 0). 131 

 Subject reaching forces were measured on designated “channel” trials27 where the motion of 132 

the handle was restricted to a linear path connecting the start and target locations (Fig. 5.1A). To restrict 133 

hand motion to the straight-line channel trajectory, the robot applied perpendicular stiff spring-like 134 

forces with damping (stiffness = 6000 N/m, viscosity = 250 N-s/m). Reaching forces were measured on 135 

every 5th epoch of movements with a cycle of 4 channel trials, one for each target. Additionally, the 136 

experiment terminated with a block of channel trials to measure how well the adapted state of each 137 

participant was retained over time. 138 

 Offline we isolated forces produced on each trial against the channel wall, perpendicular to the 139 

direction of the primary movement. To do this, we calculated the average force during baseline channel 140 

trials. We then subtracted this baseline force timeseries from all of the force timeseries recorded during 141 

channel trials throughout the experiment. After correcting for this baseline force, we then computed an 142 

adaptation index. The adaptation index represents the scaling factor relating the force produced on a 143 

given trial and the ideal force the subject would produce if they were fully adapted to the perturbation8. 144 

To calculate this scaling factor, we linearly regressed the ideal force timecourse onto the actual force 145 

timecourse. The ideal force was calculated by multiplying the velocity timecourse of the movement by 146 

the perturbation magnitude. The adaptation index served as our behavioral measurement for model 147 

fitting and parameter estimation. 148 

 In addition to analyzing the forces produced on channel trials, we also analyzed the trajectory of 149 

the hand on perturbation trials. From each trajectory we isolated a signed movement error, which we 150 

used to calculate the probability that an error switched sign from one trial to the next (Fig. 5.4C, Exp. 2). 151 

To calculate the movement error, we isolated the portion of each reaching movement between 20% and 152 

90% of target displacement. Within this region we detected the maximum absolute error and treated 153 

this as the error magnitude. We signed this error according to whether the hand was to the left or right 154 

(or top or bottom) of the line connecting the start position and target position. To prevent minor 155 

overcompensations for the force field magnitude from being treated as movement errors, deviations 156 
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that fell within 3 mm of the line connecting the start and target locations were not treated as errors. 157 

Using smaller thresholds of 1 or 2 mm did not qualitatively affect our results. 158 

 159 

5.2.3 Statistics 160 

In this work, we employed several types of statistical tests: repeated measures ANOVA, two-way 161 

ANOVA, and mixed-ANOVA. These tests were carried out in IBM SPSS 25. In all cases we report the p-162 

value, F-value, and 𝜂𝑝
2 for each test. For post-hoc testing we employed t-tests with Bonferroni 163 

corrections. For these tests, we report the p-value and Cohen’s d as a measure of effect size. Our mixed-164 

ANOVA contained a between-subjects factor and a within-subjects repeated measure. For the within-165 

subjects repeated measure, data are binned within small windows defined by differences in error size. In 166 

the event that a participant is missing data within a bin (data are missing in approximately 15% of all 167 

bins), we replaced the missing data point with the mean of the appropriate distribution.  168 

 169 

5.2.4 Experiment 1 170 

We tested how variance in the perturbation affected the total extent of visuomotor adaptation. The 171 

experiment started with 10 epochs (40 trials) of no perturbation. After this a perturbation period began 172 

that consisted of 60 rotation epochs (240 trials total). At the end of the perturbation period, retention of 173 

the visuomotor memory was tested in a series of 15 epochs (60 trials) of no feedback. To test the effect 174 

of perturbation variance on behavior, participants were divided into 1 of 2 groups. In the zero-variance 175 

group, participants (n=19) were exposed to a constant visuomotor rotation of 30°. In the high variance 176 

group, participants (n=14) were exposed to a visuomotor rotation that changed on each trial. The 177 

rotation was sampled from a normal distribution with a mean of 30° and a standard deviation of 12°. 178 

 179 

5.2.5 Experiment 2 180 

We found that perturbation variance reduced the total amount of adaptation in Experiment 1. To test if 181 

this impairment was a general property of sensorimotor adaptation, we tested another group of 182 

subjects with a force field. The experiment started with 10 epochs (40 trials) of no perturbation (2 of 183 

these epochs were channel trials). After this a perturbation period began that consisted of 75 epochs 184 

(300 trials, 20% were channel trials) of force field perturbations. At the end of the perturbation period, 185 

retention of the adapted state was tested in a series of 10 epochs (40 trials) of channel trial movements. 186 

To test the effect of perturbation variance on behavior, participants were divided into 1 of 2 groups. In 187 
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the zero-variance group, participants (n=12) were exposed to a constant force field magnitude of 14 N-188 

s/m. In the high variance group, participants (n=13) were exposed to a force field magnitude that 189 

changed on each trial. The force field magnitude was sampled from a normal distribution with a mean of 190 

14 N-s/m and a standard deviation of 6 N-s/m. 191 

 192 

5.2.6 Experiment 3 193 

Inspection of the learning curves in Experiment 1 indicated that performance may not have completely 194 

saturated by the end of the perturbation period. Therefore, to confirm that perturbation variance 195 

induces different performance saturation levels, we repeated Experiment 1, but this time more than 196 

doubled the number of perturbation trials. The experiment started with 5 epochs (20 trials) of no 197 

perturbation. The following perturbation period consisted of 160 rotation epochs (640 trials). 198 

As in Experiment 1, participants were divided into a zero-variance group (n=10) and a high variance 199 

group (n=10). Perturbation statistics remained identical to Experiment 1. 200 

 201 

5.2.6 Experiment 4 202 

To determine if perturbation variance causally altered the total extent of adaptation, we designed a 203 

control experiment. In this experiment, participants started with a visuomotor rotation in the zero-204 

variance condition, and then after reaching asymptotic performance, were exposed to the high variance 205 

condition. If variance causally determined the total amount of learning, we expected that asymptotic 206 

performance would decrease after the addition of variability to the perturbation. 207 

 Participants (n=14) began the experiment with 5 epochs (20 trials) of null trials. After this, the 208 

zero-variance period started. Participants were exposed to either a CW or CCW visuomotor rotation of 209 

30° for a total of 80 epochs (320 trials). At the end of this period, participants switched to a high 210 

variance condition where the rotation was sampled on each trial from a normal distribution with a mean 211 

of 30° and a standard deviation of 12°. This period lasted for an additional 80 epochs (320 trials). Finally, 212 

the experiment concluded with 15 epochs (60 trials) of no feedback. 213 

 214 

5.2.7 Experiment 5 215 

Sensorimotor adaptation is supported by both explicit strategy and implicit learning11. To determine 216 

which of these types of learning were impaired by perturbation variance we performed an experiment 217 
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where we limited the time participants had to prepare their movements. Limiting reaction time is known 218 

to suppress explicit strategy62. 219 

To limit reaction time, we instructed participants to begin their reaching movement as soon as 220 

possible, after the target location was revealed. To enforce this, we limited the amount of time available 221 

for the participants to start their movement after the target location was shown. This upper bound on 222 

reaction time was set to either 225, 235, or 245 ms (taking into account screen delay). To enforce the 223 

desired preparation time, if the reaction time of the participant exceeded the desired upper bound, the 224 

participant was punished with a screen timeout after providing feedback of the movement endpoint. In 225 

addition, a low unpleasant tone (200 Hz) was played, and a message was provided on screen that read 226 

“React faster”. As in Experiment 1, participants were divided into a zero-variance perturbation group 227 

(n=13) and a high variance group (n=12). All other details were identical to Experiment 1. 228 

 229 

5.2.8 Re-analysis of prior work 230 

In Fig. 5.1B, we reference earlier work from a study by Fernandes and colleagues172. The experiment 231 

methodology is fully described in their original manuscript. Briefly, participants (n=16) made a center-232 

out reaching movement to a target. After the movement ended, participants were shown the endpoint 233 

location of an otherwise hidden cursor that tracked the position of the right index finger. Participants 234 

performed three experimental blocks. Each block had the same general structure. At the start of the 235 

block, participants made 40 reaching movements to 8 different targets (5 for each target) with 236 

continuous visual feedback of the cursor. Next, participants made an additional 80 reaching movements 237 

to 8 different targets (10 for each target) using only endpoint feedback of the cursor position. After this 238 

baseline period, a single target position was selected, and 240 reaching movements were performed 239 

under the influence of a visuomotor rotation. The visuomotor rotation was sampled on each trial from a 240 

normal distribution with a mean of 30° and a standard deviation of either 0°, 4°, or 12°. The block ended 241 

in a set of 160 generalization trials that are not relevant to the current study. The experiment had a 242 

within-subject design. Each participant was exposed to all three perturbation variances, but in a random 243 

order. The orientation of the rotation (CW or CCW) was randomly chosen on each block. In addition, the 244 

target selected during the adaptation period was randomly chosen from 1 of the 4 diagonal targets. 245 

 246 

5.2.9 State-space model of learning 247 

After the experience of a movement error, humans and other animals change their behavior on future 248 

trials. In the absence of error, adapted behavior decays over time. Here we used a state-space model 101 249 
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to capture this process of error-based learning. Here, the internal state of an individual x, changes from 250 

trials n to n+1 due to learning and forgetting. 251 

 ( ) ( ) ( ) ( ) ( )
+

= + +
1n n n n n

xx ax b e   (5.4) 252 

Forgetting is controlled by the retention factor a. The rate of learning is controlled by the error 253 

sensitivity b. We describe modulation of error sensitivity in a later section. Learning and forgetting are 254 

stochastic processes affected by internal state noise  x : a normal random variable with zero-mean and 255 

standard deviation of  x . While we cannot directly measure the internal state of an individual, we can 256 

measure their movements. The internal state x leads to a movement y according to: 257 
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The desired movement is affected by execution noise, represented by  y : a normal random variable 259 

with zero-mean and standard deviation of  y . 260 

 To complete the state-space model in Eqs. 5.3 and 5.4, we must operationalize the value of an 261 

error, e. In sensorimotor adaptation, movement errors are determined both by motor output of the 262 

participant (y) and the size of the external perturbation (r): 263 

 ( ) ( ) ( )
= −

n n ne r y   (5.6) 264 

In our studies, the perturbation took the form of either a visuomotor rotation or a velocity-dependent 265 

force field. Eq. 5.6 clearly demonstrates why perturbation variance influences error variance. 266 

 267 

5.2.10 Asymptotic properties of learning 268 

State-space models of learning predict that performance can saturate despite presence of residual 269 

errors. This saturation is caused by a steady state condition where the amount of learning from error is 270 

exactly counterbalanced by forgetting (Fig. 5.3A). Steady state can be derived from Eqs. 5.4-6: 271 
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The formula for steady-state adaptation (yss) shows that one’s learning extent depends on 3 factors: (1) 273 

error sensitivity b, (2) retention factor a, and (3) the mean of the perturbation r . If there is no 274 

forgetting (a = 1), an individual will adapt completely to the mean of the perturbation. However, if 275 

retention is incomplete (a < 1), the steady state behavior (yss) will always fall short of the mean of the 276 

perturbation, resulting in residual errors. Eq. 5.7 is important for three reasons. (1) It demonstrates why 277 
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the total extent of learning varies with a change in forgetting rate (Fig. 5.3B). (2) It demonstrates why 278 

the total extent of learning varies with a change in error sensitivity (Fig. 5.3C). (3) It demonstrates that 279 

the total amount of learning does not directly depend on variability in the perturbation, only the mean 280 

of the perturbation (Fig. 5.3A). 281 

 282 

5.2.11 Calculate of the retention factor 283 

To determine if differences in learning extent were caused by a change in the rate of forgetting, we 284 

estimated the retention factor (a) of each participant. To do this, we quantified how behavior decayed 285 

during the error-free periods that terminated Experiments 1, 2, 4, and 5 (Figs. 5.1-3). During these error-286 

free periods, trial errors were either hidden (no feedback condition in visuomotor rotation experiments) 287 

or fixed to zero (channel trials in the force field adaptation experiment). In the absence of error (e=0), 288 

our state-space model simplifies to exponential decay (omitting noise terms): 289 

 ( ) ( )n mn my a y−=   (5.8) 290 

Eq. 5.8 relates the motor output (y) on trial n of the error-free period to the initial motor behavior 291 

measured at the end of the adaptation period, ( )my . The term n m−  represents the number of trials 292 

that elapsed from the start of the error-free period until the current trial n. 293 

 For visuomotor rotation experiments, we estimated the retention factor separately for each 294 

target by fitting Eq. 5.8 to subject behavior in the least-squares sense. We report the mean retention 295 

factor in Fig. 5.3E. For force field adaptation, we estimated a single retention factor, by first averaging 296 

the adaptation index across the 4 targets in each epoch, and then fitting Eq. 5.8 to the epoch-by-epoch 297 

behavior in the least-squares sense. In Fig. 5.3E, we converted this epoch-based retention factor to a 298 

trial-based retention factor by raising the epoch-based retention factor to the power of 1/4 (an epoch of 299 

4 trials has 4 trial-by-trial decay events). 300 

 301 

5.2.12 Calculation of error sensitivity 302 

Using Eq. 5.8, we found that changes in learning saturation were not caused by modulation of forgetting 303 

rates. Next, we determined how variability impacted error sensitivity (b), using its empirical definition: 304 
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Eq. 5.9 determines the sensitivity to an error experienced on trial n1 when the participant visited a 306 

particular target T. This error sensitivity is equal to the change in behavior between two consecutive 307 

visits to target T, on trials n1 and n2 (i.e., there are no intervening trials where target T was visited) 308 

divided by the error that had been experienced on trial n1. In the numerator, we account for decay in 309 

the behavior by multiplying the behavior on trial n1 by a decay factor that accounted for the number of 310 

intervening trials between trials n1 and n2. For each target, we used the specific retention factor 311 

estimated for that target with Eq. 5.8. 312 

We used Eq. 5.9 to calculate error sensitivity for all of our visuomotor rotation experiments. 313 

When reporting error sensitivity, we averaged across the four targets (Figs. 5.3F, 5.4A, 5.5C, 5.5D, and 314 

5.5E). In some cases (Fig. 5.3F) we collapsed trial-by-trial measurements of error sensitivity across all 315 

trials and all errors. In other cases, we calculated the change in error sensitivity over different periods of 316 

training. For Fig. 5.5D, we measured the change in sensitivity from the beginning (epochs 1-15) to the 317 

end (epochs 40-59) of the perturbation block in Exp. 1. For this, we calculated two error sensitivities, 318 

one for errors less than 20° and the other for errors greater than 20°. To remove outliers, we identified 319 

error sensitivity estimates that deviated from the population median by over two median absolute 320 

deviations. We used a similar process for our analysis of Exp. 4 in Fig. 5.5E. Here we had three periods of 321 

interest, the start of adaptation (epochs 1-3), the end of the zero-variance period (epochs 78-80), and 322 

the end of the high variance period (epochs 157-159). 323 

Our second to last method for analyzing error sensitivity is shown in Fig. 5.4A. Here, we 324 

calculated sensitivity to errors of specific sizes. For this, we separated trial pairs into bins that depended 325 

on error size: 5°-10°, 10°-15°, 15°-20°, 20°-25°, and 25°-30°. For each subject-error bin pair, we required 326 

there to be at least 10 measurements. We did not consider errors smaller than 5° because the empirical 327 

estimator in Eq. 5.9 becomes unstable for small error sizes. Our final method of analyzing error 328 

sensitivity is shown in Fig. 5.5C. Here we calculated error sensitivity both as a function of error size and 329 

also trial number. These measurements are particular noisy because on any given trial, only a subset of 330 

participants experienced errors of a given size. Therefore, to reduce this noise, we calculated error 331 

sensitivity within bins of consecutive trials. For the zero-variance perturbation we generally included 5 332 

epochs (20 trials) in each bin. For the high variance perturbation (Fig. 5.5C middle) we included 10 333 

epochs in each bin. 334 

For force field adaptation, we could not empirically estimate error sensitivity, as this approach 335 

requires the measurement of forces directly before and after the experience of an error. However, in 336 

reality, forces are measured only on infrequent channel trials, making such an empirical calculation 337 
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impossible. For this reason, we used a model-based approach to measure error sensitivity (Fig. 5.3F, Exp. 338 

2). We fit our state-space model Eqs. 5.4-6 to single subject data in the least-squares sense, over the last 339 

5 channel trial epochs of the adaptation period. To do this, we needed to describe four states of learning 340 

(one for each target). We describe multitarget state-space models in more detail in an earlier work 101. 341 

As a brief summary, we modeled our multitarget experiment by applying Eqs. 5.4-6 separately for each 342 

target. On any given trial, the state corresponding to the relevant target learned from the error on that 343 

trial. The other three states exhibited only decay on that trial. We described the perturbation r in terms 344 

of the force field magnitude on that trial (14 N-s/m was considered a perturbation of unit 1 in the 345 

model). Using this framework, we found the error sensitivity that minimized the squared difference 346 

between our model simulation and participant behavior. 347 

 348 

5.2.13 Memory of errors model 349 

Using Eq. 5.9, we found that the capacity for learning changed in the different perturbation 350 

environments due to a modulation in error sensitivity (Fig. 5.3F). Curiously, error sensitivity differed for 351 

errors of certain sizes, not for all errors (Fig. 5.4A). To account for these findings, we used a memory of 352 

errors model that was recently proposed by Herzfeld and colleagues7. 353 

 This model uses a simple normative framework. When the errors on trial n and trial n+1 have 354 

the same sign (a consistent error), this signals that the brain under-corrected for the first error (Fig. 355 

5.4B). Therefore, the brain should increase its sensitivity to the initial error. On the other hand, when 356 

the errors on trials n and n+1 have opposite signs (an inconsistent error), this signals that the brain over-357 

corrected for the first error. Therefore, the brain should decrease its sensitivity to the initial error. These 358 

rules are encapsulated by Eq. 5.2. Note that unlike the original memory of errors model, here, we allow 359 

for decay in error sensitivity over time through the decay factor 𝛼. 360 

 In our simulations, we applied Eq. 5.2 to errors of different sizes. We divided up the error space 361 

into 5° error bins. We assumed that all errors in that bin shared the same error sensitivity (Fig. 5.5B), but 362 

sensitivity could differ across bins. 363 

 364 

5.2.14 Simulation of the memory of errors model 365 

In Fig. 5.5, we asked if our memory of errors model (Eq. 5.2) would accurately predict the behavior of 366 

our subject population. To answer this question, we first fit the free parameters in Eq. 5.2 to our data 367 

(Fig. 5.5A), and then used the fully specified model to simulate error sensitivity patterns (Fig. 5.5B). 368 

These free parameters included two terms: 𝛼 and 𝛽 in Eq. 5.2. 369 
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 We fit these two model parameters to the mean behavior in Experiments 3 and 4, in the least-370 

squares sense. We focused on Experiments 3 and 4, as these experiments included the longest training 371 

periods, and therefore produced reliable steady-state adaptation limits. We fit the model to the 372 

combined behavior of the zero-variance group in Experiment 3 (Fig. 5.5A, left), the high variance group 373 

in Experiment 3 (Fig. 5.5A, middle), and the zero-to-high variance group in Experiment 4 (Fig. 5.5A, 374 

right). In this way, we identified a single parameter set that minimized the sum of squared errors across 375 

all three groups. The error we considered was the difference between mean subject reaching angles and 376 

the mean reaching angle predicted through simulation of our model. By model, we are referring to the 377 

reaching angle predicted by our state-space model (Eqs. 5.4 and 5.5) that used an error sensitivity that 378 

started at 10% (chosen to match the initial error sensitivity empirically measured in subject behavior; 379 

see curves in Fig. 5.5C) and then varied according to a memory of errors (Eq. 5.2). Our model assumed 380 

that error sensitivity was common to errors within bins of 5° but could vary across bins (as in Fig. 5.4A). 381 

We spaced these bins from -45 to 45°. For our simulations, we used a retention factor of 𝑎 = 0.9736 (the 382 

mean retention factor measured in the error-free period in Experiment 1). 383 

 Due to variability in the process of learning, moving, and the high variance perturbation, the 384 

output of our model was stochastic. Therefore, to obtain the model prediction for a given set of free 385 

parameters, we calculated the mean output of the model over 10,000 simulations. For each simulation, 386 

we resampled the trial-to-trial variations in the high variance perturbation. We also resampled trial-to-387 

trial variations in the state of the learner (𝜀𝑥 in Eq. 5.4) and the motor output (𝜀𝑦 in Eq. 5.5). For these 388 

simulations, we set 𝜎𝑥 (Eq. 5.4) and 𝜎𝑦 (Eq. 5.5) both equal to 2°. We chose this variability level by 389 

calculating the standard deviation of the last 100 reaching angles in the zero-variance group of 390 

Experiment 3 (median standard deviation was 4.1°, and we divided this up evenly for state noise and 391 

motor noise to arrive at our 2° estimate). 392 

 To identify the optimal parameter set we first attempted to use fmincon in MATLAB R2019a. We 393 

found however, that fmincon yielded different parameter estimates with each change to the algorithm’s 394 

initial conditions. Therefore, to confirm that we identified a global, rather than a local minimum, in the 395 

squared-error cost function, we performed a secondary grid search in the proximity of the parameter 396 

sets identified by fmincon. For this grid search, we tested all 2,601 pairwise combinations of 𝛼 and 𝛽, 397 

where 𝛼 was varied from 0.95 to 1 in increments of 0.001, and 𝛽 was varied from 0.03 to 0.08 in 398 

increments of 0.001. This grid search identified an optimal parameter set of 𝛼 = 0.987 and 𝛽 = 0.042. 399 

 We used this parameter set for our simulations in Figs. 5.5B-E. In Fig. 5.5A, we simulated our 400 

model a total of 100,000. In Figs. 5.5C-5E we combined our model parameters with the actual error 401 
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sequences experienced by individual participants. In Fig. 5.5B, we tracked subject errors in each 5° bin, 402 

and used Eq. 5.2 to predict if error sensitivity should increase or decrease from one trial to the next. For 403 

the left and middle insets, we combined subjects across Experiments 1 and 3. However, Experiment 1 404 

ended at epoch 60, so after this point, only subjects in Experiment 3 are represented (hence the change 405 

in the size of the error bars after the vertical black line in the left and middle insets in Fig. 5.5B). To 406 

transition between epoch 60 and 61, and maintain continuity in our predictions, we used a 407 

bootstrapping approach. For each bootstrap, we sampled the initial error sensitivity on epoch 61 in each 408 

error bin from a normal distribution with a mean and variance that were determined from the model 409 

predictions on epoch 60. With that particular set of error sensitivities, we simulated the response from 410 

epochs 61 to 160 for subjects in Experiment 3. We repeated this procedure a total of 1,000 times, each 411 

time resampling the initial error sensitivity on epoch 61. 412 

 Finally, to obtain the model predictions in Figs. 5.5D and 5.5E, we used the error sensitivity 413 

timecourses depicted in Fig. 5.5B. In Fig. 5.5D, we focused on participants in Experiment 1, where we 414 

included an error-free period, thus permitting robust measurement of error sensitivity and forgetting 415 

rates. In all cases, we measured the differences in error sensitivity for small (between 5° and 20°) and 416 

large (between 20° and 30°) errors from the start (epoch 1) to the last epoch (epoch 60), predicted by 417 

the memory of errors model (Fig. 5.5C). We used a similar method in Fig. 5.5E, only for Experiment 4. 418 

Here we measured the change in error sensitivity for all errors (5° to 30°) over three separate periods. 419 

From the beginning of the zero-variance period to the end of the zero-variance period (Fig. 5.5E, change 420 

from 1 to 80), from the end of the zero-variance period to the end of the high variance period (Fig. 5.5E, 421 

change from 80 to 160), and from the beginning to the end of the experiment (Fig. 5.5E, change from 1 422 

to 160). In both Figs. 5.5D and 5.5E, we obtained single estimates of error sensitivity, by collapsing 423 

across the appropriate 5° error sensitivity bins. When collapsing across bins, we weighted each bin by 424 

the number of times errors in that bin were experienced by the subject population, over the 425 

corresponding time window. 426 

 427 

5.3 Results 428 

To quantify the relationship between mean residual error and perturbation variance, we started by re-429 

analyzing data collected in an earlier study172 in which the authors perturbed reaching movements in 430 

three groups of participants using visuomotor rotations (Fig. 5.1A, Rotation). All groups experienced 431 

perturbation sequences that had the same mean (30°), but different levels of trial-to-trial variability: one 432 
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group experienced a constant perturbation of 30° (zero variance), while the other two groups 433 

experienced perturbations with low or high variance (Fig. 5.1B, top). At the end of training, there were 434 

residual errors in all groups. However, the residual errors increased with the perturbation variance (Fig. 435 

5.1H, Fernandes, median residual error on last 10 trials; repeated measures ANOVA: F(2,14)=17.8, 436 

p<0.001, 𝜂𝑝
2=0.54). 437 

 Here we designed a set of experiments to answer two questions: (1) why does adaptation suffer 438 

from residual errors and (2) why does the size of the residual errors depend on perturbation variance? 439 

 440 

5.3.1 Perturbation variance limits sensorimotor adaptation  441 

We began by repeating the experiment performed by Fernandes and colleagues172, but with an 442 

important adjustment. In the earlier work, all three perturbation conditions were experienced by the 443 

same set of subjects, raising the possibility that prior exposure to the visuomotor rotation could have 444 

altered subsequent learning in the other environments7,30,149. To avoid this possibility, we recruited 445 

different sets of participants for each perturbation condition. 446 

 447 
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 448 

Figure 5.1. Perturbation variance impairs sensorimotor adaptation. A. Schematic of our experiment 449 
setup. B. Fernandes and colleagues 8 measured the reach angle of participants (bottom, n=16) during 450 
adaptation to variable visuomotor rotations (top: SD = 0, 4, and 12° for zero, low, and high variance; 451 
mean is 30° for all). Participants demonstrated differing residual errors (reported in inset H, Fernandes; 452 
median error on the last 48 trials). C. In Experiment 1, we repeated the experiment of Fernandes et al. 453 
(2012) with a between-subjects design. Participants adapted to a zero (n=19) or high (n=14) variance 454 
perturbation (SD = 0 and 12° for zero and high variance; mean is 30° for both). The residual error is 455 
shown in H, Exp. 1 (median of the last 48 trials). D. In Experiment 2, we tested force field adaptation. 456 
Occasionally, we measured reaching forces on channel trials that restricted motion of the hand to a 457 
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straight path. Participants experienced a zero (n=12) or high (n=13) variance perturbation (top: SD = 0 458 
and 6 N-s/m for zero and high variance; mean = 14 N-s/m for both). We computed an adaptation index 459 
on each channel trial (bottom). Residual error (inset H, Exp. 2) is one minus mean adaptation index on 460 
last 5 error clamp trials. E. In Experiment 3, we exposed participants to an extended period of 461 
visuomotor rotations (160 epochs = 640 trials). The vertical dashed line indicates the total number of 462 
rotation trials in Experiment 1. Participants adapted to a zero (n=19) or high (n=14) variance 463 
perturbation (top: SD = 0 and 12° for zero and high variance; mean is 30° for both). Mean residual error 464 
(inset H, Exp. 3) was computed over the last 50 epochs. To confirm that performance had reached a 465 
plateau, we measured the slope of a line fit to the same period (inset G). For comparison, horizontal 466 
dashed lines show the mean slope over the first 5 epochs of the perturbation. F. In Experiment 4, we 467 
adapted participants (n=14) to a zero-variance perturbation, and then abruptly switched to a high 468 
variance perturbation. Residual errors (inset H, Exp. 4) were computed over the last 10 epochs of each 469 
period. Error bars are mean ± SEM. Statistics denote the result of a repeated-measured ANOVA (H, 470 
Fernandes) or two-sample t-tests (H, all other insets). Statistics: **p<0.01 and ***p<0.001. 471 
 472 

In each of our experiments, participants held the handle of a robotic arm (Fig. 5.1A) and made 473 

reaching movements in a two-dimensional workspace. In Experiment 1, we introduced a visual 474 

perturbation and divided the participants into two groups: a zero-variance group (n=19) in which the 475 

perturbation magnitude remained invariant at 30° (Fig. 5.1C, black), and a high variance group (n=14) in 476 

which the perturbation was sampled on each trial from a normal distribution with a mean of 30° and 477 

standard deviation of 12° (Fig. 5.1C, red). Our results confirmed the earlier observation: after extended 478 

training, participants in the zero-variance group learned more than the high variance group (Fig. 5.1C, 479 

bottom; Fig. 5.1H, Exp. 1, mean error on last 10 epochs, two-sample t-test, p=0.002; Cohen’s d = 1.49). 480 

 In Experiment 2, we tested the generality of this observation by measuring how participants 481 

responded to variability in force field perturbations (Fig. 5.1A, Force field). As before, we divided the 482 

participants into two groups, a zero-variance group (n=12) in which the perturbation magnitude 483 

remained constant at 14 N⋅sec/m (Fig. 5.1D, top, black), and a high variance group (n=13) in which the 484 

perturbation magnitude was sampled on each trial from a normal distribution with mean 14 N⋅sec/m 485 

and standard deviation of 6 N⋅sec/m (Fig. 5.1D, top, red). To track the learning process, we measured 486 

the forces that the subjects produced via channel trials 27 (Fig. 5.1A, channel). As in visuomotor 487 

adaptation, variance in the force field perturbation reduced the total amount of learning (Fig. 5.1D, 488 

bottom; Fig. 5.1H, Exp. 2, mean error on the last 5 epochs; two-sample t-test, p=0.001; Cohen’s d = 489 

1.46). Thus, perturbation variability consistently affected the adaptation limit across various modalities 490 

of reach adaptation. 491 

 492 



170 
 

5.3.2 Perturbation variance limits the total extent of adaptation 493 

Closer examination of the late stage of training (Figs. 5.1B, 5.1C, and 5.1D, bottom) raised the possibility 494 

that adaptation had not completely saturated; perhaps with additional exposure, adaptation might have 495 

converged across variance conditions, even eliminating the residual errors. To examine this possibility, 496 

we repeated Experiment 1, but this time more than doubled the training trials (Fig. 5.1E, top). Addition 497 

of these trials allowed performance to saturate, as evidenced by the slope of the reach angles (Fig. 5.1G, 498 

slope of the line fit to individual performance over the last 50 epochs was not different than zero; 499 

p=0.71 and p=0.83 for the low and high variance groups). Notably, despite extended training, errors 500 

persisted (Fig. 5.1H, Exp. 3, residual errors ± SD on last 50 epochs; zero-variance: 1.7 ± 0.9°; high 501 

variance: 8.7 ± 1.7°; t-test against zero; both groups, p<0.001). Furthermore, once again we found that 502 

increased perturbation variance coincided with an increase in residual error: at the end of adaptation, 503 

there was no overlap in the distributions of residual errors in the low and high variance groups (Fig. 504 

5.1H, Exp. 3; two-sample t-test, p<0.001; Cohen’s d = 5.24). 505 

If perturbation variability causally modulated the asymptotic limit of adaptation, we reasoned 506 

that we could switch between two different asymptotic states by changing perturbation variance mid-507 

experiment. To test this prediction, in Experiment 4 participants (n=14) first adapted to a zero-variance 508 

30° visuomotor perturbation (Fig. 5.1F, black). With training, performance approached a plateau. We 509 

next increased the perturbation variance (while keeping the mean constant) by sampling from a normal 510 

distribution with a standard deviation of 12° (Fig. 5.1F, red). Coincident with the increase in perturbation 511 

variance there was a reduction in reaching angle (Fig. 5.1H, Exp. 4, mean residual error on last 10 512 

epochs; two-sample t-test, p=0.005; Cohen’s d = 1.16). Thus, despite having already learned to 513 

compensate for much of the perturbation, when the variance of the perturbation increased, the residual 514 

error in every subject also increased (Fig. 5.1H, Exp. 4). 515 

Together, Experiments 1-4 demonstrated that even after extended practice, motor adaptation 516 

reached an asymptotic limit, resulting in small persistent errors. However, this asymptotic limit was 517 

dynamic, responding to the second order statistics of the perturbation.  518 

 519 

5.3.3 Perturbation variance impairs the implicit component of learning 520 

While reach adaptation can occur despite severe damage to the explicit, conscious learning system of 521 

the brain177, under normal circumstances performance benefits from both implicit and explicit learning 522 

systems11,12,65,178. A plausible hypothesis is that when perturbation variance increases, there is 523 

impairment in the explicit system, resulting in increased residual error. One way to reduce or eliminate 524 
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the influence of the explicit system during reach adaptation is to limit the preparation time that people 525 

have to initiate their movements32,62,132,176. If perturbation variance impairs explicit learning, we would 526 

predict that when reaction time is strongly limited, thus reducing or eliminating the influence of the 527 

explicit system, there will be increased residual errors. However, increased perturbation variance should 528 

have little or no additional effects on residual errors.  529 

Alternatively, perturbation variance may affect predominately the implicit system. In that case, 530 

when reaction time is strongly limited, suppressing contributions of the explicit system, there will be 531 

increased residual errors. Critically, increased perturbation variance should produce further reductions 532 

in residual errors. In this scenario, the change in residual errors following increased perturbation 533 

variance should be the same regardless of whether reaction time is limited or not. 534 

 To suppress the contributions of explicit learning, we repeated Experiment 1, but forced the 535 

subjects to respond to the target with very low reaction times (less than half the time that they typically 536 

required to initiate a movement at the start of adaptation, Fig. 5.2A). As before, we divided participants 537 

into two groups: a zero-variance group (n=13) in which the perturbation magnitude remained invariant 538 

at 30°, and a high variance group (n=12) in which the perturbation was sampled on each trial from a 539 

normal distribution with a mean of 30° and standard deviation of 12°.  540 

Under normal conditions in which there was no constraint on reaction time (Fig. 5.2A, 541 

Experiment 1), introduction of the perturbation led to a dramatic increase in reaction time: participants 542 

nearly doubled their preparation time, potentially signaling the development and expression of explicit 543 

strategies. In contrast, in the constrained reaction time group (Fig. 5.2A, Experiment 5), subjects 544 

executed reaching movements at considerably lower latencies. In this group, the time required for 545 

movement preparation remained roughly constant throughout the experiment, even after the 546 

introduction of the perturbation. 547 

 As expected, limiting reaction time impaired adaptation rates. In the zero-variance (Fig. 5.2B) 548 

and high variance (Fig. 5.2C) conditions, performance at short reaction times was worse than that of 549 

long reaction times (two-sample t-test on last 10 epochs; p=0.041 and p=0.007 for zero and high 550 

variance; Cohen’s d = 0.77 and 1.17 for zero and high variance). Thus, reducing reaction time impaired 551 

performance in both the zero and high variance perturbation groups.  552 

 Next, we compared the effects of perturbation variance on residual errors at low reaction times. 553 

We found that even when reaction times were constrained to suppress the explicit component of 554 

adaptation, increased perturbation variance produced a clear increase in the residual errors (Fig. 5.2D), 555 

reducing the total extent of learning by approximately 5° (Fig. 5.2E; difference in residual errors during 556 
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the last 10 epochs; two-sample t-test, p<0.001; Cohen’s d = 1.53). Therefore, despite suppression of 557 

explicit learning, the deficit in performance caused by high variance perturbations persisted: high 558 

variability led to a reduction in the extent of learning. 559 

 560 

Figure 5.2. Perturbation variance decreases the total amount of implicit adaptation. A. We measured 561 
reaction time (time to start the reach in response to presentation of a visual target) during adaptation to 562 
a visuomotor rotation. In Experiment 1 (left) we did not limit reaction time. Reaction time greatly 563 
increased after the introduction of the perturbation (blue dashed line). In Experiment 5 (right) we 564 
repeated the paradigm used in Experiment 1, but limited reaction time. B. Limiting reaction time 565 
reduced adaptation rates in the zero-variance perturbation group. C. Limiting reaction time reduced 566 
adaptation rates in the high variance perturbation group. D. We compared adaptation to the zero-567 
variance and high variance perturbations when reaction time was limited. Even in the limit rxn 568 
condition, perturbation variance impaired adaptation. E. To measure differences in adaptation extent as 569 
a function of reaction time and perturbation variance, we used a two-way ANOVA. For this test, we 570 
measured the total amount of adaptation over the last 10 epochs of Experiments 1 and 5. The top-most 571 
and right-most statistical bars denote the significance of the main effects of reaction time and 572 
perturbation variance, respectively. The other two vertical statistical bars display the results of two-573 
sample t-tests. Error bars are mean ± SEM. Statistics: ***p<0.001.574 
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Critically, a 2-way ANOVA yielded a significant effect of both perturbation variance (F=33.08, 

p<0.001, 𝜂𝑝
2=0.38) and reaction time (F=13.76, p<0.001, 𝜂𝑝

2=0.20), but no interaction effect (F=1.07, 

p=0.31). The absence of an interaction effect indicated that the reduction in asymptotic performance 

induced by perturbation variability was no different when reaction time was high or low. If we assume 

that reduced reaction time impairs the ability of the explicit system to contribute to reach adaptation, 

then these results suggest that the reductions in performance observed in Experiments 1 and 5 were 

predominantly caused by impairments in implicit learning. 

 

5.3.4 Perturbation variance reduces error sensitivity, but not forgetting rates 

An examination of the data in Figs. 5.1 and 5.2 illustrates a frequently observed characteristic of motor 

adaptation: even at the late stages of training, performance continues to suffer from small, persistent 

errors10,11,14,116,123,172,179,180. Such persistent, steady-state errors are one of the fundamental predictions of 

mathematical models of adaptation8,10,36,55,58 in which performance is driven by an interaction between 

two opposing forces, error-based learning, and trial-to-trial forgetting: 

 
( ) ( ) ( )+

= +
1n n nx ax be   (5.1) 

Here the adapted state of the individual, x, changes from trial n to trial n+1 due to both forgetting, and 

learning. Forgetting is controlled by the retention factor a, which determines the fraction of memory 

retained from one trial to the next. Learning is controlled by sensitivity to error, denoted by b, which 

determines how much learning will occur from the experience of error e. 

 In this model, performance reaches a steady state (Fig. 5.3A) in which residual errors persist. 

This occurs because as training progresses, the errors which drive the learning process eventually 

become small enough that there is a balance between the forces that promote forgetting, and those 

that promote learning. At this stage learning appears to stop, despite the fact that errors remain. Thus, 

in principle, residual errors can increase because of a decrease in error sensitivity (Fig. 5.3C), or an 

increase in forgetting (Fig. 5.3B). Which factor changes due to increases in perturbation variance? 

 To answer this question, we estimated the forgetting rate (a in Eq. 5.1) of each participant by 

including an error-free movement period at the end of the experiments (gray region in Figs. 5.1C, 5.1D, 

5.1F, and 5.2D). During these periods, behavior naturally decayed towards the baseline state (Fig. 5.3D), 

thus providing a means to isolate the rate of forgetting (i.e., the rate of decay of behavior). Interestingly, 

we found that in all experiments, the rate of forgetting was similar in the low and high variance groups 
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(Fig. 5.3E, two-sample t-test; Exp. 1, p=0.72; Exp. 2, p=0.19; Exp. 5, p=0.79). Thus, perturbation variance 

did not alter the rate of forgetting. 

 

Figure 5.3. Perturbation variance decreases error sensitivity, not decay rates. A. State-space model of 
adaptation predicts that learning will reach an asymptote when the amount of learning from an error 
exactly counterbalances the amount of forgetting that occurs between trials. The plot demonstrates the 
behavior of such a model during adaptation to a perturbation of unit 1. According to the model, changes 
in asymptotic levels of performance can occur because of changes in forgetting (B, Possibility 1 
schematic; a = 0.98 for low forgetting and 0.96 for high forgetting), or changes in error sensitivity (C, 
Possibility 2 schematic; b = 0.05 for low error sensitivity and 0.1 for high error sensitivity). D. To test 
Possibility 1, we measured the retention during error-free periods at the end of Experiments 1 (Exp. 1), 2 
(Exp. 2), and 4 (Exp. 5). We normalized reach angle to the first trial in the no-feedback period. Decay 
rates did not differ between the low and high variance groups. Each point on the x-axis is a cycle of 4 
trials. E. We measured the retention factor during error-free periods in each experiment. We found no 
difference in retention for the zero-variance and high variance groups. F. To test Possibility 2, we 
measured sensitivity to error in each experiment. Error sensitivity was greater for the zero-variance 
perturbation in every experiment. Error bars are mean ± SEM. Statistics: *p<0.05, **p<0.01, and n.s. 
indicates no statistical significance. 
 
 Next, we empirically estimated error sensitivity (b in Eq. 5.1). To do this, we calculated the 

difference between the reach angle in each pair of consecutive trials (adjusting for forgetting) and 

divided this by the error experienced on the first of the two trials. By definition, this quotient represents 

one’s sensitivity to error, i.e., the fraction of the error that is compensated for on the next trial. In sharp 

contrast to forgetting rates, we found consistent differences in sensitivity to error (Fig. 5.3F) among the 

various groups: in all experiments, participants who experienced a zero-variance perturbation exhibited 
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an error sensitivity nearly twice that of individuals who were exposed to a high variance perturbation 

(two-sample t-test; Exp. 1, p=0.002, Cohen’s d = 1.18; Exp. 2, p=0.039, Cohen’s d = 0.87; Exp. 4, p=0.006, 

Cohen’s d = 1.12; Exp. 5, p=0.016, Cohen’s d = 1.05). 

 In summary, we asked whether perturbation variance affected forgetting rates, error sensitivity, 

or both. We found that in all experiments, the groups that had experienced high perturbation variance 

exhibited reduced error sensitivity, but no change in forgetting rates.  

 

5.3.5 Perturbation variance reduced the ability to learn from small errors, not large errors 

Our quantification of error sensitivity in Fig. 5.3F made the assumption that the brain is equally sensitive 

to errors of all sizes. However, it is well-documented that error sensitivity varies with magnitude of 

error: one tends to learn proportionally more from small errors51,52,68,148. In other words, error sensitivity 

is not constant, but declines as error size increases. How did perturbation variance alter the functional 

relationship between error magnitude and sensitivity to error? 

 To answer this question, we re-estimated error sensitivity, but this time controlled for the 

magnitude of error. We placed pairs of consecutive movements into bins according to the error 

experienced on the first trial, and then calculated error sensitivity within each bin. As expected, in both 

perturbation variance conditions, as error size increased, error sensitivity decreased (Fig. 5.4A; mixed-

ANOVA, within-subjects effect of error size, F=24.69, p<0.001, 𝜂𝑝
2=0.30). This confirmed that indeed, 

people tended to learn less from larger errors. However, for a given error size, the high variance 

perturbation group exhibited lower error sensitivity than the zero-variance group (Fig. 5.4A; mixed-

ANOVA, between-subjects effect of perturbation variance, F=10.9, p=0.002, 𝜂𝑝
2=0.16). Notably, 

increased perturbation variance reduced the ability to learn from small errors (<20°), but had no effect 

on the larger errors (>20°) (Fig. 5.4A, post-hoc testing with t-test adjusted with Bonferroni correction, 

p=0.012 and Cohen’s d = 0.75 for 5-10°, p=0.012 and Cohen’s d = 0.78 for 10-15°, p=0.005 and Cohen’s d 

= 0.83 for 15-20°, p=1 for other two bins). Why should increases in perturbation variance selectively 

affect learning from small errors, but not large errors? 

 

5.3.6 The consistency of past errors modulated error sensitivity  

A current model of sensorimotor adaptation7 posits that the brain adjusts its sensitivity to error in 

response to the consistency of past errors. In this memory of errors model, when the error on trial n has 

the same sign as the error on trial n+1, it signals that the brain has undercompensated for error on trial 

n, and so should increase sensitivity to that error (Fig. 5.4B, left). Conversely, when the errors in two 
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consecutive trials differ in sign, the brain has overcompensated for the first error, and so should 

decrease sensitivity to that error (Fig. 5.4B, right). Herzfeld and colleagues demonstrated that these 

changes in error sensitivity are local to specific errors, meaning that the brain can simultaneously 

increase sensitivity to one error size, while decreasing sensitivity to another7. Thus, in the context of a 

variable perturbation, the memory of errors model provides an interesting prediction: the perturbation 

affects the trial-to-trial consistency of errors, producing less consistency for some error sizes, 

particularly when perturbation variance increases.  

 

 

Figure 5.4. The consistency of trial-to-trial errors coincides with changes in error sensitivity. A. To 
determine how error sensitivity varied as a function of error size, we sorted pairs of movements into 
different bins (5° width) according to the size of the error on the first movement. Next, we computed 
the mean error sensitivity across all trials within each error size bin. In the zero-variance environment, 
subjects exhibited greater error sensitivity to error sizes that were less than 20°. B. We considered the 
possibility that the trial-to-trial consistency of errors caused changes in error sensitivity. Consistent 
errors (left) are consecutive pairs of trials where the errors have the same sign. Inconsistent errors 
(right) are consecutive pairs of trials where the errors have opposite signs. The black and brown traces 
show example reach trajectories from a single participant. C. We measured the total fraction of 
inconsistent error trials. The high variance perturbation caused a higher probability of inconsistent 
errors in every experiment. D. The difference between the number of consistent and inconsistent errors 
during adaptation to the visuomotor rotation. We found that high variance caused a change in 
consistency of small errors (less than 20°) but not large errors. Error bars are mean ± SEM. For A and D, 
we used a mixed-ANOVA followed by post-hoc two-sample t-tests with Bonferroni corrections. In C, 
two-sample t-tests were used for statistical testing. Statistics: *p<0.05, **p<0.01, ***p<0.001 and n.s. 
indicates no statistical significance. 
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We tested the predictions of this model by evaluating all consecutive trial pairs for each subject, 

and counting all instances of consistent and inconsistent errors. As expected, we found that in all five 

experiments, increased perturbation variance produced an increase in the probability of experiencing an 

inconsistent error (Figs. 5.4C; Exps. 1 & 3, p=0.017, Cohen’s d = 0.68; Exp. 2, p<0.001, Cohen’s d = 2.84; 

Exp. 4, p<0.001, Cohen’s d = 2.22; Exp. 5, p=0.048, Cohen’s d = 0.84). However, when we binned the 

data based on error size, the differences in the relative number of consistent and inconsistent errors 

exhibited a surprising pattern (Fig. 5.4D, mixed-ANOVA, between-subjects effect of perturbation 

variance, F=26.04, p<0.001, 𝜂𝑝
2=0.31; within-subjects effect of error size, F=61.02, p<0.001, 𝜂𝑝

2=0.51): for 

errors less than 20°, the zero-variance group had many more consistent error events and fewer 

inconsistent error events than the high variance group (Fig. 5.4D; post-hoc testing with t-test adjusted 

with Bonferroni correction, p<0.001 and Cohen’s d = 1.99 for 5-10°, p<0.001 and Cohen’s d = 1.47 for 10-

15°, p=0.003 and Cohen’s d = 0.78 for 15-20°). However, for errors larger than 20°, there was no 

difference in the relative number of consistent and inconsistent error pairs (Fig. 5.4D; post-hoc testing 

with t-test adjusted with Bonferroni correction, p=1 for 20-25° and p=0.161 for 25-30°). 

In summary, the high variance perturbation led to a reduction in the trial-to-trial consistency of 

small errors, but not large errors (Fig. 5.4D). The memory of errors model (Fig. 5.4B) predicts that this 

pattern of error history will lead to a reduction in sensitivity to small errors for the high variance 

condition, but no difference in sensitivity to large errors. Indeed, both of these patterns were present in 

the measured behavior (Fig. 5.4A). 

 

5.3.7 Error sensitivity changes throughout training according to the consistency of error 

To determine if error sensitivity could truly have been altered by a memory of past errors, we next 

simulated a memory of errors model. This model expresses how error sensitivity varies both as a 

function of time, and error size. That is, on trial n, the sensitivity to error e, is expressed as 𝑏(𝑛)(𝑒). 

Suppose that on trials n-1 and n, one experiences errors 𝑒(𝑛−1) and 𝑒(𝑛). The memory of errors model 

predicts that sensitivity to the first error will either increase or decrease, depending on the consistency 

of the two errors:  

 
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 
+ − − −

 =  +
1 1 1 1signn n n n n nb e b e e e   (5.2) 

In the above equation, b  represents the change in error sensitivity. Like Eq. 5.1, changes to error 

sensitivity are due to two forces: one that depends on consistency of consecutive errors (contained 
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within the sign function), and one that imposes a decay on error sensitivity (parameter 𝛼). Thus, the 

model has only two unknown parameters, 𝛼 and 𝛽. 

 

            

Figure 5.5. The memory of errors model predicts that error sensitivity changes over the course of 
training. We simulated a memory of errors model that increases/decreases error sensitivity from one 
trial to the next when a consistent/inconsistent error occurs. A. We simulated the response of this 
model to the zero-variance perturbation in Exp. 3 (left, Exp. 3, zero var.), the high variance perturbation 
in Exp. 3 (middle, Exp. 3, high var.), and the zero-to-high variance perturbation in Exp. 4 (right, Exp. 4). 
The same parameter set was used for each simulation. The model predictions represent the mean 
model prediction over 100,000 simulations. B. Next, we took the specific errors experienced by each 
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participant and used the memory of errors model to predict trial-by-trial changes in error sensitivity. At 
left, the plot shows the predictions for the zero-variance group in Experiments 1 and 3 (epochs 1-60 
represent both experiments, but from 61 onwards only Experiment 3). The same is true for the middle 
plot, but for the high variance group predictions. At right, the plot shows predictions for the zero-to-high 
variance group in Experiment 4. C. To corroborate the model predictions, we measured error sensitivity 
on each trial as a function of error size. Then, we binned data across sequences of consecutive trials. 
Missing data points in each curve represent periods over which errors were scarce or entirely absent. D. 
The memory of errors model predicted that error sensitivity should increase for both the zero-variance 
and high variance perturbation, but less so for the high variance condition. Light gray bars show the 
predicted change in error sensitivity. Dark gray bars show the actual change in error sensitivity 
measured in the subject population (difference in error sensitivity from epochs 1-15 to epochs 40-59). 
Predictions are split for small (less than 20°) and large (greater than 20°) errors. E. In Experiment 4, the 
model predicts error sensitivity should first increase in the zero-variance perturbation, and then 
decrease after adding variance to the perturbation. Light gray bars show the predicted change in error 
sensitivity. Dark gray bars show the actual change in error sensitivity measured in the subject population 
over three separate periods (change from 1 to 80 shows the change from the beginning to the end of 
the zero-variance period; change from 80 to 160 shows the effect of introducing variance to the 
perturbation; change from 1 to 160 shows the change in error sensitivity from the very start of the 
experiment, to the very end of the experiment). All bars include errors in the range of 5° to 30°. Error 
bars are mean ± SEM. Statistics: *p<0.05, **p<0.01, and ***p<0.001. 
 

To find these two parameters, we simulated the response of Eqs. 5.1 and 5.2 to the zero and 

high variance perturbation patterns we used in the various experiments (see Methods for a more 

complete model description; all other model parameters apart from 𝛼 and 𝛽 were obtained empirically 

from the data as in Figs. 5.3E and 5.3F). We varied our parameter set to identify a single pair of 

parameters (𝛼 and 𝛽) that best accounted for the measured reach angles in Experiments 3 and 4, in a 

least squares sense. The resulting parameter set yielded predictions that closely tracked subject 

behavior (Fig. 5.5A). 

 Having estimated the two unknown parameters of the model, we next applied Eq. 5.2 to predict 

how error sensitivity should have changed if the subjects stored a memory of past errors (Fig. 5.5B). To 

do this, we applied Eq. 5.2 to the actual sequence of errors experienced by each subject (𝑒(1), 𝑒(2), etc.). 

Thus, the model predicted how error sensitivity should develop for each error size. To corroborate the 

model predictions, we measured error sensitivity on each trial (Fig. 5.5C).  

We focused on Exp. 1 and 4, as these experiments included error-free periods, permitting 

empirical measurement of both error sensitivity and forgetting (note the difference in the ranges of the 

x-axes of Figs. 5.5B and 5.5C in the left and middle columns). In addition, we omitted measurements of 

error sensitivity over periods of the experiment where the number of observed data points was low or 

absent entirely (note gaps in time-courses in Fig. 5.5C left and right). 
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 The model made the following predictions: First, the model predicted that with the zero-

variance perturbation, error sensitivity should increase generally for all error sizes, but the extent of this 

increase should be greater for smaller errors (Fig. 5.5B, left). To test this prediction, for each subject we 

measured the change in error sensitivity across the first 60 epochs of Experiment 1. In the zero-variance 

group, error sensitivity indeed increased over the training period as predicted (Fig. 5.5D, left, zero 

variance, small errors. We could only estimate the change in sensitivity to small errors, because there 

were virtually no large errors at the end of the learning period).  

Second, the model predicted that if perturbation variance was initially low, but then increased in 

the middle of adaptation (as in Exp. 4), error sensitivity should initially increase but then decline causing 

an increase in the residual errors (Fig. 5.5B, right). To test these predictions, for Exp. 4 we measured 

error sensitivity at the start of adaptation, at the end of the zero-variance period, and at the end of the 

high variance period. In accordance with model predictions, error sensitivity increased substantially over 

the initial zero-variance period (Fig. 5.5E, change from 1 to 80; paired t-test, p=0.003, Cohen’s d = 0.96) 

and then dropped precipitously after increasing perturbation variance (Fig. 5.5E, data, change from 80 

to 160; paired t-test, p=0.044, Cohen’s d = 0.60). 

Third, and most surprisingly, the model predicted that even if participants were exposed to a 

high variance perturbation from the onset, error sensitivity should increase for all errors, but only by a 

small amount (Fig. 5.5B, middle). This final prediction was interesting because it implied that the 

residual errors in the high variance perturbation were larger not because of a decrease in error 

sensitivity, but instead because trial-by-trial increases in error sensitivity were stunted relative to the 

zero-variance group (compare Figs. 5.5B left and middle). Indeed, we found that error sensitivity also 

increased for the subjects in the high variance group (Fig. 5.5D, high var.), but the magnitude of this 

increase was smaller relative to the zero-variance group (Fig. 5.5D, two-sample t-test, p<0.001 and 

Cohen’s d = 1.65 for small-small error comparison, p<0.001 and Cohen’s d = 1.91 for small-large error 

comparison). The same was true for Exp. 4, when comparing error sensitivity at the end of the high 

variance period, to the initial error sensitivity at the start of the zero-variance period (Fig. 5.5E, change 

from 1 to 160; paired t-test, p=0.042, Cohen’s d = 0.60). 

In summary, the memory of errors model made the surprising prediction that error sensitivity 

should generally increase in the early phase of training, more so for small than large errors, and then 

saturate or even decline as the training trials continued. It also predicted that introducing variance into 

the perturbation should not decrease error sensitivity, but rather stunt its growth. Our measurements 

confirmed these predictions.  
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Overall, variance in the perturbation altered the sequence of trial-to-trial errors. A memory of 

these errors modulated error sensitivity, which in turn, resulted in different asymptotic limits to 

adaptation.  

 

5.3.8 Asymptotic differences are caused by changes in implicit, not explicit adaptation 

In Section 5.3.3, we investigated if differences in asymptotic performance were caused by the implicit or 

explicit component of adaptation. By limiting reaction time, we found that differences in asymptote 

persisted, consistent with modulation in implicit adaptation. However, we cannot be completely certain 

that the implicit process also differed in the primary experiments in which reaction time was free. In 

addition, our analysis did not allow us to make direct conclusions about the contributions of explicit 

learning to the total extent of adaptation. To address both of these concerns, we performed a control 

experiment. Here, we did not manipulate reaction time and exposed participants to a noise-free (n=9) 

and a high-noise (n=9) perturbation as in our primary experiments. As in Fig. 5.1, we observed that 

adding variability to the perturbation reduced the total extent of adaptation (Fig. 5.6A), resulting in an 

increase in the residual error that persisted at the end of the learning period (Fig. 5.6B, two-sample t-

test, p<0.001). 

 Next, unlike our primary experiments, we probed the amount of implicit and explicit adaptation. 

To do this, we instructed participants to reach to each of the 4 targets, but this time there would be no 

cursor, no feedback, and no perturbation, and that their goal was to move their physical hand straight 

through the target on the screen (Fig. 5.6A, middle schematic). The reach angle we measured on these 

probe trials would serve as the final level of implicit adaptation. To obtain an estimate of the explicit 

aiming angle, we subtracted this implicit measure from the reach angle measured on the standard trials 

at the end of adaptation.  

 As a result of this new instruction, the reach angle immediately dropped precipitously from its 

pre-probe level (note the reach angle shown in the gray probe region in Fig. 5.6A). Critically, the 

difference between the no noise and high noise conditions persisted on these probe trials (Fig. 5.6C, left; 

two-sample t-test, p=0.023), indicating that differences in implicit adaptation actively contributed to the 

change in asymptotic performance. On the contrary, the change in reach angle corresponding to the 

explicit component of adaptation (Fig. 5.6C, right) did not differ across the no noise and high noise 

conditions (two-sample t-test, p=0.688). 

 To confirm these results, we performed another probe after the implicit reach angle instruction. 

Here we went through each of the 4 targets again (Fig. 5A, right-most schematic), and asked the 
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participant to indicate the location they believed they were aiming towards in order to move the cursor 

through the target at the end of the adaptation period. To assist this measurement, we displayed small 

circles radially around the workspace at a spacing of 3.333°, along with a colored character. Remarkably, 

we again observed that participants in the no noise and high noise reported no differences in their 

perceived explicit reach angle (Fig. 5.6D, two-sample t-test, p=0.453), confirming our findings. 

 

 

Figure 5.6. Perturbation variability reduces the total amount of implicit, but not explicit adaptation. A. 
Two sets of participants adapted to a rotation with the same mean, but different levels of trial-to-trial 
variance. At the end of the perturbation period, we probed the level of implicit and explicit adaptation 
(gray probe period). The first probe (middle schematic) consisted of instructing participants to aim their 
hand and not the cursor straight through the target. The second probe consisted of asking participants 
to report the location they aimed their hand to score a point (explicit probe, right-most schematic). B. 
The difference between the perturbation mean and the reach angle on the last 10 epochs of the 
perturbation period. C. At left we show the reach angle that persisted after participants were instructed 
to move their hand through the target. At right we show the drop in reach angle from the end of the 
adaptation period to the implicit probe trials. D. Here we show the reported reach angle, averaged 
across the 4 targets. Statistics: n.s. indicates p>0.5, *p<0.05, *p<0.01, and ***p<0.001. 
 

 Altogether, these results indicate that perturbation variance altered asymptotic performance 

through changes in implicit adaptation alone. To understand why we observed a change in implicit 

adaptation, when so many others have found that this process has an invariant response to error, we 

considered the idea of competition. When a learner experiences a perturbation that causes an error, 
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both implicit adaptation and explicit adaptation compete with one another to learn from error. 

Therefore, it is not always possible to know if one measures a change in one process, if that change is 

caused by a shift in the underlying dynamics of that process, or the parallel competitive process. 

 

 

Figure 5.7. Implicit and explicit adaptation compete for error. A. Here we imagine that implicit and 
explicit learning are measured in two different blocks. Across the blocks there is a change to the error 
sensitivity of the implicit and explicit adaptation. On the y-axis we show the change in explicit error 
sensitivity. On the x-axis we show the change in implicit error sensitivity. The colors indicate how the 
implicit state would change at asymptotic performance. The red region A shows instances where the 
implicit process becomes less sensitive to errors and also decreases its asymptotic contributions. The 
blue B region shows instances where the implicit process actually become faster, but still has a smaller 
asymptotic contribution. The black C region represents where the amount of change in the implicit 
asymptotic contribution has changed by an absolute magnitude of less than 5%. The green D region 
shows instances where the implicit process is faster and also contributes more to asymptotic 
performance. Finally, the magenta E region shows instances where the implicit process slows down, yet 
still increases its contributions to asymptotic performance. B. Here we show the two-way ANOVA for a 
perturbation variance by learning type comparison. Experiment 5 shows the amount of implicit learning 
measured when reaction time is limited and there is no explicit adaptation. Experiment 6 shows the 
amount of implicit learning probed at the end of adaptation where both explicit and implicit processes 
learn from error. C. The left-most schematic shows an example of the blue B region in inset A. The 
middle schematic shows an example of the green D region in inset A. For both the left and middle insets, 
the change in the rate of explicit adaptation is the same. For the right-most inset, we show the effect of 
removing explicit learning on asymptotic performance of implicit adaptation. 
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 To illustrate this point, consider Fig. 5.7. Here we simulated a two-state model of learning72 

assuming that implicit adaptation can be represented by a slowly adapting system (retention is 0.97, and 

error sensitivity is 2%) and explicit adaptation can be represented by a quickly adapting system 

(retention is 0.85 and error sensitivity is 30%). Now imagine we measure implicit learning and explicit 

learning at asymptote in two different blocks (as occurs in anterograde interference, savings, and the 

experiments reported herein). To compare implicit and explicit learning across these two blocks, we 

created an error sensitivity map (Fig. 5.7A). Along the y-axis we show the percent change in the error 

sensitivity of the explicit system and along the x-axis we show the percent change in the error sensitivity 

of the implicit system. The colors divide the map into different regions. Regions A and D are the simplest 

to understand. Here the implicit process has a decrease in error sensitivity (Region A) or an increase in 

error sensitivity (Region D) and consequently would be observed to have a smaller or larger magnitude 

at asymptote respectively. However, Regions B and E could be misleading to the observer. In Region B, 

the implicit process becomes more sensitive to error, yet has a decrease in its asymptotic performance. 

This decrease is caused by competition with explicit learning, which has an increase in error sensitivity 

that dwarfs that of implicit learning. In Region E, the opposite occurs. The implicit process lowers its 

error sensitivity, yet has a larger asymptotic value. This is because the explicit system experiences a 

more drastic slowing, allowing the implicit system to experience larger errors. 

 All-in-all this error sensitivity map demonstrates that for two processes that compete with one 

another, measuring a change in one process, does not necessarily reveal to you how that process has 

changed. To reiterate once further, consider the simulations in Fig. 5.7C. At left, we show changes in 

explicit learning and implicit learning, when explicit error sensitivity has increased by 50%, and implicit 

adaptation increases by 10%. Even though implicit adaptation becomes more sensitive to error, it 

decreases its asymptotic magnitude, corresponding to region B in Fig. 5.7A. In the middle section, 

explicit learning changes by the same magnitude, but implicit learning changes by 50%. Here, we find 

that the change in error sensitivity of implicit learning is reflected by its increase in contributions to 

asymptotic performance (Region D in Fig. 5.7A). Therefore, if explicit adaptation becomes faster by 50%, 

we cannot know by measuring the asymptotic amount of implicit adaptation, whether the implicit 

system has also become more sensitive to errors or not. 

 The best that can be done to determine how an intervention affects a particular learning 

process is to isolate it. If this learning process competes with others, eliminating its competitors will 

cause it to increase its overall dynamics (Fig. 5.7C). In support of this idea consider Fig. 5.7B; here we 

show implicit learning measured under limited reaction time (Experiment 5) versus in the implicit probe 
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trials at the end of learning in Exp. 6, where both explicit and implicit systems compete for error. As 

predicted, elimination of explicit learning, through limiting reaction time on all trials, causes the implicit 

system to increase its total contributions (two-way ANOVA, effect of experiment, p<0.001). The same 

phenomenon is shown in Fig. 5.7C at right. 

 This framework might provide a way to unify our results with previous observations. In earlier 

work, the implicit process has been found to be inflexible, and invariant in its response to 

error31,32,52,64,66–69, whereas here we find that the response of the implicit system to be quite responsive 

to the perturbation environment. We speculate that in these earlier studies, the implicit system did in 

fact change its response to error, but its modulation was dwarfed with respect to that of explicit 

adaptation, which is quite fluid and flexible in the context of visuomotor adaptation. This is consistent 

with Region C of Fig. 5.7A, where implicit adaptation changes its response to error, but such a change 

will not be discovered if one were to measure its magnitude alongside that of the explicit system. 

Therefore, we predict that limiting reaction time to isolate the implicit response will indeed 

demonstrate that implicit, like explicit systems, also modulate their response to error, as we have 

demonstrated in our experiments. 

  

5.4 Discussion 

Adaptation exhibits a curious property: even after prolonged training, learning appears to stop, leaving 

behind small persistent residual errors9,123,142,171. Here we demonstrated that this asymptotic limit of 

adaptation is consistent with a learning system in which sensitivity to error is not constant, but rather 

changes as a function of the history of past errors. When the past errors are temporally consistent, 

which occurs when perturbation variance is low, error sensitivity rises quickly. However, as performance 

improves and errors become smaller, error sensitivity peaks and then declines. The history-dependent 

change in error sensitivity, which in turn is driven by the variance of the perturbation, appears to play a 

causal role in setting an upper bound on adaptation. Thus, errors are not simply used for learning and 

then discarded, but rather they appear to become a form of memory that describes how much the 

nervous system should learn from that error.   

 

5.4.1 Controlling the total extent of adaptation through modulation of error sensitivity 

Earlier studies that documented modulation of error sensitivity focused on understanding the rate of 

motor adaptation124,125 in the context of savings7,30,35,36,49,61,171, meta-learning7,49, and anterograde 

interference50. Here we describe yet another feature of adaptation that appears to be controlled 
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through error sensitivity: the total extent of motor adaptation. In Experiments 3 and 4 (Fig. 5.1) we 

demonstrated that differences in residual errors were coupled to differences in error sensitivity, but not 

the rate of forgetting. The balance between error sensitivity, which changed with perturbation variance, 

and forgetting, which remained constant, created different levels of asymptotic performance. 

This observation raised an interesting question: why didn’t the brain continue to increase its 

error sensitivity until residual errors were completely eliminated? Here we proposed a potential 

solution: increases in error sensitivity are bounded by decay. Our model (Eq. 5.2) accounts for saturation 

in error sensitivity in the same way the state-space model (Eq. 5.1) accounts for saturation in 

adaptation: through forgetting. The counterbalancing of a memory of consistent errors (which increases 

error sensitivity) with decay (which decreases error sensitivity) leads to steady-state saturation in error 

sensitivity. 

The addition of forgetting to the original memory of errors model7 offers a potential explanation 

for at least three separate behavioral observations. First, when a participant is exposed to the same 

perturbation twice, they exhibit faster adaptation during the second exposure8. To account for this 

savings, the memory of errors model predicts that error sensitivity is up-regulated during the first 

exposure to the perturbation, leading to faster learning in the future. However, in some cases, long 

periods of washout or error-free trials appear to prevent the occurrence of savings34,61. This observation 

is consistent with Eq. 5.2: during sufficiently long periods of washout, error sensitivity would decay 

towards baseline due to forgetting, thereby preventing savings upon the next exposure to the 

perturbation. 

Another peculiar feature of savings is the observation that the mean residual error is often 

indistinguishable during the first and second blocks of exposure to a perturbation, even though the 

initial rate of learning is faster during the second block34,36,54. Why doesn’t the faster rate of learning 

during the second exposure also lead to a higher extent of learning? Our model provides an explanation: 

because error sensitivity tends to saturate during the initial exposure to the perturbation, behavior will 

reach the same asymptotic level during the second exposure despite presence of savings and higher 

initial rates of learning. 

Finally, experiments that employ a constant error-clamp condition also demonstrate saturation 

in error sensitivity. In these experiments52,53,68,170,181 subjects are exposed to the same error time and 

time again, irrespective of their motor output. Without decay, a memory of errors model would predict 

that error sensitivity, and thus the extent of learning, would increase without bound. However, in 

reality, learning reaches a steady-state in this constant error condition. In the context of visuomotor 
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adaptation, an earlier report speculated that this saturation of learning implies a limitation in the 

amount of adaptation that can be stored within implicit motor learning systems52. However, more 

generally, this saturation in adaptation is also predicted by Eq. 5.2 due to the eventual balancing of 

learning and forgetting.  

 

5.4.2 Plasticity in implicit learning systems 

Motor adaptation is known to be supported by both implicit (subconscious) and explicit (cognitive) 

corrective systems11,12,65,177,178. Recent studies have interrogated the flexibility of these learning systems, 

with some31,32,64,69,182 suggesting that implicit processes have a response to error that does not change 

with multiple exposures to a perturbation.  

While our primary purpose was not to carefully tease apart implicit and explicit contributions to 

adaptation, we did explore this issue by limiting reaction time, which is thought to substantially reduce 

the contributions of explicit learning32,62,132,176. When reaction time was limited, the residual errors were 

not only present, but increased by the same amount if perturbation variance increased. This observation 

suggested that perturbation variance acted on the implicit learning system. These results argue against 

the idea that implicit learning systems generate inflexible and unchanging responses to sensorimotor 

errors. 

This finding does not discount the possibility that explicit systems also contribute to residual 

errors. For example, recent work has demonstrated that declines in explicit learning associated with 

aging63,183 also lead to differences in the total extent of adaptation184. It is tempting to suggest that these 

differences in asymptotic performance may also reflect a change in error sensitivity, like the implicit 

mechanism described herein. While this possibility remains untested, such an interpretation is 

consistent with recent work demonstrating that environment variability modulates explicit error 

sensitivity during adaptation to random walk perturbations182.  

In summary, our data support the more inclusive view that with experience, both implicit and 

explicit processes change the way they respond to error, and together determine the total extent of 

sensorimotor adaptation. 

 

5.4.3. Alternate models 

Perturbation variance can affect uncertainty of the learner. Over the past few decades, numerous 

studies55,125,175 have used a Kalman filter60 to study the relationship between uncertainty and learning 

rate. The Kalman filter describes the optimal way in which an observer should adjust their rate of 
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learning in response to different sources of variability. This Bayesian framework has proved useful in 

understanding the slowing of adaptation in response to reductions in the reliability of sensory 

feedback56,57,59, acceleration of adaptation in response to uncertainty in the state of the individual or 

environment55,56,175, and even the optimal tuning of adaptation rates in individual subjects58. 

 Could this Bayesian framework also account for our results? Indeed, it is possible that the 

inconsistent errors generated by the high variance perturbation are interpreted as an observation noise, 

thus decreasing the brain’s confidence in its sensory feedback. In the Kalman framework, this would 

correctly predict that adaptation to the high variance perturbation would proceed more slowly than 

adaptation to the low variance perturbation (Figs. 5.1-2). 

With that said, two of our behavioral observations do not easily fit into the Kalman framework. 

First, as expected, we observed that in both the zero-variance and high variance groups, error sensitivity 

declined as a function of error size51,52,68,148. However, across the variance conditions, differences in error 

sensitivity were specific to small errors, not large errors (Fig. 5.4A). The memory of errors model7 

provided a way to understand this pattern: differences in perturbation variability led to changes in the 

consistency of small errors, but not large errors (Fig. 5.4D) matching the pattern we observed in error 

sensitivity. It is unclear how to account for this phenomenon with a Kalman filter which responds to all 

error sizes with the same learning rate. 

The second observation that does not easily comply with the Kalman view is the fact that 

sensitivity to error increased over its baseline level with repeated exposure to the high variance 

perturbation (Fig. 5.5D, high var.; Fig. 5.5E, change from 1 to 160). For a Kalman filter, the Kalman gain 

(i.e., rate of learning) would necessarily drop from its baseline level (where there is no variance) when 

the uncertainty in its observations increases (during the perturbation block where variance is added). 

This prediction of the Kalman framework is opposite to our data. In contrast, the memory of errors 

model (Figs. 5.5B-E) correctly predicts an increase in error sensitivity, because the experience of 

consistent errors remains more probable than inconsistent errors even in the high variance condition 

(Figs. 5.4C and 5.4D). 

 

5.4.4 Neural basis of error sensitivity 

Motor adaptation depends critically on the cerebellum2,4,47,116,139, where Purkinje cells learn to associate 

efference copies of motor commands with sensory consequences25. This learning is guided by sensory 

prediction errors, which are transmitted to the Purkinje cells via the inferior olive, resulting in complex 

spikes. Notably, plasticity in Purkinje cells exhibits both sensitivity to error, and forgetting. Sensitivity to 
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error is encoded via probability of complex spikes: in each Purkinje cell, the probability of complex 

spikes is greatest for a particular error vector25,185, and this tuning modulates learning from error. 

Forgetting is present in the time-dependent retention of the plasticity caused by the complex 

spikes22,118, resulting in decay of plasticity with passage of time. Thus, the presence of error sensitivity 

and forgetting in the plasticity of Purkinje cells provides one mechanism by which cerebellar-dependent 

adaptation can exhibit asymptotic performance with non-zero residual errors. 

Our behavioral experiments demonstrated that during adaptation, error sensitivity increased 

with training, but this increase was suppressed if the perturbations were variable (Figs. 5.5D and 5.5E). 

Our model (Figs. 5.5B and 5.5D) suggested that these changes in error sensitivity may have arisen from 

the temporal consistency of errors such that the presence of two errors in the same direction would 

result in increased sensitivity. Thus, the theory makes the interesting prediction that in the framework 

of cerebellar learning, the temporal proximity of complex spikes might modulate error sensitivity. 

Specifically, when two consecutive errors of similar direction and magnitude occur, Purkinje cells that 

prefer that error are more likely to experience complex spikes in close temporal proximity. The model 

predicts that the temporal proximity of these complex spikes would result in up-regulation of error 

sensitivity in that Purkinje cell. This idea remains to be tested. 

 In this framework, Eq. 5.2 serves as a simple abstraction of a more complicated reality. That is, 

in contrast to the binary output of the sign function in Eq. 5.2, the consistency of error should vary along 

a spatial continuum of preferred and non-preferred errors, as well as a temporal continuum that 

separates error events. These predictions provide a platform for future experiments, both in the context 

of behavior and neurophysiology. 

In summary, our work suggests that over the course of training, the brain relies on a memory of 

past errors to adjust error sensitivity. These variations in error sensitivity produce an asymptotic limit 

that prevents further improvements in performance, thus resulting in persistent residual errors.  
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Chapter 6. Postural control of arm and fingers 
through integration of movement commands 

 

Every movement ends in a period of stillness. Current models assume that commands that hold the limb 
at a target location do not depend on the commands that moved the limb to that location. Here, we 
report a surprising relationship between movement and posture in primates: on a within-trial basis, the 
commands that hold the arm and finger at a target location depend on the mathematical integration of 
the commands that moved the limb to that location. Following damage to the corticospinal tract, both 
the move and hold period commands become more variable. However, the hold period commands 
retain their dependence on the integral of the move period commands. Thus, our data suggest that the 
postural controller possesses a feedforward module that uses move commands to calculate a 
component of hold commands. This computation may arise within an unknown subcortical system that 
integrates cortical commands to stabilize limb posture. 
 

6.1 Introduction 

To hold the limb still, the muscles are not quiet. Rather, they are actively engaged with coordinated 

inputs that maintain postural stability. Current models assume that these inputs are produced by an 

impedance controller that translates the sensory representation of a desired location to patterns of 

muscle activity186–188. To move and then hold, one feedback controller generates the commands that 

move the limb189,190, and a separate controller generates commands that hold the limb still following 

movement186. This architecture (Fig. 6.1A, left) in which movement and postural controllers are 

independent is implicit in optimal control formulations of reaching186,187,189,191 and forms the basis for 

interpreting how neurons in the motor cortex encode reach kinematics192. While many predictions of 

this theory have been confirmed for control of movement189, here we provide evidence that challenges 

the assumption that posture and movement are controlled independently. 

 Our idea starts with consideration of a simpler control system: the eye and the head. In order to 

hold the eyes at a target, the oculomotor system uses a hold controller whose output directly depends 

on the move controller1,13,86,88,89,91,94,193. The move controller produces a set of commands that displace 

the eyes1. Simultaneously, these commands are integrated in real-time by a distinct brainstem structure, 

yielding sustained commands that hold the eyes and the head still when the movement ends86,193. Thus,  

the architecture assumed for move and hold controllers of the arm (Fig. 6.1A, left) is not consistent with 

that of the eye1,13 and the head8,11,14,15.  

While we do not know if the output of the reach controller serves as an input to the hold 

controller, there is evidence that moving and holding are controlled by separate neural structures; total 
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inhibition of the mouse motor cortex during reaching causes the arm to stop moving, but the muscles 

continue to receive commands that hold the arm steady against gravity97. It is difficult to reconcile this 

observation with the idea that the cortex drives both moving and holding194,195. 

 Yet, there are also reasons to doubt that the neural control of the arm shares a design principle 

with control of the eyes and the head. The physical dynamics of the arm are much more complicated 

than the eye, casting doubt that any straightforward relationship might exist between commands that 

move the arm to a location, and the commands that subsequently hold the arm there. Furthermore, 

whereas damage to the brainstem structure that holds the eyes produces nystagmus90,196, we know of 

no condition that resembles nystagmus in the context of reaching.  

We began by asking a simple question: are the commands that hold the limb at the target solely 

determined by the target position (Fig. 6.1A, left), or are they dependent in part on the preceding move 

commands (Fig. 6.1A, right)? We began by measuring activity across arm muscles during point-to-point 

reaching. When monkeys reached to a single target from various directions, we found that the integral 

of reach activity predicted hold activity after the movement ended. Furthermore, as the target location 

varied, the same integration function accounted for hold period activity at the various endpoints. Thus, 

across a range of directions and endpoints, the hold period activity was related, through integration, 

with the preceding move period activity. 

To ask whether this pattern held across other types of movements, we considered goal-directed 

finger movements in which the start and end target locations were kept constant. As monkeys flexed 

their finger, there was natural variability in muscle activity both during the movement and during the 

ensuing hold period. However, this variability had structure: on a within-trial basis, changes in hold 

period commands in all recorded muscles were correlated with the integral of the preceding commands 

that had brought the finger to its current location.  

These patterns revealed a correlation, not causation. To test whether there might be a causal 

link between movement and holding, we imposed a change to the commands that moved the arm to a 

given target location, and quantified whether on a within-trial basis, the change in move period 

commands influenced the subsequent hold period commands. To do this, we altered the reach 

commands of humans through adaptation81. To measure the properties of the hold controller, we 

designed a procedure in which we slowly displaced the hand during the hold period while subjects were 

engaged in a working memory task. We recorded the forces produced by the hand in response to the 

involuntary displacements during the hold period, thus measuring the postural field that held the arm 

still. We found that as the reach period commands changed, the entire postural field shifted, indicating 
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that changes to reach commands altered the null point of the hold controller. Notably, the function that 

related the hold period controller to the preceding reach period was the same integration function that 

we had observed in point-to-point reaching and finger movements. 

Finally, we probed the neural circuits that might support this putative link between movement 

and holding by examining reaching in patients who had suffered damage to their corticospinal tract 

(CST) above the level of the brainstem. As expected, these stroke survivors exhibited large trial-to-trial 

variability in the commands that they produced during both the reach and the subsequent hold periods. 

Remarkably, the link between move and hold period commands appeared intact: on a within-trial basis, 

the hold period forces were related via a form of integration to the immediately preceding, but now 

imperfect, reach period forces. Thus, in monkeys, healthy humans, and stroke survivors, across arm 

movements and finger movements, the hold period commands depended on the preceding commands 

that had moved the limb to its current location. These results raise the possibility that the postural 

controller possesses a subcortical feedforward module that calculates hold period commands through 

real-time integration of the move period commands. This feedforward computation then combines with 

visual and proprioceptive feedback to produce the sustained commands that result in postural stability. 

 

6.2 Methods 

Here we divide our methodology into three sections. Section A pertains to a theoretical derivation of the 

integration equation. Section B pertains to non-human primate data. Section C pertains to human data. 

 

6.2.A The reach integrator hypothesis 

Muscles are engaged during the period of moving as well as the subsequent period of holding still. We 

hypothesized that for arm and finger muscles, activity during the movement ( )u t  could be decomposed 

into contributions from a move controller ( )m t and a hold controller ( )h t : 

 = +( ) ( ) ( )u t m t h t  (3) 

If the move and hold controllers are connected in series, like the control system present for the eye and 

the head, the hold controller produces its output by integrating in real-time the output of the move 

controller. An example of this is shown in Fig. 6.1B, in which EMG of ant. deltoid is decomposed into 

move and hold commands. Here, we explain this decomposition and derive some of its predictions.  
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 For a movement from position 1h  to position 2h  the hold controller first produces commands 

for holding at 1h  and then transitions to holding commands at 2h  through integration of ( )m t . Here is 

an integration function that could accomplish this task: 

  = + 
0

1( ) ( ) ( )
t

t
h t u h k m d  (4) 

In the above equation, 1( )u h  represents hold activity at position 1. Combination of Eqs. 3 and 4 yields: 

  = + + 
0

1( ) ( ) ( ) ( )
t

t
u t m t u h k m d  (5) 

Given the measurement ( )u t , e.g., EMG from a given muscle, we can decompose the measurement into 

its constituents ( )m t  and ( )h t  by solving the above equation iteratively for ( )m t . This is what we did to 

plot the traces in Fig. 6.1B (we assumed k=1).  

To evaluate the predictions of this equation, we measured movements of duration T, between 

two positions 1h  and 2h . At the end of the movement the move commands go to zero yielding: 

  = + 
0

2 1( ) ( ) ( )
T

t
u h u h k m d  (6) 

Unfortunately, we do not have an a priori estimate of the integration gain k. Thus, during movement we 

cannot uniquely estimate ( )m t  and ( )h t . To proceed, we made a simplifying assumption: the move 

commands could be approximated by taking the overall EMG signal ( )u t  and subtracting off the hold 

commands measured at the start of movement: 

  
0

2 1 1( ) ( ) )( ( )
T

t
u h u h k u u h d a  + − +  (7) 

Here we added a bias term, a, to account for systematic error introduced by our approximation. 

Rearranging the terms in Eq. (7) yields the prediction of the hypothesis: 

  
0

2 1 1( ) ( ) ( ) ( )
T

t
u h u h k u u h d a −  − +  (8) 

This states that the change in hold period activity should be roughly a linear function of the integral of 

muscle activity during the preceding movement with a gain k. Thus, from this approximation we arrive 

at Eqs. (1) and (2) in the main text. 

 

6.2.B Monkey experiments 

We performed four sets of experiments: (1) reaching movements in non-human primates, (2) finger 

movements in non-human primates, (3) reaching movements in healthy humans, and (4) reaching 

movements in stroke patients. 
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6.2.B.1 Reaching movements 

Two monkeys participated in a reaching task described elsewhere197,198. Briefly, at the start of each trial 

the monkey held its hand at a central home location. After a “GO” cue, the monkey reached to one of 

eight peripheral targets displayed in the vertical plane on a monitor (Fig. 6.1B), and then held its arm at 

the target for at least 0.5 sec. After this holding period, the monkey returned its arm to the central 

home location and held it there for at least 0.5 sec, until the start of the next trial. 

On each trial, hand position was recorded through infrared optical tracking of a bead fixed to 

the third and fourth fingers. The activity of several muscles was also recorded using intramuscular 

electrodes. In Monkey A, these muscles included the anterior, medial, and posterior deltoid, the medial 

and lateral bicep, and the upper and lower trapezius. From Monkey B, these muscles included the 

anterior, medial, and posterior deltoid, the pectoralis, the brachialis, the medial and outer bicep, and 

the upper and lower trapezius. EMG signals were filtered (10-500 Hz), digitized at 1 kHz, rectified, and 

smoothed with a Gaussian kernel (standard deviation of 20 ms). Muscle activity was then averaged 

across movements towards each target, separately. We normalized the data by setting to 0 the average 

muscle activity at the center hold location, and setting to 1 its maximum activity in the task.  

We asked whether activity in a given muscle during the hold period could be related to its 

activity during the preceding reach period (Eq. 1). For our analysis, the pre-movement hold activity 

1( )u h  was quantified as the mean activity in the [-700, -350] ms period relative to movement onset for 

outwards reaches, and [-300, -200] ms period relative to movement onset for return reaches. The post-

movement holding activity 2( )u h  was quantified as the mean activity over [+300, +450] ms period after 

movement termination for both outwards and return movements. We started this interval 300 ms after 

movement offset to allow time for muscle dynamics to settle. And finally, the bounds for integration 

(i.e., t0 and T in Eq. 1) were set as 140 ms before movement onset up until movement offset. We started 

integration prior to movement onset to capture changes in muscle activity that preceded change in 

kinematics. 

Of the 320 different movement types (20 muscles x 2 reaches per trial x 8 targets), 6 movements 

(1.9% of trials) had reach durations that were too slow to gain an accurate measurement of holding 

activity prior to the start of the next movement. To identify these trials, we used a cutoff for movement 

duration of 850 ms. The 6 trials with movement durations that exceeded 850 ms were not included in 

our analysis. 

We fit the integration parameters, k  and a , in Eq. (1) in the least-squares sense. To determine 

if the integration gain differed for outward and return movements (Fig. 6.1G), we fit the outwards and 
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return movements separately, and then tested for a difference in integration gain with a paired t-test. 

To determine if integration gain differed for movements of different durations, for each movement type 

(16 possible movements, 8 directions for outwards and return movements), we sorted movements into 

fast and slow, based on the median movement duration. Because muscles were recorded on different 

sets of sessions, the average movement durations for each muscle differed. For the slow and fast 

movement groups, we fit the integration parameters in Eq. (1), and tested for a difference in integration 

gain with a paired t-test.  

To determine how gravity impacted the gain of integration, we separated movements into two 

groups: (1) the horizontal movements to and from Targets 2 and 7 in Fig. 6.1B, and (2) the other six 

movements (all contained a vertical component). Because the horizontal group groups consisted of only 

4 movements (2 out and 2 back) for each muscle, we used a different technique to test for differences in 

integration gain. We collapsed data across all muscles and movements in the horizontal group, and then 

separately in the vertical group. We then fit integration parameters in Eq. (1). To test if there was a 

difference in the integration gain (i.e., the slope of the linear regression) we tested for a group by move 

period interaction effect on the hold period activity, using an ANCOVA. 

We also tested if the maximum activity during moving (as opposed to the integral) was an 

equally good predictor of holding activity. For this, we quantified either the max activity (if the muscle 

increased activity) or min activity (if the muscle decreased activity) over the entire movement. We then 

regressed holding activity onto the max or min activity, for each muscle separately. We compared the R2 

of this fit to that of the integral fit using a paired t-test (Fig. 6.1F, right). 

 

6.2.B.2 Finger movements 

To examine the within-trial covariance between the commands generated during the movement period 

and the subsequent holding period, we considered finger movements199. Two monkeys (R and D) used 

their index finger to track a visual target (Fig. 6.2A). The index finger was splinted within a narrow plastic 

tube, constraining movements to the metacarpophalangeal joint. The hand on the recording arm and all 

other digits were placed in a padded pocket which prevented movement. The recording arm was placed 

in a sleeve to prevent movement. The contralateral arm was not restrained. 

On each trial the target moved between two positions at a speed of 12 deg/sec. On flexion trials 

the target moved from 12° to 24°. On extension trials, this order was reversed. The finger flexion 

movements were resisted with a spring load that measured 0.026 N⋅m at 12° and 0.048 N⋅m at 24°. Each 

trial started with a rapid movement to the start position. The monkey then held its finger at the start 
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location (hold 1) for 1 sec, and then made a slow tracking movement to the target over a 1 sec interval 

(e.g., Fig. 6.2B). The trial ended with a 1 sec hold at the target (hold 2). 

We recorded activity of 9 muscles of the finger and forearm (1DI, AbPL, EDC, ECR, ECU, FDS, 

FDP, FCR, and FCU) on each trial and on each monkey (e.g., Fig. 6.2C). Muscle activity was measured 

using subcutaneous electrodes. In order to analyze single trial activity, we first rectified the data, and 

then smoothed it with a Gaussian kernel (standard deviation of 200 ms). After this, we normalized the 

data by setting to zero the average muscle activity at the 12° hold period, and setting to one its 

maximum activity during movement. 

 We used Eq. (1) to test whether there was a within-trial relationship between move period and 

the subsequent hold period activity of each muscle. We focused on flexion movements in which the 

finger moved against the external load. For this analysis, pre-movement holding activity 1( )u h  was the 

mean activity over a 400 ms interval starting 1 sec prior to movement onset. The post-movement 

holding activity 2( )u h  was the mean activity over a 200 ms period starting 700 ms after movement 

termination. And finally, the bounds for integration (i.e., t0 and T in Eq. (1)) were set as 150 ms before 

movement onset up until movement offset.  

We considered data across all muscles and trials (n=6070 for Monkey R, n=2796 for Monkey D). 

We then fit the integration parameters, k  and a , in Eq. (1) in the least-squares sense, for each monkey 

separately. We quantified the variance in holding activity accounted for by the integral of moving 

activity. For visualization, we also computed the 95% confidence ellipses that describe the joint 

distribution of holding force and the integral of moving force across all trials (Fig. 6.2E). 

 We compared integration to an alternate hypothesis: fluctuation in the final holding activity was 

caused by fluctuation in the initial holding activity (Fig. 6.2D). This is described by the linear equation 

 +2 1( ) ( )u h ku h a . To test the alternate hypothesis, we collapsed data across all muscles and trials and 

regressed hold 2 activity onto hold 1 activity, and computed the variance accounted for (i.e., R2). For 

visualization we also computed the confidence ellipses that describe the joint distribution of hold 2 

activity and hold 1 activity. 

 We also considered the possibility that the observed correlations between move and hold 

period activity could be spuriously generated by the physical constraints required to move and hold 

against the spring load. That is, larger movements would require more work against the spring, leading 

to larger displacements that in turn would require greater hold force. This alternate hypothesis hinges 

on two relationships. One, trial-by-trial changes in hold position must correlate with trial-by-trial 
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changes in hold EMG activity. Two, trial-by-trial changes in the finger displacement (i.e., movement size) 

must correlate with the integral of moving EMG activity. To test these possibilities, we used linear 

regression. First, we regressed muscle activity during the target hold period onto the position of the 

finger during the hold period. In addition, we also regressed the change in hold activity from the start 

location to the target location, onto the change in finger position across these two periods (i.e., the total 

displacement of the spring). Finally, we also regressed the integral of move period activity onto the 

change in finger position. In all cases, we performed separate regressions for each muscle, and then 

averaged the resulting R2 values across muscles. 

 Note that there is a critical difference between regressing hold activity on hold 2 position alone 

versus regressing hold activity onto the combination of the hold 1 and hold 2 conditions. Regression 

within, but not across conditions, is the appropriate way to measure the trial-by-trial correlation 

between EMG and position without the influence of spurious across-condition correlations200. If hold 1 

and hold 2 are combined into the same regression (thus doubling the number of data points), these 

combined measurements account for 42 ± 4% of the variance in EMG activity in individual muscles, as 

compared to approximately 2% for hold 2 activity alone. The inflated variance accounted for is caused 

by the large separation between the associated distributions for hold 1 and hold 2 (see Fig. 6.3C at right 

for an example), not by a strong coupling between EMG and position within any of these distributions. 

Therefore, we were careful not to collapse across both hold 1 and hold 2 when quantifying trial-by-trial 

correlation between EMG and finger position, to avoid these spurious correlations200. With that said, we 

mention the combination of hold 1 and hold 2, to confirm that the spring load does indeed require a 

substantial modification in the EMG activity of individual muscles, even though trial-by-trial variations in 

EMG activity at the hold 2 position are only very weakly related to position (see the main text). 

 Finally, we considered the possibility that the observed correlations between move and hold 

period activity could have be caused by trial-to-trial fluctuations in co-contraction. If on some trials, the 

finger was stiff and co-contracted its muscles, and on other trials less so, we may observe correlations 

between move and hold activity, without any relation to hold position. To change finger stiffness, 

agonist and antagonist pairs of muscles would exhibit correlated increases or decreases in activity. In 

other words, we should be able to predict the hold period activity in one muscle not solely based on its 

move period activity (as in the integration hypothesis) but also on the activity of simultaneously 

recorded muscles. To test this idea, we regressed hold period activity of each muscle onto the integral of 

move period EMG in other muscles. For a given muscle, we performed this regression separately for all 

of its possible pairs, calculated the R2 value for each pair, and then averaged across pairs to obtain a 
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single R2 value per muscle. We report the average R2 value across all muscles. For context, we compare 

this R2 value with that obtained by regressing hold period activity in a muscle onto the integral of move 

period activity in that same muscle. 

 

6.2.C Human experiments 

All human subject experiments were approved by the Institutional Review Board at the Johns Hopkins 

School of Medicine. Our healthy human cohort consisted of n=223 individuals. Healthy participants 

ranged from 18-61 years of age (mean ± SD, 25.2 ± 7.9) and included 128 males and 95 females.  

 

ID Age Sex 

Time 

since 

stroke 

Handed

-ness 

Paretic 

arm 

FMA 

(/66) 

ARAT 

(/57) 
CST lesion location 

S001 80 M 2y Right Left 57.5 57 Right internal capsule 

S002 51 M 6y Right Left 40 47.5 Right fronto-parietal white matter 

S003 68 F 7y Right Right 34.5 19 Left corona radiata 

S004 30 F 5y Right Left 55.5 43.5 Right precentral and postcentral gyri 

S005 78 M 13mo Right Right 43.5 34 Left corona radiata 

S007 54 F 2mo Left Right 63 57 Left corona radiata 

S008 53 F 14mo Right Left 41 25 Right centrum semiovale 

S010 70 M 5y Right Left 20 12 Posterior limb of right internal capsule 

S011 43 F 20mo Right Right 64 57 Left corona radiata 

S012 48 M 6y Right Left 18.5 6.5 Right corona radiata 

S013 68 M 9y Right Left 14 8 Right internal capsule 

S014 45 F 16mo Right Left 40 39.5 Right precentral and postcentral gyri 

S015 64 F 10y Right Left 22 4.5 Right corona radiata 

S016 38 F 21mo Both Right 62.5 57 Left corona radiata 

Table 6.1. Measures of impairment in stroke patients. Patients completed the Fugl-Meyer Assessment (FMA) and 

the Action Research Arm Test (ARAT), as well as strength testing in the shoulder and elbow. Strength 

measurements were repeated twice and the maximal force was recorded on each effort and then averaged across 

repetitions. Two separate raters scored the FMA and ARAT assessments, and scores were averaged across raters. 

Missing entries in table indicate that the patient was unable to perform the desired action. Patients were selected 

based on MRI or CT scans, and/or available radiologic reports. Scans and/or reports were corroborated to 

determine the level at which the white matter of the corticospinal tract (CST) was lesioned. Here we provide the 

level of the brain at which the white matter was lesioned. 
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Our stroke patient cohort consisted of n=14 adults that had suffered damage to the 

corticospinal tract (CST). The stroke patients ranged from 30-80 years of age (mean ± SD, 56.4 ± 15.2) 

and included 6 males and 8 females. For comparison, we recruited a cohort of healthy age-matched 

controls who ranged from 28-81 years of age (mean ± SD, 60.6 ± 16.3) and included 5 males and 5 

females. There was no significant difference in age between the patient and older healthy control 

populations (2-sample t-test, p=0.53). 

 The stroke patients we recruited had survived a stroke affecting cortical or subcortical white 

matter associated with the CST. Patients were selected based on MRI or CT scans, and/or available 

radiologic reports. Scans and/or reports were corroborated to determine the level at which the white 

matter of the corticospinal tract (CST) was lesioned. Table S1 provides the level of the brain at which the 

white matter was damaged. 

We measured the degree of motor impairment in the patients using the Fugl-Meyer Assessment 

(FMA) and the Action Research Arm Task (ARAT). Two separate raters scored these assessments in each 

patient. In each limb, we measured the strength of elbow flexion and extension and shoulder horizontal 

adduction and abduction using a dynamometer (microFet 2). During measurements, participants rested 

their arm on a side table so the arm rested slightly below shoulder level. Strength measurements were 

repeated twice, the maximal force was recorded on each effort, and forces were averaged over 

repetitions. FMA scores, ARAT scores, strength, and other patient characteristics are reported in Table 

S1. Missing entries in table indicate that the patient was unable to perform the desired action.  

 

6.2.C.1 Overview of human reaching experiments  

In all our human experiments (healthy participants and stroke patients), participants held the handle of 

a planar robotic arm (Fig. 6.3A) and made point-to-point reaching movements between targets in the 

horizontal plane. For stroke patients and age-matched controls, the arm was supported by a frictionless 

air-sled. In addition, both the paretic (contralateral to lesion) and non-paretic (ipsilateral to lesion) arms 

were tested. For all other participants, the subject supported the weight of their own arm, and only the 

dominant arm was tested. 

 As the subject held the robot handle the forearm was obscured from view by an opaque screen. 

An overhead projector displayed a small white cursor (diameter = 3mm) on the screen that tracked the 

motion of the hand. Visual feedback of the cursor was provided continuously throughout the entirety of 

the testing period, except where otherwise noted. Throughout testing we recorded the position of the 

robot handle using a differential encoder with submillimeter precision. We also recorded the forces 
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produced on the handle by the subject using a 6-axis force transducer. Data were recorded at 200 Hz. 

Except where otherwise noted, kinematic time series were aligned to the onset of movement at the 

time point where hand velocity crossed a threshold of 1 cm/s. At trial onset, a circular target (diameter = 

1 cm) appeared in the workspace, coincident with a tone that cued reach onset. After stopping the hand 

within the target, a holding period of various durations (1.8 to 6.5 seconds) ensued where subjects were 

instructed to continue holding the handle within the target. After this holding period, a random inter-

trial-interval sampled uniformly between 0.3 and 0.4 seconds elapsed prior to the start of the next trial. 

At the end of each reach, coincident with the start of the holding period, movement timing 

feedback was provided. If the reach was too fast (or too slow), the target turned red (or blue) and a low 

tone was played. If the reach fell within the desired movement interval the target “exploded” in rings of 

concentric circles, a pleasing tone was played, and a point was added to a score displayed in the upper-

left-hand corner of the workspace. For stroke patients and age-matched controls, the desired 

movement duration was 600-800 ms. For all other participants this interval was 450-550 ms. 

Participants were instructed to obtain as many points as possible throughout the experimental session. 

 In all human reaching experiments, trials were ordered in pairs of outwards and backwards 

movements. In other words, each pair started with a reach from a start position to a target (outward 

reach). The subject then held the arm still at the target position, and then reached back to the start 

position (the backward reach). Only outwards movements were analyzed here. All backwards 

movements were performed in a channel, or a partial channel condition (described below). 

 

6.2.C.2 Measurement of moving and holding forces in human subjects 

At regular intervals throughout each experiment (generally every 5th outwards trial) we measured forces 

in a channel trial27. On these trials, the motion of the handle was restricted to a linear path connecting 

the start and target locations (Fig. 6.3A). To restrict hand motion to the straight-line channel trajectory, 

the robot applied perpendicular stiff spring-like forces with damping (stiffness = 6000 N/m, viscosity = 

250 N⋅s/m). This condition maintained the hand in equilibrium along the axis perpendicular to 

movement. Therefore, the force applied by the robot was equal and opposite to the lateral force applied 

by the subject, thus serving as a precise measurement of lateral reaching forces. Before analyzing these 

forces offline, we first subtracted the baseline force from all force time series. We obtained the baseline 

force by averaging the forces recorded on the channel trials within the null field period at the start of 

each experiment. 



201 

 

 One of the primary objectives of our study was the comparison of moving and holding forces on 

channel trials. In each of our experiments, the hand remained in the channel during both the moving 

period and the holding period (a period of time of at least 1.8 sec after the reach ended) to allow us to 

measure both moving and holding forces. 

Our primary hypothesis was that the holding forces could be described as an integral of moving 

forces according to Eq. (2). In this equation, ( )F t  refers to the channel forces exerted by the subject 

during movement. The quantities 1( )F h  and 2( )F h  refer to the forces applied by the hand while holding 

still at the start position prior to the reach (1) and the target after the reach (2). The parameters k and a 

refer to the integration gain and offset.  

 We calculated the initial holding force, 1( )F h , as the mean force over a 100 ms period starting 

500 ms prior to reach onset. The final holding force, 2( )F h , was calculated as the mean holding force 

over a 100 ms interval starting 900 ms after reach termination. The termination of the reach was 

determined based on a velocity threshold of 3.5 cm/s. The integral of reach forces was computed over 

the entire movement duration (from movement onset to movement offset). Movement onset was 

determined based on a velocity threshold of 1 cm/s. 

 We conclude this section with a critical point. Holding forces would tend to move the hand off 

the target during periods of holding still. We hypothesized that these departures might result in 

adaptation of postural control. For this reason, we wanted to prevent this unwanted motion. On 

channel trials, we prevented this by keeping the hand in the channel, as described above. However, on 

all other trials, we also wanted to prevent motion of the hand during the holding process. Therefore, for 

all outwards movements not performed in the channel (this does not apply to the return movements), 

we applied a two-dimensional clamp to the hand at the end of the reaching movement (Fig. 6.3A). This 

clamp prevented motion of the hand during the hold period, despite any forces the participant might 

have applied to the handle, and was programmed as a “well” within the target location that attracted 

the hand in two dimensions, with stiff spring-like mechanics (stiffness = 4000 N/m, viscosity = 75 N⋅s/m). 

The target-hold well was applied when the hand entered the target location and the hand velocity fell 

below a threshold value of 3.5 cm/s. 

 And finally, to make sure that holding forces on outwards movements did not affect the initial 

motion of the hand on the following backwards movement trial, all return movements were performed 

in a partial channel. The channel was removed after the hand had traveled 40% of the desired 

movement amplitude. Therefore, the hand terminated at the start position without any external forces. 
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6.2.C.3 Working memory task 

In some of our experiments, we employed a cognitive task to distract participants during measurement 

of holding forces. The working memory task consisted of a modified 2-back task where subjects were 

randomly shown an integer between 1 and 4. The integers appeared one at a time so that the next 

integer replaced the previous integer on the screen (Fig. 6.5A). Participants were told to determine if the 

integer on the display matched the integer shown two numbers in the past. If the integers matched, 

participants verbally responded with the keyword “same”. If the integers did not match, participants 

verbally responded with the keyword “different”. If the response was correct a pleasant tone was played 

and a point was added to the experiment score. If the response was incorrect a low pitch tone was 

played and no point was awarded. To confirm that participants were engaged in the cognitive task, we 

recorded each correct and incorrect response. Participants were clearly engaged in the cognitive task 

and responded correctly to 91.8 ± 0.6% of items correctly, at rates of approximately 0.77 ± 0.6 items per 

second. 

 

6.2.C.4 Reaching movements in the null field 

A total of 220 healthy subjects participated in these experiments. The general structure of the task is 

described in the previous two sections. Almost all movements were performed in a null field, i.e., the 

subjects freely reached between the start and target positions. At the end of these null field 

movements, the robot applied a target-hold well during the holding period, as described in a previous 

section. On some trials we applied a channel and measured moving and holding forces as described in a 

previous section. All return movements were performed in a channel, or partial channel as described in 

a previous section. 

 This process was the same for healthy subjects and stroke patients. The only differences were 

that we tested both arms of the stroke patients (paretic then non-paretic), supported the weight of the 

arm of the stroke patients and their age-matched controls with a frictionless air sled, and allowed for 

differences in movement timing are described above. 

 We measured the relationship between the move period forces and the change in holding 

forces as described in C2. Specifically, we measured the within-trial relationship between these two 

quantities (Fig. 6.3B right and Fig. 6.3C for healthy controls; Fig. 6.7F, left panel and Fig. 6.7H for stroke 

patients). At various points throughout the manuscript, we also report the integration gain, or in other 

words, the slope of the linear relationship between hold forces and the integral of reach forces. We 
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compared the gain of integration for the control group in Fig. 6.7 to the experiment groups in Fig. 6.3, to 

test if adding weight support altered the integration gain (Fig. 6.3B, bottom-right). 

 It is important to note that we combined several datasets for our analysis in Fig. 6.3C. While the 

structure of each dataset was the same, they differed in the kinematics of the reaching movement. 

Across these tasks, we varied several parameters of the movement, including the target location (center 

of the body, to the left of the body, and to the right of the body), the reaching direction (towards the 

body, away from the body, or at an oblique angle), and the reach amplitude (10 cm or 20 cm). Most 

subjects reached between the same two locations, but for some subjects, there were two potential 

targets for each trial. The number of reaching trials performed varied across tasks. They ranged from 40 

trials to 288 trials (half were outwards movements; the other half were backwards movements). 

 In Fig. 6.3D, we tested to see if the integration gain differed for fast and slow movements. For 

each participant, we sorted their channel trial reaching movements in the null field period according to 

their duration. Then, we selected the two fastest and two slowest movements for each subject (Fig. 

6.3D, left, individual points) and combined these movements across all subjects. Then we fit Eq. (2) to 

both the slow movement and fast movement distributions. We tested for differences in integration gain 

by reporting the move duration by move force integral interaction effect on hold force within an 

ANCOVA. 

 

6.2.C.5 Reaching movements in a velocity-dependent force field 

The serial architecture between moving and holding (Fig. 6.1A) makes a strong prediction: external 

adaptation of moving activity will lead to changes in holding still. To test this idea, we used a force field 

paradigm. We gradually adapted reaching movements of a set of participants (n=32) to a force field that 

exerted forces on the hand that were perpendicular and proportional to its velocity according to: 
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   (9) 

Here, vx and vy represent the x and y velocity of the hand, fx and fy represent the x and y force applied to 

the hand by the robot, and b represents the magnitude of the force field (in units of N⋅s/m). When b > 0, 

this corresponds to a clockwise (CW) field, and when b < 0, this corresponds to a counterclockwise 

(CCW) field. 

 In the experiment shown in Fig. 6.3, participants were exposed to both CW and CCW force fields 

while making 10 cm movements. The experiment was structured so that the force field magnitude 

would start at zero (a null field trial) and then gradually increase to its maximum strength over many 
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trials. After this, the magnitude would then be reduced back to zero over many trials. The exact 

perturbation schedule for healthy subjects is shown in Fig. 6.3D. The experiment started with 40 trials 

(20 outwards movements and 20 backwards movements) of null field trials. Next subjects were adapted 

to either a CW or CCW force field. The magnitude of CW/CCW perturbation was increased/decreased 

from 0 to 15/-15 N⋅s/m over the course of 100 outwards reaching trials (200 trials in total). The 

perturbation magnitude was then maintained at a constant level of 15/-15 N⋅s/m over the course of 50 

outwards reaches (100 trials total) and then brought back to zero gradually in a de-adaptation period of 

100 outwards reaching trials (200 trials total). After this de-adaptation period, participants continued to 

reach in a washout period of 20 outwards reaches (40 trials total) where no force field was applied. 

Participants were then given a short break and this structure was repeated (either for the same force 

field, but a different target position (n=17), or the opposite force field and the same target position 

(n=15). 

 The experimental protocol was nearly identical (Fig. 6.3D) for our stroke patient experiments, 

with two small differences. First, trial counts differed. Adaptation and de-adaption periods were 160 

trials, as opposed to 200 trials. The period of maximal perturbation magnitude was reduced from 100 

trials to 80 trials. The second difference is that we increased the maximal force field magnitude to 18 

N⋅s/m. We increased this magnitude to compensate for slower movements (we required 600-800 ms 

movement duration for stroke patients and their age-matched controls, but 450-550 ms in other 

experiments). Each arm was tested in the stroke experiments in four blocks: paretic, non-paretic, 

paretic, non-paretic. The perturbation magnitude went in an A-B-B-A order (where A and B refer to 

either a CW or CCW field). The arm was supported by a frictionless air sled for both patients and age-

matched controls. 

 For both healthy subjects and stroke patients, we measured the relationship between the move 

period forces and the change in holding forces at regular intervals throughout the process of adaptation 

and de-adaptation. To do this, every 5th outwards reaching movement was performed in a channel. We 

measured the within-trial relationship between moving and holding forces (Eq. 2). 

 We performed a control experiment (n=7 subjects, Fig. 6.9) to determine if holding forces were 

stable over longer periods of time. In this experiment, the length of the hold period was increased from 

approximately 1.8 to 6.5 sec. To keep subjects engaged over this period of time, subjects were exposed 

to a working memory task during the holding period of channel trials as described in C3. The experiment 

was otherwise similar to the other tasks described in this section.  
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6.2.C.6 Reaching movements in a zero integral force field 

We considered an alternate hypothesis: holding forces could be a trivial continuation of moving forces 

(as opposed to an integral of moving forces). To test this idea, we designed two position-dependent 

force fields, A and B, with the latter integrating to zero (Fig. 6.4). 

Subjects reached between two targets separated by 20 cm. To form a zero integral force field, 

we designed a perturbation with two components, FF1 and FF2. Each perturbation produced force along 

the x-axis, while movements were made along the y-axis. The first component FF1 was applied during 

the first 10 cm of the reach, and the second component FF2 was applied during the last 10 cm of the 

reach. Each component was programmed as a quadratic function of position. For FF1 zero force was 

applied at the start position and at 10 cm. The maximal force was reached at 5 cm (the vertex of the first 

parabola). For FF2 zero force was applied at 10 cm and at the target position. The maximal force was 

reached at 15 cm (the vertex of the second parabola). Here we refer to the magnitude of FF1 and FF2 as 

the maximal force of each perturbation. To obtain a zero integral force field, FF1 and FF2 produced forces 

in opposite directions. The experiment started with 25 outwards (50 trials total) null field trials (FF1 and 

FF2 were both equal to zero). Then we gradually increased the magnitude of FF2 while FF1 remained at 

zero (Fig. 6.4B, Phase 1). FF2 was increased from 0 N to 3.5 N in even increments, over the course of 100 

outwards reaching movements (200 trials total). Then Phase 2 of the experiment started. In this phase, 

FF2 was maintained at 3.5 N on all trials, while FF1 was gradually changed. The magnitude of FF1 was 

decreased from 0 N to -3.5 N over the course of 200 outwards reaching trials (400 trials total). In this 

way, at the end of the experiment, participants were exposed to two force fields within the same 

reaching movement that perturbed the hand in opposite directions but with equal magnitude. 

Throughout this paradigm, we measured forces on every 5th outwards reach in a channel. 

We found that holding forces gradually decreased in Phase 2 of the experiment, consistent with 

our hypothesis of integration. To make sure that the introduction of FF1 caused this decrease in holding 

force, as opposed to repetition or fatigue, we performed a control experiment (n=11, Fig. 6.4A). In the 

control experiment, Phase 1 was identical to the main experiment described above. However, during 

Phase 2, the magnitude of FF1 was maintained at 0 and the magnitude of FF2 was maintained at 3.5 N. 

All other details were identical. 

 

6.2.C.7 Measurement of the postural field 

In order to hold the limb still, the postural controller generates a converging field of position-dependent 

forces that counters unwanted displacement of the limb201,202. In some of our experiments (Fig. 6.5) we 
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set out to measure this field. To do this, we designed a postural probe (Fig. 6.5A). On a postural probe 

trial, the robot moved the hand slowly in a random direction after the hand stopped within the target. 

As the hand was moved, visual feedback of hand position was prevented: the display cursor was frozen 

at the holding location. 

To quantify the output of the holding controller, we measured the forces the subject applied to 

the handle while the robot moved the hand. To prevent participants from voluntarily opposing the 

imposed hand displacement, we distracted each participant with the working memory task described in 

an earlier section. We did not inform participants as to the nature or presence of the postural 

perturbation. Instead, we instructed participants to solely concentrate on the working memory task and 

obtain as many points as possible by answering memory questions correctly. Points for correct 

responses were combined with the points awarded for successful reaching movements. 

The postural probe consisted of a straight-line displacement designed to make the probe as 

imperceptible as possible. To move the hand, we placed the hand in a two-dimensional clamp with stiff 

spring-like mechanics (stiffness = 4000 N/m, viscosity = 75 N⋅s/m) and moved the equilibrium position of 

the clamp through the workspace a total of either 2.5 cm, 4 cm or 5 cm, depending on the trial. The 

imposed motion consisted of three phases. 

In Phase 1, the hand was moved a short distance (0.15 cm for 2.5 cm probes, 0.15 cm for 4 cm 

probes, and 0.3 cm for 5 cm probe) along a minimum jerk trajectory, over a short duration (0.75 seconds 

for 2.5 cm probes, 0.75 seconds for 4 cm probes, and 1.5 seconds for 5 cm probes). At the end of this 

displacement the velocity of the hand was equal to 0.375 cm/s. In Phase 2, the hand was then moved at 

this constant velocity for a specified displacement (2.2 cm for 2.5 cm probes, 3.7 cm for 4 cm probes, 

and 4.4 cm for 5 cm probes). This constant velocity displacement lasted for 5.87 seconds for 2.5 cm 

probes, 9.87 seconds for 4 cm probes, and 11.73 seconds for 5 cm probes. In Phase 3, the hand was 

slowed to rest over a short distance (0.15 cm for 2.5 cm probes, 0.15 cm for 4 cm probes, and 0.3 cm for 

5 cm probe) along a minimum jerk trajectory, over a short duration (0.75 seconds for 2.5 cm probes, 

0.75 seconds for 4 cm probes, and 1.5 seconds for 5 cm probes). Finally, an additional buffer period of 

0.3 seconds was added after reaching the final displaced position, prior to the end of the probe trial. The 

total duration of the probe was therefore 7.67 seconds for 2.5 cm probes, 11.67 seconds for 4 cm 

probes, and 15.03 seconds for 5 cm probes.  

 Critically, as stated earlier, the participant was not provided position feedback during the 

postural probe. Instead, cursor feedback of hand position was frozen at the target. Therefore, at the end 

of the postural probe, there was a discrepancy between the location of the hand and the location of 
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cursor feedback. To seamlessly reunite the hand with its cursor feedback without drawing the attention 

of the participant, we manipulated visual feedback during the following reaching trial; as the next reach 

was executed, we projected the cursor position onto the line connecting the frozen cursor position and 

the position of the next target. In this way, it appeared to the participant as if they were reaching 

perfectly straight between the start and target position. At the same time, we confined the motion of 

the hand to a straight line connecting its displaced position with that of the next target. When the hand 

entered the target, a small and brief force pulse was applied to move the hand to the center of the 

target at which point x and y feedback was reunited with the true hand position. 

 

6.2.C.8 Quantifying the null point and shape of the postural field 

As the hand of the participant was moved by the robot during postural probe trials, the displacement of 

the hand was opposed by postural restoring forces201,202 (Fig. 6.5B). To mathematically characterize the 

two-dimensional field of restoring forces (i.e., the postural field), we fit a simple mathematical model201 

that treated the arm as a linear two-dimensional spring with a single equilibrium point: 
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where Fx and Fy are the forces applied to the handle due to displacement of the hand from the null point 

of the system (xnull,ynull) to some position (x,y). The stiffness matrix K, 
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describes the magnitude and orientation of the stiffness field. We constrained K to be a symmetric 

matrix (i.e., kxy = kyx). We fit this linear spring model to the postural restoring forces by identifying the 

parameter set (5 free parameters, xnull, ynull, kxx, kxy, kyy) that minimized the sum of squared error 

between the hand forces (collapsed across the x and y axes) predicted by Eq. (10) and the hand forces 

measured during all of the postural probe trials. For this fit, we used the forces measured within the 

ellipse bounded by -2.25 to 2.25 cm along the x-axis and -1.5 to 1.5 cm along the y-axis, relative to the 

final hand position. To locate the optimal parameter set, we used the genetic algorithm in MATLAB 

R2018a. We repeated the genetic algorithm search 8 times and selected the one that minimized the 

squared error cost function. The optimal parameter set provided a good fit to the data, accounting for 

approximately 70% of the variance in the observed postural field (R2 during baseline period, mean ± 

SEM: 0.70±0.03; R2 after adaptation: 0.69±0.02). 
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 To summarize the shape of the postural field, we considered three properties: (1) its null point, 

(2) its orientation, and (3) its stiffness. The null point was equivalent to xnull and ynull. To calculate the 

orientation of the field, we considered the eigenvector of the stiffness matrix K corresponding to the 

largest eigenvalue of K. We calculated the angle of this eigenvector in the x-y plane. To compute the 

stiffness of the field, we calculated the Frobenius norm of the stiffness matrix K. 

 

6.2.C.9 Measuring how changes in movement forces alter the postural field  

To determine if changes in reaching forces altered the postural field, we measured the postural field 

before and after adaptation to a velocity-dependent force field. Subjects (n=27) were adapted to a CCW 

velocity-dependent force field. To measure the postural field, postural probes moved the hand in 1 of 12 

directions (0°, 15°, 30°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 330°, and 345° with respect to the x-axis) 

while participants were distracted with a working memory task. 

We measured the postural field before and after adaptation. Before adaptation, participants 

completed 3 blocks of trials, each separated by a short break. In each block, all 12 postural probe 

directions were visited a single time. The probe displacement was 2.5 cm for all probe directions. 

Postural probes were given on every 4th outward reaching movement. Therefore, participants 

completed a total of 288 baseline trials (3 blocks x 12 probes/block x 4 reaching movement pairs/probe 

x 2 movements/reaching movement pair). Outwards reaching movements of 10 cm were all performed 

directly away from the body. 

 Participants were then gradually adapted to a velocity-dependent force field. The field 

magnitude was decreased from 0 to -10 N⋅s/m in constant increments over the course of 65 outwards 

reaching trials (130 trials total). After this adaptation period, the postural field was re-measured (Fig. 

6.5B, right). As before, all 12 probe directions were probed in a random order, 3 times. No breaks were 

provided in between blocks. We anticipated that the postural field would shift after adaptation to the 

force field. Therefore, we extended the probe displacement to 4 cm for probe angles of 0°, 15°, 30°, 45°, 

315°, 330°, and 345°. Postural probes occurred at the same frequency as before adaptation for a total of 

288 trials. To maintain participants in an adapted state, on all outwards reaching trials other than 

postural probe trials, a velocity-dependent perturbation was maintained at -10 N⋅s/m. Target-hold wells 

were applied to the final hand position during all outwards trials (with the exception of postural probe 

trials) during the holding period (1.5 second duration, with an addition 0.3-0.4 inter-trial-interval). 

 Our analysis focused on changes in the postural field due to adaptation. First, we looked for 

within-subject changes to the location of the null point of the field. Second, we looked for within-subject 
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changes to the orientation and stiffness magnitude of the field. For visualization purposes we 

constructed a two-dimensional postural field from the forces measured during probe trials using linear 

interpolation. To do this, along each probe direction we resampled forces in x and y spatially in intervals 

of approximately 0.1 cm. For each of the resampled restoring forces we calculated the corresponding 

polar coordinates (i.e., the radius and angle). In polar coordinates, all x and y forces lied along a 

rectangular grid. We used bilinear interpolation along these polar coordinates to estimate the postural 

field within the space between the 12 probe angles. 

 

6.2.C.10 Measuring the relationship between holding forces and the null point of the postural field 

We reasoned that the holding forces measured in our other experiments (Figs. 6.3, 6.4, 6.6, and 6.7) 

were potentially caused by a misalignment between the hand (fixed in the channel at the target) and the 

postural null point (somewhere displaced from the target). If this is true, we could gradually eliminate 

these forces if we displaced the hand towards its null point. 

We recruited a set of subjects (n=19) to test these predictions at several points during 

adaptation to a velocity-dependent force field. At regular intervals during adaptation, we inserted 

postural probe trials along 0°, with respect to the x axis. This corresponded to the direction of the 

holding force. During the probe, participants were distracted with the working memory task. For the 

first ten participants, we used 5 cm postural probe trials. For the last nine participants, we shortened the 

probe length to 4 cm. Here we analyze only the first 4 cm of displacement. 

 Before adaptation, we measured the postural forces a total of 10 times. Postural probes were 

inserted regularly on every 5th outward reach, within a baseline period of 100 trials (50 outwards and 50 

backwards movements). Outwards reaching movements of 10 cm were all performed directly away 

from the body. Next, we adapted participants gradually to a CCW velocity-dependent force field, where 

we decreased the field magnitude from 0 to -10.5 N⋅s/m in constant increments over 175 outwards 

reaching trials (350 trials total). We measured moving forces, holding forces, and the response to the 

postural probe on every 5th outwards reaching movement. 

 We found that hand forces during the postural probe passed through a null point as the hand 

was displaced from its terminal position (Fig. 6.5E). To determine the location of the null point of the 

arm on a trial-to-trial basis we fit a three-parameter exponential function to the hand forces as a 

function of hand displacement in the probe, and recorded its x-intercept. To do this, we first resampled 

subject forces spatially in increments of 0.05 cm. Next, to reduce noise inherent in the single trial force 

measurements, we used a bootstrapping approach. On each trial, we randomly sampled subjects with 
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replacement, calculated the mean postural force as a function of distance across the sample, and fit the 

exponential to this mean behavior. We repeated this process 2000 times, and used this distribution to 

estimate 95% confidence intervals around the mean (Fig. 6.5F). 

 

6.2.C.11 Measuring adaptation in the gain of integration 

To maintain stability at the endpoint, the integrator must adapt as the reach controller adapts. For the 

oculomotor system, adaptation of the integrator occurs when there are consistent errors between the 

terminal position of the eye, and its target203. We speculated that such a mechanism might also adapt 

the gain of the reach integrator. To detect these errors, we considered the reach trajectories of 

participants as they adapted to velocity-dependent force fields (Fig. 6.6B). We spatially aligned reach 

trajectories by subtracting off the terminal hand position. 

We observed that participants often exhibited deviations in their hand position as they 

attempted to stop their hand at the end of movement (Fig. 6.6B, endpoint correction). To quantify the 

size of these errors, we measured the largest “positive” deviation of the hand from its terminal position, 

after the hand exceeded 80% of its reach trajectory. On movements in which no such error occurred, we 

instead calculated the largest “negative” deviation of the hand from its terminal position. In Fig. 6.6B, 

we highlight these errors for two example participants by temporally aligning reach trajectories to the 

point at which the hand exhibited the largest “positive” deviation from its terminal position. 

In Fig. 6.6D, we compare the magnitude and sign of the late trajectory deviations, to the gain of 

integration at the end of adaptation. To calculate the integration gain, we divided the median hold force 

by the median reach force integral, measured over 10 channel trials after the perturbation magnitude 

had plateaued (see horizontal line after CCW+ and CW+ in Fig. 6.3E, bottom). Similarly, in Fig. 6.6E, the 

integration gain was calculated by dividing the hold force by the reach force integral, either over the first 

one-third of CCW+/CW+ trials (for the FF early period) or the final 50% of CCW+/CW+ trials (for the FF 

late period). For the null period, we could not use this technique, as the mean reach force integral and 

the hold force were both nearly zero. Therefore, to calculate integration gain, we linearly regressed hold 

period force onto the integral of reach period force, and reported the slope of the regression line. 

 

6.3 Results 

We performed experiments in which monkeys and humans made goal-directed movements toward a 

target and then held their arm or finger at the target location. In each case we asked whether the 

commands during the move period influenced the subsequent commands during the hold period.  
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6.3.1 Muscle activity during the hold period following reaching 

When reaching movements are made from various starting points to the same target, we know of no 

model that predicts a consistent relationship between the reach period commands, which depend on 

reach direction, and the subsequent hold period commands, which depend on target location. Yet, if 

control of holding depends on the movement period (Fig. 6.1A, right), a single function must exist that 

transforms the commands that were generated during the movement period to the subsequent 

commands that are generated to hold the arm. To explore the plausibility of such a relationship, we 

used intramuscular electrodes to measure activity of 20 shoulder and elbow muscles during point-to-

point reaching in the vertical plane (9 muscles in monkey A, 11 muscles in monkey B). On each trial, 

monkeys first moved their hand from a central location to one of eight targets, held their hand at that 

target for at least 0.5 sec, then reached back to the central location and again held their hand for at 

least 0.5 sec (Fig. 6.1B). We normalized muscle activity by setting to zero its average activity at the 

central hold location, and setting to one its maximum activity in the task. 

Consider the activity of the anterior deltoid (Fig. 6.1B) as the arm reached from the central 

position to a target. For some directions, this muscle exhibited a burst of activity during the reach, and 

then sustained activity during holding (Fig. 6.1B, targets 3 and 5). For other targets, the muscle exhibited 

a smaller burst of activity during movement, and little or no activity during holding (target 1). Let us 

imagine that the measured EMG, denoted as u(t), is actually the sum of two signals: a “hold” command 

h(t) (brown traces in Fig. 6.1B) and a “move” command m(t) (red traces in Fig. 6.1B). The hold command 

is computed by adding the real-time integral of the move command to the initial hold activity that 

precedes movement (see Methods Section 6.2.A). If the hold commands are computed from the move 

commands in this way, the two commands should be related by a common function across different 

types of reaching movements: the change in muscle activity from before the movement to after the 

movement, should be related to the intervening move period muscle activity (see Methods A for 

derivation). We measured muscle activity with respect to its pre-movement hold period, 1( )u h , and then 

integrated that change with respect to time until the end of the reach, t T= .  

 
0

12 1( ) ( ) [ ( ) ( )]
T

t
u h u h k u t u h dt a−  − +  (1) 

This equation predicted that change in the hold period activity of a given muscle from before reach 

onset 1h  to the target 2h  should be approximately proportional to the integral of its activity during the 

reach period. 
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Figure 6.1. Integral of muscle activity during the reach correlates with subsequent activity during the 
hold period. A. In current models (left), a feedback controller generates commands that move the arm, 
and then upon reach end, a postural controller holds the limb still. For this model, hold commands 
depend only on the target position. In the model considered here (right), the move commands are 
integrated in real-time by a postural controller. Thus, the hold commands depend on the preceding 
reach commands, not solely the target position. B. Monkeys reached out to one of eight targets, waited, 
and then reached back to the home position. EMG from ant. deltoid is shown for three targets, and 

decomposed into ( )m t  and ( )h t  using Eq. (5), with k = 1. C. Normalized activity of anterior deltoid in 

Monkey B starting from the center location. Colors correspond to targets in part B. D. Change in ant. 
deltoid EMG from the initial hold period for reach out and reach back components of the task. The bars 
for hold 1 and hold 2 indicate periods where hold activity was calculated. E and F. Change in hold period 
activity for reach out (green) and reach back (red) components of the task as a function of the integral of 
the preceding reach period in two representative muscles for each monkey, and all muscles. G. The 
integration gain (slope of the line in E) across various conditions: outward vs. return, fast vs. slow, 
horizontal target positions vs. other targets. H. Comparison of two hypotheses: hold period activity 
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relates linearly to integral of previous reach period, or hold period activity relates linearly to the 
maximum activity of the muscle in the previous reach period. Each point is a single muscle. Error bars 
are SEM. Statistics: **p<0.01 and n.s. p>0.05. 

 

 To test the validity of Eq. (1), we defined the hold period at the target 2h  starting at 300 ms 

after reach end (Fig. 6.1D, hold 2), thus allowing time for muscle activation dynamics to settle. Indeed, 

for most muscles (14/20), change in the hold period activity was well predicted by Eq. (1). For example, 

when the target location was constant (Fig. 6.1D, reach back) across various movement directions, the 

changes in the hold period activities of many muscles were proportional to the integral of their 

respective activity during the preceding reach (red lines, Fig. 6.1E). When the target position varied (Fig. 

6.1D, reach out), Eq. (1) was again a good predictor of the change in hold period activity, despite the fact 

that both direction and endpoint of the reach changed (green lines, Fig. 6.1E). 

Fig. 6.1F presents the data across all muscles, directions, and endpoints. Remarkably, we found 

that integration of the reach period activity was a reasonable predictor of the change in hold period 

activity across all conditions (R2 = 0.58 for Monkey A and R2 = 0.53 for Monkey B). Within each muscle 

the integration gain k was no different for outward reaches and return reaches (Fig. 6.1G, paired t-test 

on single muscle regression slopes, p=0.943). In addition, the same integration gain predicted hold 

activity for fast and slow movements (Fig. 6.1G, fast vs. slow, two-sample t-test, p=0.30) which differed 

modestly in terms of movement duration (two-sample t-test, p<0.001, fast movement duration of 350.3 

± 11.1 ms and slow movement duration of 453.6 ± 4.9 ms, mean ± SEM). This indicated that a single 

function (Eq. (1)) could account for various movements and speeds, despite the differing dynamics of 

these reaches.  

Notably, despite these general trends, some muscles (6/20) did not exhibit the pattern 

described by Eq. (1). These muscles shared a specific property: they had little to no activity during the 

hold periods (Figure 6.8). Thus, Eq. (1) seemed to apply primarily to those muscles that modulated their 

activity during the hold period, contributing to maintenance of arm posture in this task. However, to not 

bias our results, we included all muscles in our regressions in Figs. 6.1F, 6.1G, and 6.1H. 

We considered an alternate hypothesis: a muscle that is more active to lift the arm will be also 

be more active to hold the arm. Perhaps the correlations are driven mostly by biomechanical constraints 

of the reaching movements. Thus, we separated movements based on directions that were not affected 

by a change in gravitational forces (horizontal reaches), vs. other directions (Fig. 6.1B). If the relationship 

between move period and hold period was solely due to the gravitational field, we would expect that 

the integration function would differ for horizontal versus vertical movements. However, the gain of 
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integration was similar for the two groups of movements (Fig. 6.1G, ANCOVA, movement type by 

moving EMG integral interaction effect on holding activity, F=0.37, p=0.54). To broaden the scope of this 

alternate hypothesis, we considered the possibility that the change in hold period activity in each muscle 

depended on the maximum or minimum activity of that muscle during the reach period, not the integral 

of the entire reach period activity. This alternate hypothesis also proved to be significantly less accurate 

than Eq. (1) (within muscle comparison, paired t-test, p = 0.005, Fig. 6.1H). In 17/20 muscles, integration 

of the reach period activity was a better predictor of the hold period activity than either the maximum 

or minimum muscle activity. 

In summary, for reaching across various directions and endpoints, the change in a muscle’s 

activity from the pre-movement hold period to the post-movement hold period was partially predicted 

by the integral of that muscle’s activity during the intervening reach period.  

  

6.3.2 Hold period activity for finger movements 

According to Eq. (1), trial-to-trial variation in the move period commands should lead to consistent trial-

by-trial changes in the subsequent hold period commands, even if the target location remains constant. 

That is, if the integral of a muscle’s activity is greater on some trials, then that muscle should also be 

more active during the hold period that immediately follows.  

 It is difficult to test this prediction for reaching because there are numerous configurations of 

the wrist, elbow, and shoulder joints that would maintain the hand at a target location. Therefore, to 

more precisely examine within-trial covariance between move and hold periods, we simplified the 

problem to a single degree of freedom: finger flexion199. 

 Monkeys were trained to use their index finger to track a visual target that moved at 12 deg/sec 

over a 1 second period between a start (12°) and an end location (24°) against a spring load that resisted 

flexion (Fig. 6.2A). At the start location the load was 0.026 N⋅m. As the finger flexed, the load increased 

linearly, reaching 0.048 N⋅m at the target. We measured muscle activity using subcutaneous electrodes 

implanted over 17 muscles (8 muscles in monkey R, 9 in monkey D). For each session, we normalized 

each muscle’s activity by setting the average activity at the start location to 0 (period 1h , 400 ms in 

duration, began 1 sec before movement onset, Fig. 6.2C), and setting its maximum activity in the task to 

1. The hold period 2h  at the target was 200 ms in duration and began 700 ms after movement end, thus 

allowing time for muscle dynamics to settle. 
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Figure 6.2. The integral of muscle activity during finger flexion correlates with subsequent activity during 
the hold period. A and B. Monkeys were trained to move their index finger from an initial position to a 
target against a load. The traces show representative movements. Positive displacements correspond to 
flexion. C. Activity of flexor digitorum profundus (FDP) in monkey R. Left panel shows FDP activity for the 
trials shown in part B. The bars for hold 1 and hold 2 indicate periods was hold activity was calculated. 
Right panel shows FDP activity during the hold periods. Activity increased with flexion of the finger, but 
was variable from one trial to the next. D. Evaluation of the hypothesis that variability in muscle activity 
at the hold 2 position could be explained by variability in the preceding hold 1 activity. Left panel is for 
the FDP muscle during a single session in monkey R. Center and right panels present data across all 
muscles recorded in each monkey. Each ellipse is the 95% confidence interval for a single muscle. R2 
value refers to a linear fit across all trials and muscles. E. Same as for D, except here we test the 
hypothesis that variability in hold period activity is related to the integral of the preceding moving 
activity. 
 

The finger accurately tracked the target on each trial, moving along very similar trajectories (Fig. 

6.2B). To both flex the finger and support the mechanical load, muscle activity during each hold period 

was strongly modulated by finger location (Fig. 6.2C). For example, the flexor digitorum profundus (FDP) 

muscle, one of the prime movers in this task, was more active when the finger was at the target as 
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compared to the start location (Fig. 6.2C, right panel). However, from one trial to the next, hold period 

EMG exhibited marked variability (Fig. 6.2C, note the vertical spread of the trial distribution at hold 2). 

One possibility is that the variability in hold period EMG is due to position-related variability in 

the spring force applied to the finger (larger displacements lead to larger spring forces on the finger). To 

assess this possibility, for each muscle we regressed its activity onto its position during the target hold 

period. We found that variation in hold position accounted for less than 2% (R2 = 0.0107 ± 0.0041, mean 

± SEM across all muscles in both monkeys, individual regressions for each muscle) of the trial-to-trial 

variability in hold period EMG (we do not mean for this to give the impression that EMG was not 

strongly modulated by position, only that trial-by-trial differences in EMG were poorly explained by 

differences in position; see Methods Section B2 for more information).  

If variability in position could not explain the trial-to-trial changes in hold period EMG, what was 

the source of hold period variability? Inspection of muscle activity in Fig. 6.2C suggested two 

possibilities: trial-by-trial changes in the hold period activity at the target (the hold 2 period) could be 

explained by (1) modulation in the initial holding activity prior to movement onset (the hold 1 period), or 

(2) modulation in move period activity. We first investigated the former possibility that when a muscle 

was more active during the initial hold period, it was also more active during the final hold period. This 

hypothesis stated that 2 1( ) ( )u h ku h a + . To evaluate this hypothesis, we regressed the activity of each 

muscle during hold 2 onto its activity during hold 1. The left panel in Fig. 6.2D shows the strength of this 

correlation in the FDP muscle for a single session. Each ellipse in the middle panel of Fig. 6.2D represents 

the 95% confidence boundary for the trial-by-trial joint distribution between hold period activity at the 

target and hold period activity at the starting position, for each muscle, across all trials and sessions. 

Overall, hold activity at the start appeared to be a rather poor predictor of hold activity at the target, 

accounting for about 8% (monkey R) and 7% (monkey D) of the variance in the data (Fig. 6.2D). 

 We next considered the hypothesis that variation in hold period activity may be due to variation 

in preceding move period activity. Using Eq. (1), we integrated the move period activity in the muscle, 

( )u t  with respect to its pre-movement activity, 1( )u h , and asked if this integral could predict the change 

in hold period activity from the start location, 1( )u h , to the target location, 2( )u h . This comparison could 

be confounded by trial-to-trial differences in movement displacement. Under spring forces, a larger 

displacement might lead to greater move period as well as greater hold period activity. This did not 

appear consistent with the data: trial-to-trial displacement explained less than 1% of the variance in 

both the integral of move period activity (R2 = 0.006 ± 0.0018, mean ± SEM), and the change in hold 
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activity (R2 = 0.005 ± 0.001, mean ± SEM). On the other hand, the integral of move period activity 

exhibited robust correlation with the change in hold period activity, as shown for an example recording 

session in the left panel of Fig. 6.2E. For this session, about 56% of the trial-by-trial variance in FDP hold 

period activity 2 1( ) ( )u h u h−  was accounted for by Eq. (2) (linear fit for this session, p<0.001). 

 To determine if all muscles exhibited similar within-trial correlations between moving and 

holding, we considered the data across all muscles and sessions (Fig. 6.2E, middle and right panels). Each 

ellipse in Fig. 6.2E represents the 95% confidence boundary for the within-trial joint distribution 

between holding activity and the integral of moving activity, for each muscle. Strikingly, the orientations 

of various muscle distributions (the angle of the major axis) were roughly parallel with each other. Thus, 

the gain of the integration function was similar across muscles, and a single function accounted for 

approximately 50% and 40% (monkeys R and D) of the trial-by-trial variability in holding activity. 

 Finally, we considered another potential source of correlation between move and hold periods: 

co-contraction. If finger stiffness varied from one trial to another, we would observe correlations 

between move and hold periods. To change finger stiffness, agonist and antagonist pairs of muscles 

would exhibit coordinated increases or decreases in their activities. In other words, we should be able to 

predict the change in hold period activity in one muscle based on the activity of other muscles. To test 

this idea, we regressed the change in hold period activity in each muscle onto the integral of move 

period EMG in other muscles. Roughly 10% of the variability in the change in hold period EMG could be 

explained by the integral of move period activity of other muscles (R2 = 0.10 ± 0.02, mean ± SEM). 

Therefore, while some of the variance in hold period activity could be explained by the move period 

activity in other muscles, move period activity in a given muscle remained a much better predictor of 

the change in hold period activity in that same muscle (R2 = 0.42 ± 0.031, mean ± SEM). In summary, for 

a constant target location, on trials where a muscle moved the finger with greater activity, it also 

produced greater activity during the hold period. 

 

6.3.3 Change in reach period commands alters hold period commands 

These EMG patterns illustrated a correlation between move and hold period commands, but did not test 

whether there was a causal link between the two. That is, trial-to-trial coupling between move and hold 

period commands arose from variability that was internally generated by the animal. To rigorously test if 

hold period commands directly followed from move period commands, we next imposed external 

changes on move period commands and measured if hold period commands changed in a manner 

consistent with integration. To do this, we instructed participants to reach to a target while holding the 
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handle of a robotic arm (Fig. 6.3A), and adapted their move period commands by imposing a velocity-

dependent force field100. 

 With the force field our goal was to gradually bias the move period commands through the 

process of adaptation. If hold period commands partly depended on the preceding move period, then 

biases in move commands should lead to biases in hold commands, even though (1) the hold period 

commands were never perturbed, and (2) the hold location remained constant. To ensure that hold 

period commands were never perturbed, on all force field trials the hand was placed in a “well” that 

held the hand still at the end of the movement for at least 1.5 sec (Fig. 6.3A, target-hold well). Next, we 

used a channel to prevent the hand from suddenly moving off the target while participants transitioned 

from the target-hold well to the next reaching movement (not shown in Fig. 6.3A; see “partial channel” 

in Methods). 

 Unlike the monkey experiments, we did not record EMG during these experiments. Instead, we 

measured changes in the forces that participants exerted against the handle. These forces served as a 

low-dimensional proxy for the motor commands sent to the arm muscles. Critically, we drove the 

adaptation process with forces that acted perpendicular to the trajectory of the hand. Because the 

learning axis was orthogonal to the primary movement, we could cleanly isolate the component of the 

motor commands that varied in response to the field, from the motor commands responsible for the 

primary movement. To measure the forces perpendicular to the primary movement, on some trials the 

robot produced a stiff channel that connected the start position to the target via a straight line (Fig. 

6.3A, channel trial). To test the integration hypothesis, we recorded forces perpendicular to the 

direction of the target during the reach and hold periods, and asked if they were related through the 

following integration function (i.e., the force analogue of Eq. 1): 

 − = − +2 1 10
( ) ( ) [ ( ) ( )]

T
F h F h k F t F h dt a  (2) 

At the start of each experiment, participants (n=220 in total) reached to the target in a neutral 

(i.e., null field) condition in which the robot did not produce any forces on the hand (Fig. 6.3A, null field 

trial). Even in the null field period we observed significant trial-by-trial variability in the perpendicular 

reach period forces, as shown for a representative subject in Fig. 6.3B. During the reach period the hand 

pushed slightly to the right on some trials, left on others, or exhibited a bimodal profile. However, 

because the movements were guided within a channel, the hand followed a straight line that ended at 

the center of the target (Fig. 6.3A, bottom left). Notably, following conclusion of the reach, we observed 

that the arm generated forces during the hold period (period 2h , Fig. 6.3B) that were often different 
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than baseline (period 1h ). Indeed, the change in the hold period forces 2 1( ) ( )F h F h−  was well predicted 

by Eq. (2), as illustrated by data for the representative subject in Fig. 6.3B (regression at right), and the 

entire population in Fig. 6.3C. On a within-trial basis, the integral of move period force accounted for 39 

± 2% (mean ± SEM) of the variance in hold period force. Thus, just as EMG patterns exhibited a within-

trial relationship between the reach and hold periods, so did the force patterns.  

Like the EMG patterns, the force patterns did not appear to be trivially related to biomechanical 

constraints imposed on the arm due to gravity: the gain of the integration function was the same 

whether or not the weight of the arm was supported by a frictionless air-sled (Fig. 6.3B, two-sample t-

test, p=0.90). Remarkably, the relationship between move and hold period forces remained unchanged 

when we divided the null period reaches of each subject into fast and slow movements (Fig. 6.3D, 

ANCOVA, movement type by move force integral interaction effect on hold force, F=0.007, p=0.935). 

Thus, in the null field, forces during the reach and subsequent hold periods showed natural variability. 

However, on a within-trial basis, the integral of the move period forces appeared to influence the 

subsequent hold period forces. 

At the conclusion of the null field period, we gradually imposed a velocity-dependent force field 

during the reach (Fig. 6.3E). The velocity-dependent forces perturbed the hand perpendicular to the 

reach trajectory, thus leading to adaptation of reach period forces (Fig. 6.3F). The gradual onset of the 

perturbation produced gradual changes in reach period forces (while also minimizing positional errors 

throughout the trajectory). Remarkably, as the reach period force changed from one trial to the next, so 

did the hold period force (Figs. 6.3F and 6.3G). Notably, the hold period forces were not transient, but 

sustained, persisting up to 6 seconds during the entire hold period interval (Figure 6.9). The relationship 

between the change in hold period force and the (now externally-driven) reach period forces was again 

consistent with integration: over the course of adaptation, Eq. (2) accounted for 48 ± 3% (mean ± SEM 

across 32 participants) of the variance in the change in hold period forces. 

As an alternate hypothesis we considered the possibility that hold period forces may be a trivial 

continuation of the forces produced near the end of the preceding reach, not an integration of the 

entire history of the reach period. To test this idea, we conducted a pair of experiments. In the first 

experiment (Fig. 6.4A), participants (n=11) reached in a force field that was active only during the 

second half of the reach. In Phase 1 of the experiment, trial after trial we gradually increased the 

magnitude of the force field (Fig. 6.4A, Phase 1). As expected, participants produced hold period forces 

that increased with the integral of the reach period forces. In Phase 2, we maintained the force field at a 
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constant magnitude for hundreds of additional trials. The change in hold period forces and the integral 

of reach period forces remained correlated during all trials (Fig. 6.4A, Phase 2). 

 

 
 

Figure 6.3. The integral of reaching forces correlates with forces produced during the subsequent hold 
period. A. Human participants held the handle of a robotic arm and made point-to-point reaching 
movements (top). On most trials, participants reached freely to the target. After the reach ended, a 
target-hold well held the hand in place (null field trial). On some trials, hand trajectory was constrained 
to a straight line (channel trial, trajectories shown at left). B. Example lateral force traces on channel 
trials during the null field period (in a single subject). The bars hold 1 and hold 2 indicate the periods in 
which holding force levels were quantified. At top-right, we show the correlation between the integral 
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of reach period forces and the change in holding force for this representative subject. At bottom-right 
we compare the gain of integration (slope of the line at top-right) between conditions with and without 
weight support for the arm. C. We calculated the correlation coefficient between the time-integral of 
reach forces and holding forces across all channel trials in the null field, within each individual (n=220). 
The vertical blue line denotes the mean of the distribution. D. For each subject, we selected their two 
fastest and two slowest movements in the null field, resulting in two distributions, with each subject 
represented equally in each distribution. We then performed linear regression on each distribution 
separately. Error bars for the integration gain are 95% CI at right. At middle, we show the distribution of 
reach duration. E. After the null field period, we gradually introduced a velocity-dependent force field 
(top). We measured moving and holding forces as subjects adapted and de-adapted to counterclockwise 
(CCW) and clockwise (CW) force fields (bottom). F. Each trace represents the force on one channel trial, 
averaged across participants during the CCW force field adaptation period. The vertical gray bars denote 
the start and end of the reaching movement. The color of each traces indicates the force field 
magnitude at each point in the experiment. The hold 1 and hold 2 bars indicate periods over which 
holding forces were quantified. G. On each trial, we calculated the time-integral of forces during 
reaching (green) and compared these to the change in holding force (red). Values are mean ± SEM 
across all participants. Statistics: n.s. p>0.05. 

 

In the next experiment (Fig. 6.4B) we again exposed participants to a force field that was active 

only during the second half of the movement. But then, in Phase 2, we gradually added a second force 

field that was active during the first half of the movement, but in the opposite direction (Fig. 6.4B, Phase 

2). In this way, the reach period forces should integrate to approximately zero. If holding forces were a 

simple continuation of the reach period forces, then the addition of the force field during the first half of 

the movement should not alter the hold forces at the end of the movement. However, this is not what 

we observed: as the integral of reach period forces approached zero, hold period forces gradually 

vanished (Fig. 6.4B, Phase 2). That is, even though reach period forces were matched just before the end 

of movement (Fig. 6.4C), the ensuing hold period force depended on the entire history of the reach. In 

addition, we observed no difference in the integration function between each phase of the experiment 

(paired t-test on slope, p=0.22, paired t-test on intercept, p=0.09).  

Together, these observations demonstrated that on a within-trial basis, as the reach period 

forces changed, so did the ensuing hold period forces. The change in hold period force was partially 

described via a function that integrated in time the temporal history of the preceding reach period 

forces. 
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6.3.4 Move and hold correlations are only weakly influenced by initial hold activity 

Eqs. (1) and (2) use initial hold activity ( 1( )u h  or 1( )F h ) both to calculate the change in hold activity, and 

to estimate move period activity (Methods Section A). We were concerned that some or all of the 

observed correlations may be due to this common factor that appears on both sides of the equation, 

and not the integral of the move period activity.  

 

 
 

Figure 6.4. Holding forces are an integration of moving forces, not a continuation. We designed a set of 
experiments to test the possibility that hold period forces are a continuation, not an integral, of moving 
forces. A. Participants (n=11) reached in a force field that was active only during the second half of the 
reach. In Phase 1 (left), we gradually increased the magnitude of the force field. In Phase 2 (right) we 
maintained this force field for several hundred trials. We measured the change in holding force (right, 
red) and the integral of moving force (left, green) throughout adaptation. B. A new set of participants 
(n=14) repeated Phase 1 (left), but during Phase 2 (right) an opposite force field was gradually applied to 
the first half of the movement. As the integral of move period force approached zero in Phase 2, so did 
holding force. C. The mean force profile over trials sampled from Phases 1 and 2 for the experiment in 
part B. Values are mean ± SEM across all participants.  
 

To consider this problem, we noted that for outwards reaching movements in Fig. 6.1, this was 

not a concern because the trial-averaged EMGs were nearly identical before movement onset at the 

center location, but differed greatly during the movement to various directions. To address this concern 

for our data in Figs. 6.2 and 6.3, we re-analyzed the correlation between move and hold activity, but 

only on trials in which hold 1 activity fell within one standard deviation of the mean. This criterion 

reduced the variance in hold 1 activity by 75% for our finger movement dataset, and 88.6% for our reach 

force dataset. Despite this dramatic reduction in hold 1 variability, we found little effect on the 

measured correlations: the correlation coefficient between integral of move activity and change in hold 
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activity remained 58.4% for muscles in the finger (compared to 64.2% if all trials are included) and 48.5% 

for reach forces on channel trials in the null field (compared to 52.2% if all trials are included). 

In summary, the observed trial-by-trial correlations between move activity and change in hold 

activity were almost entirely driven by the integration of the move commands, with little dependence 

on variability in the initial hold activity. 

 

6.3.5 The postural field during the hold period 

Thus far we have described the state of the limb during the hold period in terms of muscle activity or 

force generation. However, in order to hold the limb still, the postural controller does not simply 

produce a force, rather it generates a converging field of position-dependent forces201,202. We next asked 

if this postural field also relied on the commands generated during the preceding reach. 

We designed a new experiment in which we measured the postural field following completion 

of a reach. Participants (n=27) reached to a target as before, but now, during the hold period they were 

engaged in a short-term memory task (2-back, Fig. 6.5A). As they performed the memory task, the robot 

slowly displaced their arm in a random direction. In response to the displacement, the postural 

controller produced restoring forces against the handle, thus allowing us to measure the postural field 

(Fig. 6.5B).  

As expected, the postural field’s null position was near the target (Fig. 6.5B, null point of 

postural field). However, after participants were exposed to a force field, the postural field changed: the 

null position was no longer aligned with the target (Fig. 6.5B, right). Rather, it shifted by approximately 1 

cm (Fig. 6.5D; paired t-test, p<10-4) in the direction of the force produced during the reach. In contrast, 

the orientation (Fig. 6.5D, paired t-test, p=0.84) and stiffness (Fig. 6.5D, paired t-test, p=0.62) of the 

postural field remained unchanged. 

After the reach had ended and the cursor was at the target, we slowly displaced the hand 

toward the postural null position. We observed that the hold period forces gradually approached zero, 

and then switched direction and grew larger as the hand was displaced beyond the null position (Fig. 

6.5E). The holding force at the hand scaled linearly with the distance between hand position and the 

postural null position (Fig. 6.5F). This implied that the hold period forces we had measured in previous 

experiments (Figs. 6.3-4) were a proxy for the location of the null position of the postural controller: the 

larger the hold period force at the target, the farther the null position of the postural field.  

Thus, as the reach period forces changed, so did postural control: the null position of the 

postural field shifted in the same direction as the change in the preceding move period forces. 
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Figure 6.5. The null point of the postural field is set by the integral of reaching forces. A. To measure the 
arm’s postural field, we slowly displaced the hand during the holding period, while participants were 
distracted with a working memory task. B. We measured the forces applied to the handle (left). We re-
measured these forces after participants were exposed to a velocity-dependent curl field (at right). 
Forces were measured by displacing the hand outwards along 12 different lines. Interior estimates for 
the force were made using two-dimensional linear interpolation. The magnitude and direction of these 
interpolated forces are indicated by the black arrows. Color reiterates the restoring force magnitude. 
The holding position at reach end is located at the intersection of the two dashed white lines. C. We 
measured lateral forces applied to the channel walls during reaching movements (null field period, 
black, and curl field period, red). D. We used a two-dimensional spring model to quantify postural field 
properties: null point, orientation, and stiffness (null field and curl field in black and red). E. To test if 
holding forces were related to the null point of the postural field, participants (n=19) were exposed to a 
curl field that gradually increased over trials. During holding, we recorded hand forces (right inset) as the 
arm was displaced in the direction of holding forces. Arrows show the location of the null point (zero-
crossing) on selected trials. F. We calculated the holding force before displacement of the hand, and the 
corresponding postural null point on each trial. Values are trial means and 95% CIs for distributions 
bootstrapped across participants. Linear regression was performed on the bootstrapped estimates 
(black line). Error bars denote mean ± SEM in panels C and D. Statistics: ***p<10-3 and n.s. p>0.05. 
 

6.3.6 Adaptation of the integration gain 

These results create a puzzling scenario. In the presence of a velocity-dependent force field, the reach 

controller readily adapts and changes the move period forces. However, changes to the move period 

forces are integrated and cause the hold system to program an entirely different null position. This 

implies that postural stability will be compromised in the face of an adapting reach controller. To solve 

this problem, the integrator must also be adaptive: the integration function must change when there is 

an error between its current output and the desired movement endpoint (Fig. 6.6A). Presumably this 
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error-based adaptation would be driven by unexpected deviations from the hand’s desired trajectory as 

the reach period ends and the hand arrives at the target location.  

To test this idea, we examined reach trajectories of individual subjects as they gradually adapted 

to velocity-dependent force fields. These trajectories exhibited two primary types of errors. The first 

error happened midway through the movement, and was caused by incomplete compensation for the 

velocity-dependent perturbation (Fig. 6.6B, the large negative mid-movement error). The second error 

happened near the end of the movement, and was oriented in the opposite direction (Fig. 6.6B, 

“endpoint correction”). This near endpoint error possessed two properties that were well-suited for 

integrator adaptation: (1) they occurred late in the movement as the participant attempted to stop their 

hand within the target, and (2) they were oriented in the direction opposite the shift in postural null 

point reported in Fig. 6.5. To quantify the size of these endpoint errors, we measured the largest 

“positive” deviation (or “negative” if the lateral deviation was in the opposite direction) from the 

terminal hand position, after the hand exceeded 80% of its reach displacement. 

 

 

Figure 6.6. Adaptation of the integration gain. A. To maintain endpoint stability after adaptation of the 
reach controller, the postural controller must also adapt. B. We hypothesized that integrator adaptation 
would be driven by errors in hand trajectory that occur near the end of the reach. To detect these 
errors, we looked for deviations in the reach trajectory after the reach exceeded 80% of its 
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displacement. We spatially aligned reaches by subtracting off the terminal hand position and then 
temporally aligned the reach trajectories to the point in time at which the hand had the largest endpoint 
error. These errors are marked as “endpoint correction”. Here we show the average reach trajectory 
during adaptation to a gradual force field for two subjects, one who exhibited integration (S5), and one 
who did not (S11). C. The average forces produced at the end of adaptation for the same two subjects. 
Note that the subject with large errors near reach endpoint no longer generated holding forces at the 
end of adaptation. D. We measured the gain of integration at the end of the adaptation period, for 
subjects that adapted to gradual force fields. We also measured the magnitude and sign of the late 
reach errors. Larger errors led to a reduction in gain. Each data point is one subject. E. To confirm that 
the integration gain changed over the course of adaptation, and not immediately upon introduction of 
the force field, we compared the gain during the null period, with gains measured during early and late 
parts of adaptation using a repeated measures ANOVA. Values are mean ± SEM across participants. 
Statistics: ***p<10-3 and n.s. p>0.05.  

 

 To determine if endpoint errors caused integrator adaptation, we compared the size of these 

errors during the adaptation process, to the gain of integration observed at the end of adaptation. The 

size of endpoint error was heterogeneous across our subjects; some participants exhibited large 

endpoint errors (Fig. 6.6B, S11) while others exhibited small endpoint errors (Fig. 6.6B, S5). Critically, we 

found that participants with larger endpoint errors ultimately produced smaller holding forces (Fig. 

6.6C). In other words, these errors appeared to reduce the gain of integration. In fact, about 40% of the 

variability in integration gain could be explained by the magnitude of the endpoint errors (Fig. 6.6D). 

This adaptation of integration gain progressed over time (Fig. 6.6E, repeated measures ANOVA, 

F=12.60, p<0.001). In the early part of training, the integration gain was no different than that of the 

pre-adaptation null trials (Fig. 6.6E, post-hoc comparison, p=0.88). However, late in training, the 

integration gain had decreased substantially (Fig. 6.6E, post-hoc tests, p<0.001 for comparison of late 

adaptation with both null field trials as well as early adaptation trials). 

These data suggest that Eq. (2) alone cannot predict the change in holding forces. In certain 

conditions, for example velocity-dependent force fields, the reach period commands change, but if one 

is to hold the hand at the target, then the hold period commands cannot simply integrate the preceding 

move period commands. Rather, as the move period commands adapt, so too must the integration 

function. Like the adaptation of movement commands, the adaptation of hold commands does not 

occur instantaneously, but appears to emerge gradually as errors near the end of the movement are 

experienced repeatedly. This process may also explain why holding forces gradually diminish during 

adaptation to an abrupt force field, where endpoint errors are large82. 
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6.3.7 Differential contributions of the corticospinal tract to reaching and holding 

The CST conveys the cortically generated reach commands to downstream motor structures. Does this 

same pathway also convey postural signals, or does a separate, downstream structure receive and then 

integrate the reach commands? If both reaching and holding commands are conveyed in the CST, then 

damage to the CST above the level of the brainstem should disrupt both the generation of forces during 

reaching, and its integration during the hold period. However, if the integrator is downstream to this 

level, then damage to the CST might result in deficient reach commands, but spare the process of 

integration, resulting in hold commands that reflect the within-trial integration of the now deficient 

reach commands. 
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Figure 6.7. Cortical reaching commands are integrated in a subcortical area. A. Stroke survivors (n=14) 
participated in a set of clinical exams to measure functional impairment. Shown are isolated images for 
an extension-based task, for the non-paretic (top) and paretic (bottom) arms of an example participant 
(S015). The instruction is to place a rectangular block on the elevated surface. Images show the moment 
of maximal extension for the paretic (right) and nonparetic (left) arms. B. To improve the range of 
motion of the arm, patients and healthy controls performed reaching movements holding the robotic 
handle, with the arm supported by an air sled. Shown are example trajectories during an initial null field 
period for the representative patient (black is nonparetic, red is paretic) in A, and a control participant 
(blue). C. Example force traces during null field block in channel trials. The solid line denotes forces 
during moving. The dashed line denotes forces during holding still. D and E. We measured the integral of 
moving forces (D) and holding forces (E) on each channel trial. We measured the trial-by-trial variability 
(standard deviation) of these quantities across all movements in the null field. F, H, I, and J. We 
compared trial-by-trial fluctuations in moving and holding forces during the null field period (F, left 
panel). Next, we gradually adapted subjects to a velocity-dependent force field and compared within-
trial integral of moving forces with subsequent holding force (F, right panel). Data are shown for 
representative stroke patient and healthy control. We calculated the correlation coefficient between 
reaching and holding forces during the initial null field period (H) and force field period (I). We measured 
the slope of the integration function (i.e., the integration gain) across all trials within individual subjects 
(J). G. Our conjecture that the cortex generates reaching commands which are then integrated in a 
subcortical area spared by cortical stroke. Values are mean ± SEM across participants. Points represent 
individual trials in F. Points represent individual subjects in D, E, H, and I. Statistics: *p<0.05, and n.s. 
p>0.05. 
 

To examine these possibilities, we recruited stroke patients (n=14) who had suffered lesions 

affecting the CST pathway from the cortex through the internal capsule (Table 1). The patients exhibited 

profound impairments, as demonstrated by difficulty with extension of their arm during unsupported 

reaching204,205 (Fig. 6.7A, patient S015). To improve their reach capacity, we supported the weight of 

their arm in the horizontal plane (frictionless air sled), which allowed them to better extend their arm at 

the elbow, enabling them to make planar, point-to-point reaching movements while holding the handle 

of the robot arm (as in Fig. 6.3A).  

As has been noted before206,207, movements of the paretic arm exhibited erratic trajectories (Fig. 

6.7B), increased movement duration (paretic vs. control) of approximately 41% (paretic vs. non-paretic, 

paired t-test, p<0.01; paretic vs. control, two-sample t-test, p<10-4), and reach endpoints that 

terminated nearly 89% (paretic vs. control) further away from the target location (paretic vs. non-

paretic, paired t-test, p<0.01; paretic vs. control, two-sample t-test, p<0.001). The reaching impairment 

coincided with a marked increase in the trial-to-trial variability of move period forces (traces in Fig. 6.7C 

solid lines; Fig. 6.7D paretic vs. control, Wilcoxon rank-sum, p<0.001; Fig. 6.7D paretic vs. non-paretic, 

Wilcoxon signed-rank, p = 0.058). However, like healthy subjects, these move period forces, no matter 

how variable, terminated with stable holding forces (traces in Fig. 6.7C dashed lines). The trial-by-trial 
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variability of the hold period forces, like the move period forces that preceded them, was significantly 

greater in the paretic arm of the patients (Fig. 6.7E; paretic vs. control, two-sample t-test, p=0.01; 

paretic vs. non-paretic, paired t-test, p=0.06). 

If move period commands were integrated into hold period commands, the increased variability 

in holding forces (Fig. 6.7E) could arise indirectly from the normal integration of the highly variable 

moving commands. If this were true, the variability in the moving and holding commands would be 

similarly structured in both healthy subjects and stroke patients. To test this idea, we quantified the 

within-trial correlation between change in hold period forces and the integral of the preceding move 

period forces (Fig. 6.7F, left column, representative subjects). Remarkably, in the null field trials, the 

coupling between move and hold periods was intact in stroke patients (Fig. 6.7H, paretic vs. control, 

two-sample t-test, p=0.14; paretic vs. non-paretic, paired t-test, p=0.63). 

 

 
 

Figure 6.8. Muscles that do not integrate also do not contribute to posture. A. Two monkeys performed 
a reaching task in the vertical plane. The monkeys reached out to one of eight targets, waited, and then 
reached back to the home position. Trajectories for the outward reach are shown. B. Normalized activity 
of brachialis in Monkey B. Colors correspond to targets in A. We selected this representative muscle to 
demonstrate that some muscles show little to no holding activity at most, if not all, targets. These 
muscles all tend to show early moving activity, well before peak speed, and then cease activity around 
halfway through the movement. The hand speed is shown in black. C. We selected muscles that have 
little to no holding activity, i.e., those whose activity during the hold period has a magnitude less than 
10% of the peak moving activity. There are 6 out of 20 muscles who had such a property for most, if not 
all holding locations. We quantified the change in holding activity (from before to after the movement) 
and the integral of moving activity. We asked how well the integral of moving activity predicted the 
change in holding activity (the variance accounted for, or R2) in muscles with little holding activity (non-
integrators) and others that were more active during holding still (integrators). Error bars are SEM. 
Statistics: *p<0.05. 

 

We next used adaptation to systematically manipulate move period forces. Because force field 

adaptation is largely a cerebellar-dependent process16, despite damage to the CST the patients learned 
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to alter their move period forces. As the move period force changed in the paretic arm, so did the 

change in hold period force (Fig. 6.7F, right column, example subjects). Once again Eq. (2) provided a 

reasonable account of the within-trial relationship between the move period and the change in hold 

period forces for the paretic arm, non-paretic arm, and the dominant arm of age-matched control 

subjects (paretic vs. control, two-sample t-test, p=0.08; Fig. 6.7I: paretic vs. non-paretic, paired t-test, 

p=0.24). Notably, the integration gain was not significantly different across the paretic and non-paretic 

limbs of the patients, nor across the patients and age-matched controls (Fig. 6.7J; paretic vs. control, 

two-sample t-test, p=0.86; paretic vs. non-paretic, paired t-test, p=0.91). In other words, the integration 

function was similar in healthy participants and stroke patients. 

In summary, damage to the CST severely affected the reach period commands, resulting in high 

trial-to-trial variability. However, the change in hold period commands remained coupled to the integral 

of the preceding reach commands in both null field and force field trials. The gain of this integration in 

the stroke patients was not different than that of healthy controls, suggesting that CST damage impaired 

the reach commands, but not the process of integration that may have generated the hold commands. 

 

 
 

Figure 6.9. Holding forces are sustained across long time intervals. Participants (n=7) were exposed to a 
CCW velocity-dependent curl force that increased in magnitude across many trials. Here we show the 
lateral force (top) and hand velocity (bottom) after exposure to maximal field strength. The vertical line 
denotes the end of the movement, hence, the start of the holding period. On the trials shown, 
participants held the hand at the target and waited for a long inter-trial-interval to start the next 
reaching movement. During this period of time, participants engaged in a working memory task.  
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6.3.8 Holding forces are not specific to a particular holding location 

Earlier models of holding forces posited that they arose from simultaneous adaptation of velocity and 

position primitives82. If this is the case, it might follow that adapting individuals to both CW and CCW 

velocity-dependent force fields might lead to the elimination of holding forces, because of a process of 

cancellation. That is, if on half of the trials the force field is oriented to the left, and the other half to the 

right, interference may lead to cancellation of holding forces at the common reach endpoint.  

 To test this possibility, we used a dual adaptation paradigm208 to simultaneously adapt 

individuals (n=14) to a CW and CCW force field. To accomplish this, a rectangular bar was shown 

centered on the subject’s hand. On some trials, a control point was shown on the left of the bar and a 

target was positioned vertically above the leftwards control point (Fig. 6.10A). On every other trial, the 

control point and target were moved to the right side of the bar. When the control point was on the left, 

the hand was perturbed with a CW force field. When the control point was on the right, the hand was 

perturbed with a CCW force field. We tested for adaptation on channel trials interspersed through the 

experiment. The alternating cue successfully allowed for simultaneous adaptation to both force fields, 

though did not completely eliminate interference (Fig. 6.10B); adaptation to the CCW exceeded that of 

the CW field, likely due to interference. 

 Critically, when reach forces were produced to the right, holding forces to the right followed. 

When reach forces were produced to the left, holding forces to the left followed (Fig. 6.10C). These 

holding forces persisted throughout the duration of the experiment. The integral of reach forces 

accurately predicted hold forces as before (Fig. 6.10D). Altogether, these results suggested that holding 

forces were not specific to a point in space, but instead were dependent on the direction and magnitude 

of the preceding reach forces. 

 

6.3.9 The change in holding force, not final holding force, is predicted by the integral of reach 

forces 

Our derivation of the integration equations suggested that the integral of reach forces should predict 

the change in reach force, rather than the terminal reach force at the target (Eq. 6.2). To investigate the 

validity of this prediction, we adapted to a set of participants to a CW force field experienced at two 

separate reach targets (Fig. 6.11). On some trials the participants made a reaching movement directly 

away from the body (Target 1) and experienced forces to the right (Fig. 6.11A, column one). On other 

trials, participants reached directly towards their body (Target 2) and experienced forces to the left. 
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Critically, when participants reached back from Target 1 and Target 2 to the start position, they always 

moved in a channel condition (Fig. 6.11A, columns 2 and 4). 

 

 

Figure 6.10. Moving and holding forces during exposure to dual force fields. A. Participants (n=14, 
Experiment 7) reached between two locations in space (the filled blue circle and the dashed central 
green circle). Rather than controlling a single cursor, participants were shown a rectangular tool that 
was centered on the hand. On some trials (context 1, left schematic), a control point appeared on the 
left of the tool and participants were told to move that point into a target that appeared to the left in 
the workspace. On other trials (context 2, right schematic), a control point appeared on the right of the 
tool and participants were told to move that point into a target that appeared to the right in the 
workspace. Critically, the physical starting position and target position were the same for all of the trials, 
simply the context changed. Participants were exposed to CW and CCW force fields. The orientation of 
the field was paired to the context (context 1 paired to CW field and context 2 paired to CCW field). B. 
Forces were measured on occasional channel probe trials. Here we show the forces produced on probes 
in context 1 (dashed lines) and context 2 (solid lines). Color indicates the trial number (blue is early in 
the experiment, red is late). C. We calculate the moving force time-integral (green) and holding force 
(red) for context 1 trials (top) and context 2 trials (bottom). Values are mean ± SEM across participants. 
D. Next we examined the scatterplot showing the holding force one each trial as a function of the 
moving force time-integral on that trial. Black points correspond to context 1 trials and red points 
correspond to context 2 trials. To reiterate, all of the trials start and end at the same location in space.  
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 When participants reached to Targets 1 and 2 on channel trials (Fig. 6.11B), they successfully 

expressed reach forces consistent with the CW force field that increased over time due to the gradual 

onset of the perturbation (Fig. 6.11C). As before, the integral of reach force predicted the holding forces 

at the endpoint (Fig. 6.11D). Given the geometric arrangement of the targets, reaching movements from 

Target 1 back to center were oriented in the same direction as reaching movements from the center to 

Target 2. Similarly, reaching movements from Target 2 to center were oriented in the same direction as 

reaching movements from the center to Target 1. Because of these geometric similarities, participants 

generalized their adaptation to the return channel trials (Figs. 6.11E and 6.11F). Even for these 

generalized forces, the integral of reach forces accurately predicted hold forces at the endpoint, 

providing further evidence that adaptation was not necessary to express hold forces. That is, even 

though errors were never experienced when reaching to the start position, hold forces still followed the 

generalized reach forces. 
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Figure 6.11. Holding forces at the same target position are specific to reaches initiated from different 
start positions. A. Participants (n=13) reached in cycles of four trials. On the first trial (first column), 
participants reached away from the body from a center position (red) to Target 1 (green). At the end of 
the movement, the hand was held in place for a long holding period. On the next trial (third column), the 
participant returned the hand from Target 1 to center. On the third trial of the cycle (second column), 
participants reached from the center position to Target 2. And finally, on the fourth trial (fourth 
column), participants returned the hand back to center again. After an initial familiarization period, 
participants were exposed to force fields when reaching from the center to Target 1 (rightwards field) 
and from the center to Target 2 (leftwards field). Reaching movements that terminated at the center 
position were always executed in a channel that prevented lateral errors. B. Occasionally, channel probe 
trials were inserted to measure hand forces when reaching to Targets 1 and 2. C. Shown are the average 
reach forces (sign-flipped) for reaching movements from the start position to Targets 1 and 2. D. Shown 
is a scatterplot of the holding force as a function of the moving force time-integral for the probe trials 
depicted in C. Each point represents one trial. Color indicates the strength of the force field at that point 
in the experiment (blue means small, and red means large). Unfilled circles show reaches to Target 1 and 
filled circles show reaches to Target 2. The solid line shows the linear regression across trials. Values are 
mean ± SEM across participants. D. All reaching movements made towards the center position were 
executed in a channel. F. Same as in C but for probe trials depicted in D. Color indicates the force field 
magnitude at a specific point in the experiment. G. Shown is a scatterplot of the hold forces and integral 
of reach forces in F. Values are mean ± SEM across participants. 
 

 The generalization of forces presented another important scenario. Because reaching 

movements from the start position to the target were preceded by generalized reach forces in the same 

direction from the preceding channel trial, the initial forces were non-zero during the hold period at the 

start of the reach (Fig. 6.11C). That is, initial forces for the outwards movements were determined by 

the hold forces from the previous reach. Similarly, for reaching movements from the peripheral targets 

back to the center, hold forces biased the initial reach forces in the opposite direction to the upcoming 

generalized reach forces (Fig. 6.11F). This arrangement permitted us to ask if the final hold force was 

predicted by the integral of reach force, or if according to Eq. (6.2), the change in hold force from start 

to end was better predicted by the integral of reach force. Therefore, we considered channel trials to all 

of the adaptation targets (Fig. 6.12A, left) as well as the generalization trials back to center (Fig. 6.12A, 

right). First, we regressed the change in hold forces onto the integral of reach forces (Fig. 6.12B) and 

calculated the gain that related these two quantities, i.e., the scaling factor that related the change in 

hold force to the integral of reach force. Similarly, we regressed the terminal hold force onto the integral 

of reach force (Fig. 6.12C) and calculated the gain that related these two quantities. 

We compared these gains to that recorded on trials in other experiments where there were no 

initial hold forces (Figs. 6.12B and 6.12C, control, no bias). Critically, we found that the same integration 

gain described the relationship between the change in hold forces and the integral of reach forces 

whether the initial hold forces were zero or not (Fig. 6.12B, two-sample t-test). On the contrary, the 



235 

 

relationship between the integral of reach force and the final hold force possessed a different 

integration gain when reaching movements began with an initial bias in hold forces (Fig. 6.12C, initial 

bias vs. control, no bias; two-sample t-test, p<0.001). In other words, we found that the integral of reach 

force accurately described the change in hold force across each of our datasets consistent with Eq. 6.2, 

but did not predict the terminal hold force the same across each experiment. Therefore, the terminal 

hold force is not simply a continuation of reach force; rather, the change in hold force is determined by 

the integral of reach force. 

 

 

Figure 6.12. The integral of reach force predicts the change in reach force, not the terminal reach force. 
A. In our two-target experiment in Fig. 6.11, participants were adapted during outwards movements, 
and tested for generalization on return movements. We calculated the integral of reach force and the 
hold force for channel trials in each of the four directions. Because of the geometry of this task, adapted 
reach forces or generalized reach forces all led to initial biases in hold forces at the start of the reach. B. 
Here we tested our primary hypothesis in Eq. (6.2): does the integral of reach force predict the change in 
hold force? For the four trial types (Start to Target 1, Target 1 to Start, Start to Target 2, and Target 2 to 
Start) we calculated the integration gain relating the change in hold force with the integral of reach 
force. The integration gain is shown for each movement in black. Then we averaged across each of these 
integration gains (gray bar at right) and compared this gain to the integration measured in our primary 
experiments where there was no initial bias in hold force at the start of the reach (blue bar). C. We 
performed a similar comparison, but this time, for integration gains relating the terminal hold force with 
the integral of reach force. Statistics: n.s. means p>0.05 and *** means p<0.001. 
 

6.3.10 Reach forces predict hold forces independent of spatial orientation of movement 

To test the robustness of Eq. (6.2) we next repeated our primary experiments (Fig. 6.3) but for reaching 

movements oriented at different points in space. Whereas the majority of our tasks tested movements 

straight away or towards the body, we tested oblique movements oriented on a 45° angle (Fig. 6.13A) in 

a gradual force field adaptation paradigm (Fig. 6.13B). As in our primary experiment, hold forces 

increased or decreased as reach force increased or decreased in the various phases of the experiment 
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(Fig. 6.13C). The integral of reach forces accurately predicted the change in hold force (Figs. 6.13D and 

6.13E). Therefore, our primary results (Fig. 6.3) generalized to reaching movements made at oblique 

angles to the body.  

 

Figure 6.13. Moving and holding forces for reach movements of different angles. A. Participants (n=11, 
Experiment 2) reached between a start location and a target located at an oblique angle (135° with 
respect to the positive x-axis) from the midline of the body (represented by the dashed line). First, 
participants reached in a null field (left), but then were exposed to CW or CCW velocity-dependent force 
fields (right). At the end of null field and force field trials, the hand was held in place with an endpoint 
clamp. B. The force field schedule. Shown is the force field magnitude on each trial. The experiment was 
composed of cycles consisting of one outwards reach and backwards reach. On outwards trials were 
perturbed. The force field gradually increased to a constant value and then decreased. The + and - 
indicators represent periods of increasing and decreasing force field strength, respectively. CCW and CW 
force fields were applied in different blocks, separated by a short break. C. Occasionally, probe trials 
were inserted to measure forces during moving and holding. Shown are forces during different periods 
of the experiment (upper-left is increasing CCW field, upper-right is decreasing CCW field, lower-left is 
increasing CW field, and lower-right is decreasing CW field). Each trace is one trial. The color indicates 
the field magnitude in each respective period (blue is early and red is late). D. We calculated the time-
integral of the moving forces (green) and the static holding force (red) on each trial. Values are mean ± 
SEM across participants. E. Shown is a scatterplot of the holding forces as a function of the moving force 
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time-integrals. Colors are consistent with trials in C. Marker shape depicts the period of the experiment 
(legend bottom-right). The solid line depicts the linear regression. Values are mean ± SEM across 
participants. 
 

 Next, we considered movements that started and ended at different points in space. We tested 

reaching movements where the arm started to the right of the midline of the body (Fig. 6.14A) and to 

the left of the midline of the body (Fig. 6.14B) in different blocks. Again, we used a gradual adaptation 

paradigm where subjects were exposed to either a CW or CCW velocity-dependent force field (Fig. 

6.14E). As in our primary results (Fig. 6.3) reach forces and hold forces covaried with one another 

throughout each phase of the experiment (Figs. 6.14C and 6.14D). Again, Eq. (6.2) provided an accurate 

account of the relationship between the integral of reach force and the change in hold force (Fig. 6.14F). 

Altogether, these results demonstrated that Eq. (6.2) generalized to different spatial locations in the 

two-dimensional workspace. 
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Figure 6.14. The relationship between reaching and holding forces is consistent across different arm 
postures. A. The movement was centered about 15 cm to the left of the midline of the body (dashed 
line). First, participants reached in a null field (top) but were then exposed to a CCW (Experiment 3, n=9) 
or CW (Experiment 4, n=8) force field that gradually increased in strength over many trials. At the end of 
each null field or perturbation trial, the hand was held in place during an extended holding period within 
an endpoint clamp. B. Participants also reached in a separate block in the same manner as in A, but with 
the arm centered 5 cm to the right of the midline of the body. C. Occasional probe trials were inserted 
to measure hand forces in the left workspace. The time-integral of the reach force is shown on each trial 
in green. The holding force is shown in red. The + and - indicators represent periods of time in which the 
force field was increasing and decreasing, respectively. Values are mean ± SEM across participants. D. 
Same as in C but for the right workspace. E. Participants were gradually adapted and then deadapted to 
either a CCW (blue group, bottom) or CW (black group, top) force field. Participants were tested in two 
blocks separated by a short break. In one block, participants reached with the arm centered to the left 
of midline (shown to the left of dashed line). In the other block, participants reached with the arm 
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centered to the right of midline (shown to the right of dashed line). The order was counterbalanced 
across participants. F. Shown is a scatterplot plot depicting the holding forces as a function of the 
moving force time-integrals. Points represent individual trials. The black line shows the linear regression. 
Values are mean ± SEM across participants. 
 

6.3.11 Cortically-driven feedback responses to error are also integrated 

In this work, we used channel trials to isolate feedforward components of motor plans in the absence of 

error. That is, all of the evidence to this point that reach commands are integrated into hold commands 

applies solely to movements executed in the absence of error. Does the feedback response to error also 

generate reach commands that undergo integration? To answer this question, we designed an 

experiment where participants reached from a start position to a target (Fig. 6.15A) as before. But every 

so often, participants received a visual perturbation to the cursor while the hand was restrained within 

the channel. On some trials, the cursor was fictitiously moved to the left, and on others to the right, to 

differing visual extents. On these channel probe trials we measured the reach forces exerted laterally 

against the channel wall (Fig. 6.15B). Consistent with a visual feedback response to error, corrective 

reach forces were produced starting 200 ms after reach offset. 

 

 

Figure 6.15. The visual feedback response to error is integrated. A. Participants reached from a start 
position to a target position. On some trials the hand was restrained within a channel, but the cursor 
was fictitiously displaced to the left or right along a parabolic trajectory, thus simulating a reach error. B. 
Participants responded to this visual prediction error, generating a feedback response consistent with 
the direction of the visual perturbation that started approximately 200 ms after reach onset. Hold forces 
appeared to follow the different feedback responses. C. On each trial we calculated the change in hold 
force and plotted this as a function of the integral of reach force on that trial. D. The integral of reach 
forces accounted for trial-by-trial changes in hold forces. To quantify the strength of their relationship, 
we linearly regressed the change in hold force onto the integral of reach force, and reported the 
corresponding R2 value. 
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 These feedback driven reach forces showed clear signs of integration (hold period in Fig. 6.15B). 

In fact, the level of integration appeared strong on a trial-by-trial basis (Fig. 6.15C). Ultimately, the 

integral of reach force accounted for approximately 30% of the variation in the change in hold force (Fig. 

6.15D) consistent with our primary results in Fig. 6.3. Therefore, cortical commands generated online in 

response to error are also integrated as are feedforward commands generated in the absence of error. 

 

6.4 Discussion 

Current computational models of reaching view move and hold periods as events that take place in 

sequence: the sensory representation of the target engages a feedback controller that moves the arm, 

and then once the desired endpoint has been achieved, a separate controller is engaged that produces 

the sustained commands that hold the arm186,187,189,191. These models have usually assumed that the 

motor cortex is responsible for generating the move period as well as the ensuing hold period 

commands194,195. Here, our experiments suggest the possibility of a different architecture (Fig. 6.7G), one 

in which movement commands are integrated in real-time (Fig. 6.1B) by a separate network of neurons 

of possibly subcortical origin, resulting in holding commands. If true, this would imply that control of the 

arm shares a design principle present in control of the eye1,13,86,88,89,91,94,193 and the head94–96.   

We measured muscle activity during point-to-point reaching in the vertical plane and found that 

across directions and durations, a form of mathematical integration related muscle activity during the 

hold period with the preceding reach period activity (Fig. 6.1). When the start and end positions of 

finger movements were kept nearly constant, there was still large variability in the hold period EMG of 

many finger muscles. On a within-trial basis, for all muscles recoded the integral of the move period 

EMG partly accounted for the change in hold period EMG. In contrast, activity before the start of the 

movement, co-contraction, or even finger position itself were poor predictors of the final hold period 

EMG. Thus, fluctuations in the integral of the move period commands influenced the change in hold 

period commands. 

Next, we altered the move period commands and asked whether that change altered the 

commands that were generated during the hold period. We approached this question in healthy 

participants, as well as patients who had survived a stroke affecting their CST above the brainstem. In 

both populations, as reach period forces changed during force field adaptation, so did the subsequent 

hold period forces, as predicted by integration (Figs. 6.3 and 6.7). Integration was also observed during 

the null period prior to the introduction of the force field, effectively ruling out the possibility that 

moving and holding correlations arose due to reach adaptation. Critically, the same integration function 



241 

 

was observed for both healthy participants and stroke patients, suggesting that the putative integrator 

might reside within a subcortical structure. 

As an alternative to integration we considered the possibility that the hold period forces may be 

a continuation of the reach period forces, not an integration of the entire period. To test this idea, we 

changed the reach period forces via adaptation to a bidirectional force field (Fig. 6.4), one in which the 

integral of the move period forces was zero, but not the forces near the start or end of the move period. 

We found that as the integral of the move period force approached zero, so did the change in hold 

period force. 

Finally, we considered the fact that in order to hold the arm at a specific location, the nervous 

system must produce a postural field99,201,202. We measured this field by engaging subjects with a 

working memory task, while slowly moving their hand away from the target location. We found that as 

the reach period commands changed, so did the null position of the postural field. The magnitude of this 

shift was proportional to the integral of the preceding reach forces. These results suggested that the 

hold forces we measured in our adaptation experiments were generated by a disparity between hand 

position and the null point established by the integration of moving commands. This mismatch may help 

explain the paradoxical illusions in perception of arm position209,210 that accompany force field 

adaptation.  

The idea that move period activity is integrated into a specific null point might explain why we 

observed poor trial-by-trial correlation between hold activity and finger position in Fig. 6.2. Note that 

the tube housing the finger constrained the motion of the finger to an arc, and thus may have prevented 

it from moving to its true “null position” in three-dimensional space. Therefore, if move commands 

integrated to a position outside of the tube, for a fixed tube rotation, there could be many null positions 

lateral to the tube, thus decreasing the observed correlation between the rotational position we 

measured and the associated EMG. In other words, trial-to-trial variability in move period activity should 

integrate to different magnitudes of hold activity, thus leading to hold positions that do not necessary lie 

within the tube. 

The notion that holding commands control a null position is reminiscent of earlier theories in 

which the principal role of the motor system was to specify equilibrium positions for the arm211,212. 

These theories posited that movement arose from the transition between holding locations. In sharp 

contrast, our results imply that the hold commands are generated in real-time via integration of the 

ongoing move period commands. 
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6.4.1 A hypothetical architecture for control of arm posture 

The model presented in Fig. 6.7G represents our conjecture regarding architecture of the reach and hold 

controllers. In this conjecture, movements are encoded by the cortex, resulting in the move signal, 

termed ( )m t , which is integrated in real-time by an unknown subcortical area. The integral of move 

commands is then added to initial hold activity, yielding a feedforward estimate of the commands 

required for holding still, termed ( )h t . During a movement, the commands that arrive at the 

motoneurons are a sum of commands for moving and holding, ( )u t . 

There are a number of predictions that arise from this model. Motor commands required to 

move the arm to a target position are not fixed, but vary because of interactions with external objects, 

interaction torques that arise when the body is in motion, and over time as our bodies change. We know 

that the move system continuously adapts to these novel dynamics. A similar process of adaptation 

would also be required of the proposed reach integrator. 

Indeed, in the oculomotor system, move period and hold period commands can both undergo 

adaptation, and this adaptation depends on the cerebellum16. However, different regions of the 

cerebellum are required for adaptation of the move and hold periods1. Optican and Miles203 

demonstrated that the oculomotor integrator could be adapted by translating the target position as the 

eye transitioned from a saccade to gaze holding. In our reaching experiments, we found evidence for a 

similar adaptation mechanism. Errors near the end of the reach that were consistently encountered as 

the arm attempted to stop within the target location reduced the gain of the integration function (Fig. 

6.6). Through adaptation of the hold system, the arm would be able to cope with novel dynamics during 

the reach while also maintaining the ability to hold the arm at the target.  

 While this adaptation mechanism would achieve endpoint stability over the sequence of many 

movements, immediate corrections in the integrator output would be handled through the parallel 

operation of sensory feedback (Fig. 6.7G, sensory feedback). This scheme would resemble a neural 

integrator for control of the head in the interstitial nucleus of Cajal94–96, which relies on proprioceptive 

and visual feedback96. The importance of these feedback pathways is further illustrated by conditions in 

which the arm is passively moved to a new position. 

We think that this new model of reaching might shed light on a number of interesting puzzles. 

For example, transient inhibition of the motor cortex during a reach results in “freezing of the arm” at its 

current posture, and not loss of muscle tone97. That is, despite near complete removal of output from 

the motor cortex during a reach, commands of unknown origin continue to sustain arm position against 
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the force of gravity. Our model suggests that a distinct structure, possibly located in a subcortical area, 

integrates the cortically-generated reach commands up until the moment of cortical inhibition, and thus 

maintains posture despite removal of reach commands. This model is also consistent with the 

observation that cortical stimulation not only moves the limb, but also produces specific postures in 

primates213 and rodents214. Moreover, the total displacement of the limb appears to scale with the 

duration of stimulation, consistent with the idea that displacement is produced due to integration of 

motor commands over time. 

The idea that integration occurs outside of the motor cortex potentially explains why successful 

decoders of cortical activity are designed to control cursor velocity, as opposed to cursor 

position192,215,216. To hold the cursor still, these decoders assume that the cortex encodes a zero-velocity 

command rather than a position-based command. This observation is consistent with the possibility that 

the cortex is primarily concerned with dynamic quantities, i.e., changes in the state of the limb, rather 

than the maintenance of a specific limb state over time. This idea would account for the observation 

that neurons in the motor cortex modulate their activity when there is a change in force production, but 

less so when the constant force is maintained over time217,218. To maintain a constant force over time, 

our conjecture states that a subcortical area integrates phasic activity from the cortex, and maintains its 

output over time. This idea is consistent with evidence that transient stimulation of the brainstem in 

decerebrate cats produces sustained (timescale of minutes) changes in extensor muscle force98. 

 

6.4.2 Limitations 

Eqs. (1) and (2) describe how the integration of move activity may relate to changes in hold commands, 

but does not specify the hold command at the target. This reflects the reality that move period 

commands alone will not determine the terminal position of the arm: the initial arm position must also 

be taken into account. In other words, to hold the limb at the target, the integrator must not only 

integrate move commands, it must add this integral to the hold period activity that preceded movement 

(see. Eq. (6) in Methods; illustrated in Fig. 6.7G). We do not know if the integrator internally performs 

this addition, or if a downstream structure handles this adjustment for initial limb position.  

 Without a biomechanical model of the arm, it is not obvious why the linear functions in Eqs. (1) 

and (2) robustly predicted the relationship between change in hold activity and the integral of move 

activity. It may be that as we test movements that are more complex than simple point-to-point 

reaches, the observed linearity will break down. For example, how would the reach integrator maintain 

endpoint accuracy when the arm grasps an object, thus altering its mass? Such a scenario would require 
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an increase in muscle activity to move the larger mass, and then hold it still against the forces of gravity, 

so it may be the case that integration would naturally account for these positive correlations. 

Furthermore, over successive movements, inaccuracies in the output of the integrator could be reduced 

through adaptation of the integration gain as in Fig. 6.6. Finally, as is the case for the move 

controller208,219,220, the reach integrator may store object-specific or environment-specific memories and 

implicitly alter its integration properties when an often-encountered dynamical context is re-

experienced. These mechanisms, along with the parallel output of visual and proprioceptive controllers 

would allow the arm to be stabilized under different inertial conditions. 

These possibilities could be tested in the future, by altering the mass of the arm and recording 

EMG from various arm muscles. With regards to EMG recording, it should be re-emphasized that the 

reach period forces measured in our human subject experiments were perpendicular to the direction of 

movement, and thus represented only part of the complete motor command. Because perturbations 

were applied perpendicular to the reach trajectory, our measure captured the primary dimension of 

adaptation. In future studies, a more complete picture of the integration process would be provided by 

recording EMG during adaptation. 

It is unlikely that the motor cortex has no role in postural control. At the very least, the 

monosynaptic projections from corticomotoneurons221 to alpha-motoneurons in the spinal cord are 

likely to be active during periods of holding still. We do not know if these hold period signals in the 

cortex arise from recurrent connections with a subcortical integration system, or from a separate 

position controller.  

Understanding the differential contributions of the cortical systems and the putative subcortical 

integrator is essential to improve our understanding of neurological disorders such as stroke and 

dystonia222. Identifying the locus of the reach integration may help explain why these patients exhibit 

abnormal postures at rest. These abnormalities could arise from a lesion to the integrator circuit, or 

perhaps more provocatively, from the normal integration of chronically abnormal moving commands. 
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Chapter 7. Conclusions and future directions 

When we experience a movement error, the brain learns from the error and changes the way we 

perform that movement on the next attempt. Here we set out to address (1) how the brain learns the 

correct motor response to prevent future errors, (2) how this learning process changes over time, and 

(3) how the process of movement adaptation changes the way we maintain stillness. Here we revisit the 

primary conclusions from Chapters 2-6, describe possible ways to continue these lines of inquiry, and 

also speculate on the neural correlates of the behavioral mechanisms we highlighted in this work. 

 

7.1 Mechanisms of error-based learning 

When we make a saccade towards an object of interest, our movements often end with a visual error 

between the object and our fovea. When these errors occur, our brain quickly programs a corrective 

saccade to better bring the object into focus. The cerebellum contains a region called the oculomotor 

vermis which appears to care a lot about these situations. Purkinje cells of the oculomotor vermis 

experience a complex spike with higher probability when these errors occur in their preferred 

direction25. This complex spike is thought to cause LTD at synapses that are active at that moment in 

time, thus tuning the synaptic plasticity of that neuron to improve future behavior22. But how should 

cerebellar output modify future behavior in order to improve behavioral performance? 

 One potential answer is described by the feedback error learning hypothesis23. When our 

movements lead to sensory consequences that differ from our predictions, we either modify our 

movement online through a feedback controller, or perform a subsequent movement to correct the 

discrepancies left by the first (e.g., a corrective saccade). Therefore, the feedback corrections we make 

to correct for error serve as a model for the predictive motor commands the brain might produce in the 

future to eliminate error. In other words, feedback response to error may serve as a teaching signal for 

the motor learning system24,105. 

In Chapter 2, we investigated this possibility by perturbing the arm in an unpredictable manner, 

and then using EMG to extract the way muscles responded to error, and how they changed their activity 

on the next trial in the absence of error. In each muscle, we found evidence that the change in 

feedforward muscle activity (i.e., the learning response) mirrored the feedback response to error of that 

muscle. Specifically, we found that the learning response resembled a copy of the feedback response, 

but scaled down in magnitude, and shifted earlier in time by approximately 100-150 ms. This rule 
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accounted for each period of the learning response, from the start of the movement, up until the reach 

ended at the target. 

These correlations do not of course imply causation. There are at least two models that might 

explain these findings. The first is that correlation between feedback and learning may arise because 

both are drive by the same error. In contrast, the feedback error learning hypothesis holds that the error 

drives the feedback response, and the feedback response then drives the learning response. To tease 

apart these possibilities, we divided up our trials into instances where the feedback response was low 

and others where the feedback response was high. Critically, the kinematic error did not differ across 

these trials, simply the way the muscle responded. In support of the feedback error learning hypothesis, 

we found that trials in which the feedback response was high in a muscle were followed by a learning 

response that was also high in that muscle. 

 How might this mechanism occur in the brain? Towards the end of Chapter 2, we showed that 

the single trial response was bi-directionally modified by cerebellar stimulation. Therefore, cerebellar 

learning may play a role in the feedback error learning hypothesis. We could imagine a design where the 

combination of visual and proprioceptive evokes complex spikes in the cerebellum via the inferior olive. 

These complex spikes occur at some visual and proprioceptive delay. While we do not know this latency, 

for saccades in the primate, this appears to be approximately 120 ms. The feedback response to the 

visual and proprioceptive errors is also delayed, requiring time to travel to the sensorimotor cortex, and 

then back down the CST. An oft-quoted latency for this response in the spinal cord is approximately 150 

ms. If an efference copy of this feedback response to error arrives at the cerebellum a bit before this, 

then it may be the case that complex spikes in the cerebellum are occurring at precisely the same time 

as the arrival of the feedback response to error (note that it has been shown recently that complex spike 

latency is tuned to align with certain behavioral functions, adding credence to this possibility223). 

Therefore, if the parallel fibers in the cerebellar cortex also encode the feedback response to error, the 

synapses active during the feedback response to error are also those that will undergo plasticity due to 

the occurrence of the complex spike, forming an engram of the feedback response to error in the 

cerebellum. This engram may be the key to why the learning response of the next trial resembles the 

feedback response to error. 

 Therefore, the muscle-based learning rules we described in Chapter 2, could be caused by the 

representation of muscle commands in the cerebellar cortex. The stochasticity inherent in the feedback 

response to error makes it such that on some trials, certain muscles are updated more than others. If 

the trial-by-trial usage of a muscle in the feedback response follows an unbiased normal distribution, we 
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would not expect that one muscle would necessarily become dominant for the feedback response to 

learning. However, it is interesting to wonder if across different exposures in the same participant, if the 

feedback response could be encouraged somehow to include some muscles and not others, and then to 

demonstrate that the endpoint of adaptation can be altered in muscle space, depending on the 

feedback responses to error on the preceding trials. This idea could be tested in a future experiment. 

 We do not imagine the learning from the feedback response to error is the sole contributor to 

implicit learning processes. More than likely, feedback error learning is one of many processes by which 

the brain learns from error, and in many cases, a sensory prediction error alone is sufficient to drive 

adaptation14,115. This latter idea comes from the observation that many movements like saccades and 

fast reaching movements terminate too quickly for feedback responses. How then could a feedback 

response serve as a teacher if it does not occur? While we think this is likely the case, we should also 

note that simply because a feedback response is not expressed does not mean that it was never 

computed implicitly. It may be the case that a feedback response to error is in fact sent to the 

cerebellum, but the cerebellum does not act on its presence because the reach is over. While this may 

seem an outlandish possibility, it has been demonstrated that cerebellar and cortical output is extremely 

context dependent, that is, whether or not it produces an output that affects movement depends on the 

state of the individual224. And so, it could be the case that feedback responses are computed but not 

executed when a movement ends due to a shift in context. 

 In Chapters 3-5 we explore how learning responses, more specifically error sensitivity, changes 

over time. It is also interesting to wonder how the feedback-instructed learning might also change over 

time. For example, in the context of savings, is it possible in some cases that the amount learned from 

the feedback response to error is increased by past experience (and vice versa)? If so, is it possible that 

part of the memory of past errors7 we observe is actually a memory of how we corrected for those 

errors in the past? Future experiments should record both the feedback response to a perturbation as 

well as the learning response over time and exposures, to understand how each is modified over time. 

 Finally, with the advent of Neuropixels and optogenetics, it may be finally possible to determine 

what complex spikes in the cerebellar cortex encode, in the context of arm movements. For example, do 

complex spikes encode low-level muscle properties, or errors in higher dimensional visual space, or joint 

proprioceptive space? When do complex spikes occur during a reaching movement: at discrete times 

during the movement, or continuously throughout a reaching movement? What is the consequence of 

complex spikes in the cerebellar cortex in the context of reaching? For example, in saccades, a complex 

spike in a Purkinje cell microcircuit that prefers errors to the right results in learning to the right22. Might 
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a similar mechanism be true for reaching movements? To answer these questions, we will need to 

record from the cerebellar cortex, locate the locus of reach adaptation, record during normal reaching 

movements, and other sensory manipulations of the limb. These experiments have great promise in 

helping link the theories of motor control and motor learning with actual neurophysiology of the brain. 

 

Section 7.2 Models of error-based learning 

Our understanding of the brain is accelerated by our attempt to mathematically describe observed 

behavior. In the field of motor learning, the state-space model of error-based adaptation has had a 

significant impact on the direction of the field, the questions we ask, and the way we interpret our 

findings. As an example of this, all of Chapters 3-5 was based on interrogating predictions of these 

equations, and updating the underlying models based on observation. 

 In the context of these models, most attention is given to understanding our sensitivity to error 

and also the decay of memory over time. However, in Chapter 3, we demonstrate that another critical 

component of these models is variability: the variability present in the production of movement, the 

observation of our errors, our learning processes, and the environment around us. The way our models 

account for these sources of variability influences how we select the most likely model that describes 

our data. We demonstrated that incorrectly selecting the wrong model, changes your belief about the 

properties of adaptation, and also effects your ability to do hypothesis testing, increasing variability in 

the estimation of model parameters and thereby the number of participants that are needed for 

statistical testing. 

 We showed that EM is a better tool for understanding human motor behavior than the standard 

least squares technique, and also provided a framework for its use in cases where model parameters are 

time varying. By no means however should this technique be a stopping point. First, of all EM is a tool 

that maximizes a likelihood function iteratively. However, the likelihood function could be searched 

directly, as demonstrated in the appendix of Chapter 3. Very preliminary evidence that we did not 

provide here suggested that searching the likelihood function directly tended to yield extreme estimates 

for parameters, often due to the convergence of certain noise variance parameters to zero. Therefore, it 

may be the case that there are parameters that correspond to a large likelihood, but nevertheless are 

less reasonable than a set with a lower likelihood. 

Part of this issue might arise from the fact that EM is a frequentist approach that has no prior 

assumption on what sets of parameters are more likely than others (and that the parameter sets are 

point estimates for which there is no measure of uncertainty). Therefore, Bayesian techniques provide 
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an exciting opportunity to improve model fitting procedures in the human psychophysics literature58. 

While Bayesian approaches to estimation are commonplace in other fields, the sensorimotor literature 

has not yet caught on to this trend. Future work should focus on making these techniques approachable 

for the user irrespective of their computational skills. 

In Chapters 3-4 we used the EM algorithm to estimate learning parameters in various contexts: 

savings, spontaneous recovery, and anterograde interference. In Chapter 5, we considered the point at 

which motor learning saturates in short term paradigms. In all cases, we found that modulation of error 

sensitivity played a key role. That is, savings was caused by an increase in error sensitivity in fast learning 

processes. Anterograde interference was caused by a decrease in error sensitivity that recovered over 

time. And the point of saturation could be modulated not by changing the rate of decay, but by the 

sensitivity to error in environments with low variability and high variability. For this latter observation, 

we saw that much of the control of asymptote was through a memory of errors in the implicit learning 

system. Therefore, we speculate that the cerebellum may play a critical role in each phenomenon and 

could potentially house a memory of past errors. 

At the end of Chapter 5 we speculated as to the form that such a memory of past errors might 

take. Given that Purkinje cells of the cerebellum have a preference for error, and that different 

microcircuits of the cerebellar cortex therefore encode different parts of the error space, it may be 

possible that olivary projections to the cortex have organized the cerebellum in a manner conducive to a 

memory of errors. We imagine a scenario in which the temporal frequency of complex spikes may 

modify the magnitude of LTD that occurs at the parallel fiber-Purkinje cell synapse (or perhaps even the 

synapses with the climbing fiber itself). In other words, consistent errors invoke complex spikes in the 

same set of neurons, whereas inconsistent errors invoke complex spikes in different neurons on each 

movement attempt. A high frequency of complex spikes in a neuron may induce synaptic changes that 

make that neuron more sensitivity to the occurrence of that complex spike in the future, and vice versa 

for low frequency of complex spikes. This mechanism could be tested in a savings paradigm, where 

individual Purkinje cells could be held for two exposures to determine on the second exposure how LTD 

in that cell is affected by the occurrence of the first exposure. 

There are other potential aspects of the memory of errors model that will be important to 

explore both in behavioral and neurophysiologic experiments. Our results in Chapter 5 require that the 

memory of errors, or error sensitivity modulation more generally, must have an upper bound. That is, at 

some point, error sensitivity must stop increasing even if errors are consistent on each trial. To account 

for this possibility, we speculated that there may be a decay in error sensitivity that maintains its 
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magnitude within a homeostatic range. This idea would be consistent with findings that savings is lost 

after long periods of washout, but preserved when washout is limited61. In the context of motor learning 

we know that decay of memory takes at least two forms: time-based and movement-based29. That is, 

memories are forgotten by waiting, or by moving in the absence of error. And more interestingly, 

different components of memory may be differentially sensitive to each possibility. Future experiments 

should explore if this is also true of error sensitivity. That is, does decay in error sensitivity depend on 

time, the presence of other movements, or the presence of the errors for which sensitivity was 

upregulated in the first place? Many of these possibilities could be tested in savings paradigms in which 

washout, time, and errors between exposures are manipulated. In addition, this memory of errors could 

be coupled with neurophysiologic recordings from the cerebellar cortex, but of course, after the neural 

correlate of error sensitivity is revealed. 

Finally, I should end by noting that when it comes to these models, one size does not fit all. For 

example, a two-state model of learning can explain spontaneous recovery, but not savings or 

interference. A memory of errors model with a single process explains savings, but not anterograde 

interference. And we currently do not understand why the experience of two dissimilar perturbations 

causes a reduction in error sensitivity of the latter. For this reason, the field is still in need of a model 

that could account for each of these phenomena, or for neuronal recordings that describe why the 

mechanism for each (and therefore the mathematical model) differs at the level of neural circuits. 

Continuing along these lines, while the memory of errors model has received much attention, we have a 

much poorer understanding of the processes that cause interference. While we describe how error 

sensitivity changes in the anterograde interference paradigm in Chapter 4, we do not know what 

elements of the initial learning period inhibit adaptation to the second learning period. This represents 

another area for future investigation. 

 

Section 7.3 Cortical and subcortical control of holding still 

One of the great promises of neuroengineering is the brain-computer interface192,225. The idea is that 

clinicians can place an electrode over the motor cortex, decode the neurons’ intentions for movement, 

and use this signal to power a robotic prosthesis for individuals that have lost use of their limb(s). While 

the feasibility of this idea has been partially explored for robots with multiple degrees of freedom, most 

have used this technology by placing arrays over M1 to control the movement of a cursor on a screen. 

However, when this done, a peculiar problem emerges. Whereas these devices can be trained to control 

accurate movements of a cursor, they lose their stability during periods of holding still. That is, stopping 
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the cursor on a target is very hard to do from the signals present in M1. For this reason, successful 

decoding algorithms exclusively control cursor velocity, and then apply zero velocity to the cursor once 

it drops below some threshold speed192,215,216. In other words, cortical decoders hold the cursor still 

using a zero-velocity command, rather than a position-based command. Why should this be the case? 

 In Chapter 6, we demonstrated that damage to the corticospinal tract selectively impairs 

movement, but not the integration of movement into commands for holding still. Therefore, perhaps 

the difficulty with position-control of the cursor is because static position-related commands are simply 

not present within the cortex, but are computed elsewhere. Perhaps the cortex’s role in movement is 

the production of dynamics for movement of the limb or cursor, but not the maintenance of static 

commands over time. This possibility is consistent with recordings from rostral parts of M1, where 

neurons demonstrate phasic activity during the production of a movement, but no sensitivity to the 

state of the arm when it is holding still, or applying a constant force over time217,226. Remarkably, single 

neurons in the motor cortex do not modulate their activity when the arm is producing a constant force, 

irrespective of the orientation of that force in space218. 

 If the encoding of static forces and positions is not present in the motor cortex, where might it 

be? Transient stimulation of the brainstem in decerebrate cats leads extensor muscles in the limb to 

change its tonic level of contractile activity98. So perhaps tonic activity is produced from the integration 

of phasic activity in the brainstem (or spinal cord). This possibility is consistent with studies of cortical 

inactivation in mice. When mice reach for a food pellet, inactivation of the motor cortex halts the 

progression of the reaching movement, but does not prevent the hand from being held still in space. 

Therefore, there must be some subcortical region that produces persistent activity that maintains 

motoneuronal output, much like the prepositus (oculomotor integrator) does for the eye. 

 Therefore, we propose that the arm, like the eye, may in part depend on a neural integrator to 

hold the arm steady in a desired posture. Such a possibility may have important implications for our 

understanding of various neurological disorders, and the design of devices like neural prosthetics that 

interact with our brain to control external objects. How might this hypothetical integrator function? In 

Chapter 6, we demonstrated that the commands that move and hold the arm against gravity are, to a 

good approximation, related through linear integration. The change in hold commands from the start of 

the movement to the end of the movement are linearly proportional to the time-integral of the muscle’s 

activity during the movement. The same is true of point to point movements of the finger, and for forces 

produced during periods of reaching and holding. Therefore, we may be able to record neural activity in 

M1, construct a low dimensional representation of the population activity, relate this to the velocity of 
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the effector, and simulate the output of the integrator by integrating this signal in time to hold a 

prosthetic device still at the end of movement. Or perhaps we can create a neural network whose role is 

to transform phasic movement activity from M1 into a static EMG output during periods of holding still. 

 How might this device program the correct posture in space? Here we demonstrated that to 

hold the hand at the target, the arm created a postural force field with a single stable null point202 that 

was centered at the terminal position of the hand. However, after the adaptation of the adaptation of 

reach forces, this null point moved to a new position in space. Therefore, it appears that movement 

commands are integrated into a null point in space, about which a stabilizing postural field is applied. 

How can we maintain the accuracy of the device over time? Here we found evidence that the putative 

reach integrator adapted to errors near the endpoint of the movement. Therefore, when the 

relationship between the movement commands and the terminal position in space are altered, this 

leads to endpoint errors that then would teach the integrator to change its gain.  

 While the possibility of constructing a silicon-based integrator seems far away, there are a 

number of steps that we could follow to get there. The first is acquiring a better understanding of the 

basic behavioral and neurophysiologic properties of cortical and subcortical systems for moving and 

holding still. We will need to understand how the reach integrator interacts with sensory feedback 

controllers based on vision and proprioception. In addition, we must also understand the space in the 

movement commands are integrated. Here we operate in the space of muscles, but the more likely 

possibility is that integration occurs in a kinematic space that represents accelerations and velocities. 

Perhaps we will discover that there are two integrators connected in series that integrate acceleration 

of the shoulder and elbow joints into a change in position. In addition, we must perturb the system 

further to produce real life scenarios in which the integrator must operate. The first of these will be 

applying masses to the arm that alter its inertial properties and then measuring how this may or may 

not change the underlying integration equation that relates moving and holding commands. 

 Even if it turns out that the reach integrator is quite different than we suggest here, this 

framework provides a way forward to understanding cortical activity. First, what does the cortex do 

during periods of holding still. Now is the time to return to the cortex and record its activity during 

periods of holding still to understand how its neurons may or may not contribute to this process. In 

these experiments, we will need to be careful not to confuse holding activity with preparatory activity 

for future movements198. In addition, we will need to consider other possible sources of position signals 

in the cortex. For instance, position-related modulation of M1 neurons may reflect efferent activity from 

S1 projections that encode the proprioceptive sense of the limb. 
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 The only way to tease apart some of these possibilities in through the design of carefully 

constructed behavioral tasks that isolate the appropriate variables of interest. In addition, tools for fast 

timescale perturbations of the system will be critical, such as optogenetics. For this reason, the mouse 

represents an ideal system for working out the details of integration. However, principles gained from 

the mouse should be taken with a grain of salt, as they may not apply to the more cortically-developed 

primate. Nevertheless, the advent of the Neuropixel probe makes possible the ability to record from 

large populations of neurons in the brainstem during cortical inactivation, in an effort to determine 

where persistent holding activity originates in the mouse. Once this nucleus is identified, the next step 

will be trace and understand its inputs, hopefully for the purpose of understanding the mathematical 

relationships that achieves integration. 

 Finally, it is reasonable to expect that at the end of the day, modern machine learning tools will 

be critical for the understanding of the integrator and how it might achieve its function. Now we have 

poor mathematical understanding of the integration functions that could transduce movement-related 

activity of the limb into static commands for holding still. The design of a recurrent neural network may 

offer a way forward to understanding these computational principles, in tandem with approaches from 

synthetic neuroscience. 
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